
Citation: Alabdulatif, A.; Al Asqah,

M.; Moulahi, T.; Zidi, S. Leveraging

Artificial Intelligence in

Blockchain-Based E-Health for Safer

Decision Making Framework. Appl.

Sci. 2023, 13, 1035. https://doi.org/

10.3390/app13021035

Academic Editor: Giacomo Fiumara

Received: 2 December 2022

Revised: 8 January 2023

Accepted: 9 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Leveraging Artificial Intelligence in Blockchain-Based E-Health
for Safer Decision Making Framework
Abdulatif Alabdulatif 1,* , Muneerah Al Asqah 2, Tarek Moulahi 2,* and Salah Zidi 3

1 Department of Computer Science, College of Computer, Qassim University, Buraidah 52571, Saudi Arabia
2 Department of Information Technology, College of Computer, Qassim University,

Buraidah 52571, Saudi Arabia; 411207283@qu.edu.sa
3 ISSIG, University of Gabes, Gabes 6072, Tunisia; salah_zidi@yahoo.fr
* Correspondence: ab.alabdulatif@qu.edu.sa (A.A.); t.moulahi@qu.edu.sa (T.M.)

Abstract: Machine learning-based (ML) systems are becoming the primary means of achieving the
highest levels of productivity and effectiveness. Incorporating other advanced technologies, such
as the Internet of Things (IoT), or e-Health systems, has made ML the first choice to help automate
systems and predict future events. The execution environment of ML is always presenting contrasting
types of threats, such as adversarial poisoning of training datasets or model parameters manipulation.
Blockchain technology is known as a decentralized network of blocks that symbolizes means of
protecting block content integrity and ensuring secure execution of operations.Existing studies
partially incorporated Blockchain into the learning process. This paper proposes a more extensive
secure way to protect the decision process of the learning model. Using smart contracts, this study
executed the model’s decision by the reversal engineering of the learning model’s decision function
from the extracted learning parameters. We deploy Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP) classifiers decision functions on-chain for more comprehensive integration of
Blockchain. The effectiveness of this proposed approach is measured by applying a case study of
medical records. In a safe environment, SVM prediction scores were found to be higher than MLP.
However, MLP had higher time efficiency.

Keywords: blockchain; e-health; machine learning; deep learning; smart contract; decision function

1. Introduction

Present-day lives require people to depend on various types of technology to assist in
achieving higher levels of productivity and better operational efficiency. The continuous
growth of computer-based technologies has placed them as essential pillars in new world
development. Such intelligent technologies include the Internet of Things (IoT) [1] systems
such as smart homes and supply chain management systems, spam filtering systems,
and many others. As a critical life sector, smart healthcare systems, such as diagnostic
systems or e-health decision systems, are another application of these technologies. These
applications rely on Machine Learning (ML) models to detect and diagnose diseases and
help disease spread prediction, such as the COVID-19 virus. ML uses models that train
with heterogeneous data types to progressively develop and learn to make decisions based
on their calculated outcomes. These outcomes are the decisions that can help automate
routine tasks, detect abnormalities, and predict disease spreads.

Unfortunately, the outcome of this decision can encounter various threats that affect
and change its value. These threats can include model parameter manipulation, poisoning
attacks, and evasion attacks. The latter two are types of Adversarial Machine Learning
(AML) attacks which are manipulative attacks that affect the integrity of ML datasets. A
recent study of [2] applied adversarial attacks on six different COVID-19 detection systems
with underlying ML Deep Neural Network (DNN) models. The authors showed that
the confidence of the DNN model dropped from 91% to 9% on a subject having positive

Appl. Sci. 2023, 13, 1035. https://doi.org/10.3390/app13021035 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13021035
https://doi.org/10.3390/app13021035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0646-5872
https://doi.org/10.3390/app13021035
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13021035?type=check_update&version=1

Appl. Sci. 2023, 13, 1035 2 of 17

COVID-19 results when adding random noise of black and white batches in Computed
tomography (CT) scan training images. The previous experiment is one of many other
examples that proved ML models’ susceptibility to AML attacks.

1.1. Motivation and Problem Background

As shown by Figure 1, AML attacks include falsifying data samples to achieve ML
model inaccuracy in classifying new data inputs [3]. A typical ML process splits the dataset
between two phases, training and testing. A poisoning attack affects the training dataset,
while an evasion attack injects carefully crafted samples into the testing dataset. AML
research is literature designed to measure AML’s impact on ML models to find a way to
increase their robustness against such attacks [4]. For instance, works of [5–7] evaluated
Neural Networks (NN)-based systems against different types of evasion attacks. The
work of [5] performed an evasion attack on a Multi-Layer Perceptron (MLP) Intrusion
Detection System (IDS), where they succeeded in dropping the model’s accuracy from
99.8% to 29.87%. Moreover, Ref. [6] injected adversarial samples to fool Conventional
Neural Networks (CNN) malware detection. Meanwhile, Ref. [7]’s work was successful in
tricking a DNN visual recognition model into classifying adversarial inputs as benign.

Figure 1. An illustration of poisoning and evasion attacks workflow.

Additionally, Ref. [8]’s work is an example of a poisoning attack that tested the
susceptibility of a Support Vector Machine (SVM) spam filtering system by inserting a
well-crafted label-flipped malicious sample into the training dataset.

In e-Health applications, the authors of [9] applied a poisoning attack on a LASSO
regression ML model trained on a dataset that contained records of 5700 patients that
predicted the dosage of Warfarin, an anticoagulant drug. Applying a 20% poisoning attack
caused patients’ dosages to change by an average of 139.31%. An increased dosage of
Warfarin can cause severe bleeding, while a decreased dosage could cause blood clots,
leading to heart attacks if the patient has a history of blood clotting [10]. This notable impact
of AML attacks on people’s health can severely affect other similar e-health systems [4]. A
more comprehensive survey of similar studies on AML effects on other ML models, and
domains can be found in [3].

The AML field of research can easily state that most types of ML are prone to adver-
sarial attacks since it is impossible to assume that the system’s environment is entirely
benign. Security researchers are always on the work to deploy robust methods against
AML. For example, Blockchain is an emerging technology that uses means of cryptography
and decentralization to provide stable, secure, and immutable blocks of records. Multiple
blocks are connected together through a hash-based procedure. This hashing procedure
and the utilization of other cryptography methods have given Blockchain technology its
property of protecting block content integrity [11]. More security researchers incorporate

Appl. Sci. 2023, 13, 1035 3 of 17

Blockchain with ML to protect against AML. However, we believe that a more sophisticated
kind of integration of the ML decision process is still needed.

1.2. Study Contribution and Novelty

The paper’s main contributions are:

• Develop a trust-based AI framework that relies on the integration of Blockchain and
ML models;

• Develop an effective method to secure the decision functions of SVM and MLP models
by using immutable smart contracts.

1.3. Why Blockchain?

In our paper, the blockchain is used for two reasons:

• To protect the dataset against poisonous attacks. Since the used dataset is securely
uploaded to the blockchain instead of publishing it in a shared repository. Indeed, the
blockchain will guarantee the integrity of data;

• To protect machine learning techniques against evasion attacks. We perform this goal
by embedding model decision functions as smart contracts in the Ethereum blockchain.

The rest of this paper is organized as follows: Section 2 provides a brief review of
existing Blockchain-adopted ML research. Moreover, it explains the necessary background
details of Blockchain and ML models. The applied system flow is illustrated in Section 3,
while Section 4 elaborates on the implementation steps of the proposed system, including
the reconstruction of SVM and MLP decision functions. Lastly, Section 5 analyzes and
discusses the performance of the proposed system.

2. Background Study

The revolutionized growth in Blockchain technology has encouraged its emergence
with ML solutions. This section outlines related works and provides a brief technologi-
cal preview.

2.1. Related Literature

Several studies cover combining Blockchain with ML to solve security and privacy
issues in the literature. We summarize these integrations into three main categories, NN-
based integration, partial integration of Blockchain, and Blockchain with Federated Learn-
ing. One of the NN-based integration examples is called DeepRing, where authors of [12]
designed each NN layer to be presented as a Blockchain block to protect against tampering
attacks. Although this integration stood robust against a tampering attack that downgraded
a regular CNN performance by 20.71%, its application is limited to NN-based ML models.
Other research included the partially separated integration of ML with Blockchain [13].
One example is [14]’s work of combining ML with Blockchain for a more efficient and safer
COVID-19 vaccine supply chain. Their solution queried records from the Blockchain to feed
them into a separate Long Short Term Memory (LSTM) classifier. The demand forecasting
LSTM helped preserve 4% of the vaccine ratio, 6 million vaccine doses.

Most Blockchain-integrated ML solutions focus on employing the technology to protect
the privacy of the ML model. Studies with such scope deployed Federated Learning
(FL) [15], or as can be known as Decentralized ML (DML) [16], where a centralized server
collects and aggregates learning parameters among participating nodes.

The majority of found FL-based integration, such as works of [17–19], relied on off-
chain execution of ML training while applying different types of consensus algorithms
to manage work among nodes. This partial application of the ML decision process is
due to the metered usage and storage of Blockchain, which can result in the prosperous
implementation of the whole ML fitting and decision process.

Appl. Sci. 2023, 13, 1035 4 of 17

One other noticeable example is the collaborative deep learning framework called
DeepChain. Similar to the previously mentioned studies, Ref. [20] designed DeepChain
for nodes to train a global model locally and then upload their gradients through a smart
contract. They also relied on consensus algorithms for control updating the model’s
gradients which are averaged and broadcasted again for the next learning iteration. Table 1
summarises existing related work and their limitations.

Table 1. Summary of existing solutions incorporating ML with Blockchain and their limitations.

Ref. Summary Limitation

[14]
Combined Blockchain and ML to de-
sign a more efficient COVID-19 sup-
ply chain system.

Separate integration of ML modules.
No focus on security/privacy

[12]

Designed DeepRing, where each NN
layer is presented as a Blockchain
block to protect against tampering at-
tacks.

Not suitable for other none NN-
based ML models

[21]
Developed dynamic malware detec-
tion system based on behavioral logs
using Deep learning and Blockchain

No consideration to poisoning at-
tacks prevention. No privacy con-
sideration

[22] Used DanKu protocol to build a mal-
ware detection system on Blockchain

Resource wastage due to using
DanKu protocol. No consideration
to poisoning attacks

[18] Used FL with Blockchain to mitigate
end-point corruption attacks.

The consensus committee is only
one member who is considered non-
hostile

As shown in Table 1, the studies incorporating ML with Blockchain are scarce. At
the same time, most of these integrations focused on collaborative learning and partially
included Blockchain in the ML decision process. None of the found literature included the
decision process to be performed on-chain. To our knowledge, there is still no ML decision
integration with Blockchain. This study proposes the further inclusion of the decision
function in smart contracts to achieve a more reliable and secure decision process.

2.2. Technological Background

Since the apparition of bitcoin as an electronic cash system in 2008, researchers and
developers have been working to enhance Blockchain systems to be the main pillars of
future systems [23].

2.2.1. Blockchain Technology

The term “Blockchain” started to be popularly used to refer to the technology presented
in Nakamoto’s paper. Although it was considered a breakthrough in technology, concepts
of Blockchain, such as cryptography and hashing, were explored way before Bitcoin’s
publication [24].

Blockchain has many definitions, but it can be defined as the technology that uses
block-type data structure to store data, uses consensus algorithms to generate and update
the distributed ledger, and uses encryption to ensure security during transmission [25]. To
be put in other words, Blockchain is a Peer to Peer (P2P) network, where nodes share a
distributed ledger [26].

Appl. Sci. 2023, 13, 1035 5 of 17

Blockchain protects the integrity of the ledger content through hashing; each block’s
hash connects with the previous block, and a small change in any block’s content will
not go unnoticed [11]. Consensus algorithms are rules and agreements which the P2P
network uses to draw verdicts on the new block’s validity to the ledger. Nodes calculate
a cryptography challenge, called a nonce, to prove the block’s validity. Once the nonce is
validated, the new block is added. The previous operation is also called mining. Different
consensus algorithms rely on various intensives to encourage mining nodes [26].

2.2.2. Smart Contracts

Smart contracts control the ledger’s state by dynamically sending specific transactions
through execution conditions and logic. When conditions are met, the execution logic is
invoked [25]. Smart contracts enabled Blockchain to manipulate digital assets inside the
Blockchain. It was first implemented in the Ethereum Blockchain platform in 2015 [26].
Smart contracts can be written in Solidity or Vyper programming languages, and they
execute on the Ethereum Virtual Machine (EVM). Smart contracts enabled the development
of distributed applications (dApp) [26].

3. Proposed Methodology

This section presents the proposed model followed by experiments approve to achieve
ML execution security. Figure 2 shows the main steps to achieve the objective of this
study. A smart contract writes the dataset to Blockchain. There are two ways to store
the dataset. One way is to store the dataset off-chain while keeping the hash value of the
dataset on-chain. In contrast, the whole dataset can be stored on-chain. The choice of on- or
off-chain storage depends on the size of the dataset; storing a vast dataset on-chain can be
costly. Direct complete on-chain execution of the ML fitting process was not applicable due
to the following reasons:

1. EVM is still immature to execute complex ML operations;
2. Storing the large-size of ML libraries is considered costly in terms of deployment

and runtime.

The proposed methodology suggests that the ML fitting process be executed off-chain
in a local client. Fitted models’ parameters will then be extracted to be stored on-chain.

Since the dataset followed a classification problem, this study employed two classifiers,
SVM and MLP. SVM is a popular ML classifier that uses influence functions to find a
hyperplane that best separates two data classes. On the other hand, MLP is a deep learning
model that is a type of feedforward NN that uses a set of nodes organized into multiple
layers to draw prediction conclusions.

A smart contract writes the model’s parameters to Blockchain. These written parame-
ters are used to reversely construct the decision function of the ML model on-chain which
will help to classify a new given datapoint vector.

Appl. Sci. 2023, 13, 1035 6 of 17

Figure 2. An overview of the proposed model along with entities interaction and workflow.

4. Implementation

This section elaborates on the implementation details of the proposed methodology.
The implementation device was an AMD64 3.20 GHz CPU with a 16 GB RAM computer,
and the implementation of Blockchain was performed using Ganache [27].

4.1. Experimental Dataset Setup

The dataset used in this experiment is the Pima Indians Diabetes dataset, which
contained the measurements of labeled 21 or older 768 females, where 268 records were of
females with type 2 diabetes, and the rest were healthy females.

In preparation for ML fitting, two copies of the dataset were prepared. Copy 1 of the
dataset was set to be preserved on-chain. On the other hand, an evasion attack of manual
label-flipping was implemented on copy 2 of the dataset, where healthy records appeared
with diabetes labels and vice versa. Almost 33% of records were manipulated and labeled
as poisonous samples, and the rest were labeled as normal records.

Appl. Sci. 2023, 13, 1035 7 of 17

4.2. Writing Dataset

In this implementation, the data storage was on-chain storage since the 24 kilobytes
size of the experiment dataset was quite manageable. Algorithm 1 shows the pseudo code
of writing copy 1 of the dataset procedure, where each record of copy 1 of the dataset
was converted to Javascript Object Notation (JSON) string format before writing them to
the ledger. The storing of dataset on Blockchain will help to protect its integrity against
poisonous attacks. In addition, it makes it available for use with a high safety level.

Algorithm 1 Write dataset to the distributed ledger
Input: f ile dataset file

1: procedure UPLOADDATASET
2: for i← 1 to length of f ile do
3: Record← f ile[i] in JSON
4: DatasetProtect.writeRecord(Record)

Line 4 in Algorithm 1 is a call to a setter function in the DatasetHandler smart contract.

4.3. Reading Dataset

Loading records from the ledger is less expensive and more straightforward. Algorithm 2
shows the steps of the loading procedure.

Algorithm 2 Read dataset from the distributed ledger
Output: recordList[] list of records in JSON

1: procedure LOADDATASET
2: latestID ← DatasetHandler.dCount
3: Init recordList as Array
4: for i← 1 to latestID do
5: R← DatasetHandler.readRecord(i)
6: Push R to recordList[]
7: return recordList[]

Line 2 in Algorithm 2 is a call to a smart contract getter function to obtain the latest
record ID value. Line 5 is a call to a getter function inside the smart contract to retrieve
the record JSON string. This procedure returns a list of JSON strings representing all the
dataset records which then can be converted to any other format for ML model training, a
Comma-Seperated Value (CSV) file for instance.

4.4. Parameters Extraction and Preservation

At this stage, an off-chain client loads the dataset copy 2 and starts the ML fitting pro-
cess to detect poisonous records. In this use case of application, an additional standardizer
is implemented to normalize the dataset.

4.4.1. Scalar Parameters

Copy 1 of the dataset is scaled using a standard scalar that uses means and standard
deviation values to standardize data to values close to 1 and –1 . The extraction of the fitted
scaler produced two vectors with a length of 9, which is the same number as the dataset’s
features. The two vectors are the means for the means values, and the vars for the variances.
These vectors were set and preserved on-chain for future use.

4.4.2. SVM Parameters

SVM was trained using the radial basis kernel function (RBF), which calculates the
Euclidean distance between vectors. After the training process is complete, the following
model’s training parameters were extracted to be preserved on-chain as shown in Table 2.

Appl. Sci. 2023, 13, 1035 8 of 17

Table 2. SVM extracted parameters.

Name Description Data Type

support_vectors_
Datapoints defining hyperplane decision
boundaries placements

9 × 395 Decimal Ma-
trix

_dual_coef Weights of support vectors 1 × 395 Decimal Ar-
ray

_intercept The bias Decimal
_gamma To handle non-linear classification Decimal

Support vectors were saved individually through a loop similar to the one previously
used to store dataset records due to the HyperText Transfer Protocol (HTTP) limitations to
pass the sizeable multi-dimensional list to the chain in one transaction.

4.4.3. MLP Parameters

MLP training process included two hidden layers of sizes 5 and 2 over 1000 epochs.
The feed-forward deep learning NN relied on a nonlinear activation function, known as the
Rectifier Linear Unit activation function (reLU). Likewise, Table 3 shows MLP parameters
stored on-chain after the training is complete.

Table 3. MLP extracted parameters.

Name Description Data Type

coefs_
Weights of neuron’s inputs in three
layers, two input layers, and the out-
put layer

5 × 9, 2 × 5, 1 × 2 Decimal
Matrices

intercepts_ Biases of each neuron in three layers 1 × 5, 1 × 2, 1 × 1 Decimal
Arrays

The learning settings of both SVM and MLP were found to be best in this case of classi-
fying poisonous diabetes data records by balancing performance and avoiding overfitting.

4.5. ML Detection Implementation

This study proposes preserving efficiency by manually deploying decision functions
built from both algorithms’ previously-stored parameters to carry the detection of new
data input on-chain. As mentioned earlier, the entire algorithm learning process on-chain
was not cost-efficient.

4.5.1. Scalar Standardization Function

A new data point needs to be scaled first to be classified by the ML model. The scalar
applies the standardization function below to the means and variances values acquired in
the previous step:

z =
x− µ

σ
(1)

where z is the scaled vector, x is the input vector, µ is the mean value, and σ is the standard
deviation value, which is the square root of the variance value. Algorithm 3 shows the
scaling procedure steps.

Appl. Sci. 2023, 13, 1035 9 of 17

Algorithm 3 Standardize new data point vector.
Input:

vector integer input vector,
means means array,
vars variances array

Output:
scaledVector scaled decimal output vector

1: procedure SCALEDATA
2: stds← sqrt(vars) . call math sqrt() function
3: for i← 1 to length of vector do
4: vector[i]← vector[i] in Decimal . convert integer to decimal format
5: scaledVector[i]← (vector[i]−means[i])/stds[i]

It was not possible to pass decimal arrays directly to smart contract functions during
the implementation of the proposed methodology. For this reason, as seen in line 4 in
Algorithm 3, every decimal array was passed as an integer and then converted back to
decimal on-chain for further calculations.

4.5.2. SVM Decision Function

An RBF-kernel SVM’s decision function returns values close to (–1,1) and is generally
described in the math equation below:

h∗ = (x?φ(x)) + w?
0

h∗ = ∑
i∈PS

a?i ui·K(xi − x) + w?
0

(2)

In the above representation, h∗ is the decision function, a?i is the value of the coeffi-
cients, ui is the support vector output of the kernel function K, x is the new data point
vector, xi is the support vector, and w?

0 .
Since the kernel function of this SVM implementation was the RBF function, it has the

mathematical representation as follows:

K(x, x’) = exp(−γ‖x− x’‖2) (3)

In the above equation, γ is the gamma value acquired previously. The RBF kernel
function returns the product of negative gamma with the Frobenius norm of two input
vectors. Function exp() is the exponent of Euler number, e.

‖x, x’‖F =

√√√√ m

∑
i=1

n

∑
j=1
| ai,j |2 (4)

The above math representation shows that the Frobenius norm, F, is the square root of
the summation of two input vectors, x, x′, squared difference, a.

Smart contracts did not provide complex decimal math libraries support for exp()
function, nor did they allow execution for decimal numbers to be the base or the exponent
of exponentials. This study came with the workaround to use the Taylor Maclaurin series
to calculate the exponential of decimals:

f (x) =
∞

∑
n=0

xn

n!
(5)

The above math representation shows that the Taylor Maclaurin series is the summa-
tion of a number x raised to power n divided by the factorial of that n.

Appl. Sci. 2023, 13, 1035 10 of 17

Taylor Maclaurin series is an approximation calculation, which means that calculating
ex using the summation of an infinite number n iterations will progressively produce a
value closer to the actual value.

The following Algorithm 4 shows the steps of calculating the Taylor Maclaurin series
in fifty rounds of calculations, as it was better suited for execution efficiency while obtaining
more precise values. Algorithm 5 shows the steps of calculating the Frobenius norm of
Equation (4).

Algorithm 4 Approximate ex using Taylor Maclaurin series
Input: x decimal number
Output: result decimal number

1: procedure TAYLOR
2: term← result← n← 1
3: for i← 1 in range(50) do
4: term← (term ∗ x)/n
5: n← n + 1
6: result← result + term
7: return result

Algorithm 5 Frobenius norm of two vectors
Input:

x decimal support vector,
z decimal input vector

Output:
sum decimal number

1: procedure FNORM
2: sum← 0
3: for i← 1 to length of x do
4: y← (x[i]− z[i])2

5: sum← y + sum
6: return sqrt(sum)

Equation (3) of the kernel function is calculated by using the Frobenius norm and the
Taylor Maclaurin series, as shown by Algorithm 6.

Algorithm 6 RBF kernel of support vector and input vector
Input:

x decimal support vector,
z decimal input vector,
g gamma value

Output:
y decimal number

1: procedure RBF
2: norm← Fnorm(x, z)2 . call Fnorm procedure
3: y← (g ∗ norm) ∗ (−− 1)
4: return Taylor(y) . call Taylor procedure

It is worth noting that the square root step in Algorithm 5 line 7 cancels the squaring
step in Algorithm 6, line 2. For this reason, these steps were omitted in the smart contract
code implementation.

Algorithm 7 applies Equation (2), where it takes an integer vector input and returns a
value > 0 or <0. If the output of this function is larger than zero, a positive number, it has
a label of class 1. Alternatively, if the output is less than zero, a negative number, it has a
label of class 0.

Appl. Sci. 2023, 13, 1035 11 of 17

Algorithm 7 SVM decision function
Input:

x integer input vector,
sv support vectors matrix,
d f dual coefficients array,
incpt intercept decimal value,
g gamma decimal value

Output:
v decimal number

1: procedure SVMDECFUN
2: z← ScaledData(x) . call ScaleData procedure
3: init rb f List[] as Array
4: for i← 1 to length of d f do
5: rb f ← RBF(sv[i], z, g) . call RBF procedure
6: push rb f to rb f List[]
7: sum← 0
8: for i← 1 to length of d f do
9: y← d f [i] ∗ rb f List[i]

10: sum← sum + y
11: v← (sum + incpt) ∗ (−− 1)
12: return Taylor(v)

4.5.3. MLP Decision Function

MLP has an input layer of 9-dimensions, and two hidden layers of 5 and 2 dimensions,
and since it is solving a binary classification problem, it has a 1-dimension output layer.

The decision function of MLP concludes a series of addition and multiplication to
classify an input. In this calculation, each hidden neuron’s value equals the linear summa-
tion of all previous layer’s neurons’ values multiplied by their coefficients, or the weights
between the neuron’s layer and the last layer. An additional value of intercept, or bias, is
added to this summation:

h(1)i = φ(∑
j

xjwi,j + b(1)i)

h(2)i = φ(∑
j

h(1)j wi,j + b(2)i)

yi = φ(∑
j

h(2)j wi,j + b(3)i)

(6)

Equation (6) calculates MLP decision function where hn
i is the neuron i value in the nth

layer. This implementation includes two layers and a final output layer with one neuron,
yi, which gives the final summation value. φ() is the nonlinear activation function that
calculates the neuron’s value by a weighted sum, where xj is the input features vector, hn

j is
the neurons’ values at layer i− 1, wi,j is the weight, and bn

i is the intercept of neuron i at
the nth layer.

f (x) = max(0, x) (7)

This MLP implementation follows a Rectifier Linear Unit activation function (reLu),
which, as illustrated by Equation (7), returns the max between 0 and the weighted sum, x,
of a neuron.

Algorithm 8 shows the steps in calculating the Equation (6) decision function of this
paper’s implementation of MLP by using a three-level loop. It is worth noting that the
current development of smart contracts did not allow for multi-loop applications. For this
reason, the inner loops were applied and called separate functions inside the contract.

Appl. Sci. 2023, 13, 1035 12 of 17

Algorithm 8 MLP decision function
Input:

x integer input vector,
w weight matrices,
b biases array

Output:
v decimal number

1: procedure MLPDECFUN
2: z← ScaleData(x) . ScaleData procedure
3: init A[] as Array
4: init B[] as Array
5: for i← 0 to i← 2 do
6: if i← 1 then
7: for j← 0 to j← 4 do
8: xSum← 0
9: for k← 0 to k← 8 do

10: xw← z[k] ∗ w[i][k][j]
11: xSum← xSum + xw
12: a← xSum + b[i][j]
13: a←max(0,a)
14: push a to A[]

15: if i← 1 then
16: for j← 0 to j← 1 do
17: aSum← 0
18: for k← 0 to k← 4 do
19: aw← A[k] ∗ w[i][k][j]
20: aSum← aSum + aw
21: b← aSum + b[i][j]
22: b←max(0,b)
23: push b to B[]
24: if i← 2 then
25: bSum← 0
26: for k← 0 to k← 1 do
27: bw← B[k] ∗ w[i][k]
28: bSum← bSum + bw
29: y← bSum + b[i]
30: y←max(0, y) . last reLU function
31: return y

Eventually, the MLP decision function returns a decimal value of 0 or >0. If the output
is greater than zero, the classification label is 1; otherwise, it is 0.

The number of iterations in each loop is related to the number of neurons in each layer
of MLP, and Algorithm 8 was tailored according to this paper’s MLP implementation; a
different implementation should follow different specifications accordingly.

5. Results and Discussion

The evaluation and analysis of the proposed system’s execution steps are divided by
analyzing the experimental results and the decision function execution measurements.

After applying the proposed methodology, several results were obtained to measure
the proposed system’s efficiency.

5.1. ML Detection Performance

As previously mentioned, this study applied two classification models to develop a
poisonous record detection system. Table 4 shows SVM and MLP performance measure-
ment metrics.

Appl. Sci. 2023, 13, 1035 13 of 17

Table 4. ML Classifiers Performance.

Classifier Accuracy Precision Recall F1-Score

SVM 0.81 0.86 0.72 0.74
MLP 0.71 0.67 0.61 0.62

Figure 3 shows the Receiver Operating Characteristics (ROC) curve, which shows the
relation between the true positive rates (TPR) and the True Negative Rates (TNR) of the
two classifiers. The two classifiers’ performances show that SVM achieved higher accuracy
scores of 81% compared to MLP’s 71% accuracy score. SVM also obtained better TPR scores
than those MLP.

Figure 3. ROC curve for SVM and MLP classifiers.

5.2. Smart Contract Performance

This paper employs Blockchain technology through smart contracts. This subsection
measures the performance and cost of such employment.

Table 5 shows details of the deployed smart contracts, including the deployment cost
in gas. ML models of SVM and MLP were separately implemented to evaluate their perfor-
mance better. Table 4 shows that the SVM contract has the most expensive deployment.

Table 5. Smart Contract Deployment.

Smart Contract Language Gas Cost (gwei)

Dataset Handler Solidity 357,364
SVM Model Handler Vyper 3,320,656
MLP Model Handler Vyper 1,046,866

There was no clear way to measure the performance of smart contract functions
regarding the CPU performance of the EVM. For this case, this study chooses to follow the
judgment of each procedure’s performance based on the elapsed time taken to complete
each operation.

Table 6 shows the elapsed time for each read and write operation in the proposed
methodology. It is worth noting that these measurements were taken on a local Blockchain
network, with each transaction mined instantly to avoid any additional time latency.

Appl. Sci. 2023, 13, 1035 14 of 17

Table 6. Elapsed time for methods’ executions.

Procedure Method Run Time (s) Expected (s) Time Avg (s)

Runs Time

Upload Dataset writeRecord 0.57844 768 444.24 1
934.95

2

uploadDataset 1425.66631 -

Load Dataset readRecord 0.16492 768 129.6246 1
114.41

2

loadDataset 99.1903 -

Write Scalar Parameters setScalar 20.05179 - 20.05

Write SVM Parameters

setSupportVector 1.68084 395 663.9318 1
634.5

2

setSupportVectors 605.0704 -
setSVM 0.47049 - 0.47049

setDualCoef 46.240966 - 46.240966

Total = 681.21

Write MLP Parameters

setFirstWeights 40.60692 - 40.60692
setSecondWeights 11.84798 - 11.84798
setThirdWeights 2.745 - 2.745

setBiases 7.25123 - 7.25123

Total = 62.45
1 Calculated expected elapsed time by single run time × number of items’ runs. 2 Averaged time between
calculated expected and actual time of operation execution.

The elapsed time analysis showed that the write operation with smart contract setter
functions has low time efficiency than the getter functions. The longest time was to set
SVM’s support vectors since writing a single support vector takes about two seconds
to complete.

As mentioned before, the smart contract did not allow for the direct passing of decimal
vectors; vectors were sent as integers and then converted back to decimals. These additional
conversion steps could be the reason for the setting support vector procedure’s low time
efficiency; a more thorough CPU analysis could determine the cause for such latency.

5.3. Decision Function Performance

As mentioned before, this study chose to lower the implementation cost and only
deploy the ML model’s decision functions (DFs). Table 7 shows SVM and MLP performance
details, including the execution cost and the elapsed time with average of 10 runs.

Table 7. DF performance details.

DF Execution Cost (gwei) Elapsed Avg (s)

SVM DF 16,495,436 8.4415
MLP DF 316,215 0.1914

A similar script was applied to time the completion of each deployed classifier predic-
tion to calculate the smart contract DF. Figure 4 shows the elapsed time in seconds of both
SVM and MLP in comparison with the built-in functions executed on the test machine.

MLP performed better than SVM regarding deployed DF time-efficiency and cost-
efficiency. While obtaining a classification with the SVM’s smart contract DF takes almost
10 s, it takes less than a second to obtain a classification with MLP. However, both classifiers’
DFs fell behind in comparison with the client test machine’s performance, which could be
because of the humble EVM abilities to execute complex math methods in contrast with the
test machine’s abilities.

Appl. Sci. 2023, 13, 1035 15 of 17

Figure 4. Elapsed time of SVM and MLP DFs.

5.4. Overall Performance Comparison

This section discusses the proposed methodology’s overall performance by examining
three essential perspectives, security, cost efficiency, and run-time efficiency.

• Security Perspective: No system can be 100% secured, and smart contracts are not an
exception to that rule. Smart contracts can contain numerous security vulnerabilities:
re-entrancy, unhandled exceptions, Integer Overflow, and unrestricted action [28].
Many reports and literature have discussed and studied such vulnerabilities. For
instance, a study of [29] that evaluated 1.2 million smart contracts found that only 4%
of real-world smart contracts are affected by the integer bug vulnerability.
Authors of [28] argued that, even if the smart contract contained reported vulnerabili-
ties, it does not mean it can be exploited in practice. They analyzed 23,327 vulnerable
contracts and found that only 1.98% are exploited. By remarking on this, the proposed
smart contract-based system can preserve the safety of execution by 96–98%.

• Cost Efficiency Perspective: The proposed methodology of integrating ML into
Blockchain by only deploying the decision function of the ML model preserves the
cost of storing large ML libraries and the execution cost of training the ML model
entirely on-chain. Training the ML model off-chain and only deploying the decision
process on-chain enhances the ML-integrated Blockchain cost efficiency.

• Run-time Efficiency Perspective: The run-time of the proposed system depends on
EVM execution abilities. EVM is a run-time virtual machine with limited resources,
which causes it to take longer to execute basic programming procedures, such as loops.
Although the proposed system can preserve higher security and better cost efficiency, it
has low run-time efficiency, which is believed to be increased with EVM development.

6. Conclusions

The proposed methodology in this paper provides a more exhaustive and efficient way
to integrate AI abilities with Blockchain. In fact, it is more important to secure the process
of using ML than improve ML itself. Blockchain provides the means of hashing to ensure
this process of ML model decision integrity. This study proposed the flow of preserving
trained models’ gradients on-chain and reverse-engineering the decision function of SVM
and MLP models on-chain.

Appl. Sci. 2023, 13, 1035 16 of 17

During implementation, SVM proved to be more accurate than MLP in poisonous
records detection. However, MLP achieved a higher time efficiency. Joining Blockchain to
ML is very useful in sensitive domains like e-Health, which affects human life. This joining
provides a safe environment for ML techniques for decision-making.

For future work, a more improved ML training procedure will increase the detection
performance of the system. In addition, a layer of consensus could be added to control the
uploading of training parameters. The obstacles faced by this study were primarily because
of the immature EVM execution of complex math. When EVM becomes more efficient, the
application of the proposed methodology will achieve better performance. Additionally,
this integration of smart decisions gives Blockchain and smart contracts the AI ability to
intelligently classify and detect, which is applicable to various Blockchain scenarios besides
poisoning attack detection.

In our framework, the role of blockchain is to secure the decision process by using
smart contracts. As for the consensus mechanisms among the connected nodes, it can be
future work to further strengthen the learning process.

Finally, this study presented a prototype for the future incorporation of ML with Blockchain
to take both technologies further in their evolution by securing the decision process.

Author Contributions: M.A.A., T.M. and S.Z. contributed to the conceptualization, methodology
and writing—original draft. T.M. and A.A. contributed to methodology, project administration,
visualization, and writing—review and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Deputyship for Research and Innovation, Ministry of Educa-
tion, Saudi Arabia Grant No. QU-IF-04-01-28436.

Data Availability Statement: The dataset used to support the findings of this study has been de-
posited in the website of kaggle repository (https://www.kaggle.com/uciml/pima-indians-diabetes-
database, accessed on 8 January 2023).

Acknowledgments: The authors extend their appreciation to the Deputyship for Research and
Innovation, Ministry of Education, Saudi Arabia for funding this research work through the project
number (QU-IF-04-01-28436). The authors also thank Qassim University for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alfrhan, A.; Moulahi, T.; Alabdulatif, A. Comparative study on hash functions for lightweight blockchain in Internet of Things

(IoT). Blockchain Res. Appl. 2021, 2, 100036. [CrossRef]
2. Rahman, A.; Hossain, M.S.; Alrajeh, N.A.; Alsolami, F. Adversarial Examples—Security Threats to COVID-19 Deep Learning

Systems in Medical IoT Devices. IEEE Internet Things J. 2021, 8, 9603–9610. [CrossRef]
3. Pitropakis, N.; Panaousis, E.; Giannetsos, T.; Anastasiadis, E.; Loukas, G. A taxonomy and survey of attacks against machine

learning. Comput. Sci. Rev. 2019, 34, 100199. [CrossRef]
4. Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial Attacks and Defenses in Deep Learning. Engineering 2020, 6, 346–360. [CrossRef]
5. Ayub, M.A.; Johnson, W.A.; Talbert, D.A.; Siraj, A. Model Evasion Attack on Intrusion Detection Systems using Adversarial

Machine Learning. In Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton,
NJ, USA, 18–20 March 2020. [CrossRef]

6. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Explaining Vulnerabilities of Deep Learning to Adversarial Malware
Binaries. arXiv 2019, arXiv:1901.03583.

7. Papernot, N.; Mcdaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial
Settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany,
21–24 March 2016. [CrossRef]

8. Xiao, H.; Biggio, B.; Nelson, B.; Xiao, H.; Eckert, C.; Roli, F. Support vector machines under adversarial label contamination.
Neurocomputing 2015, 160, 53–62. [CrossRef]

9. Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.; Li, B. Manipulating Machine Learning: Poisoning Attacks and
Countermeasures for Regression Learning. In Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 21–23 May 2018. [CrossRef]

10. Tideman, P.A.; Tirimacco, R.; St John, A.; Roberts, G.W. How to manage warfarin therapy. Aust. Prescr. 2015, 38, 44. [CrossRef]
[PubMed]

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
http://doi.org/10.1016/j.bcra.2021.100036
http://dx.doi.org/10.1109/JIOT.2020.3013710
http://dx.doi.org/10.1016/j.cosrev.2019.100199
http://dx.doi.org/10.1016/j.eng.2019.12.012
http://dx.doi.org/10.1109/ciss48834.2020.1570617116
http://dx.doi.org/10.1109/eurosp.2016.36
http://dx.doi.org/10.1016/j.neucom.2014.08.081
http://dx.doi.org/10.1109/sp.2018.00057
http://dx.doi.org/10.18773/austprescr.2015.016
http://www.ncbi.nlm.nih.gov/pubmed/26648615

Appl. Sci. 2023, 13, 1035 17 of 17

11. Alharby, M.; Moorsel, A.V. BlockSim: An Extensible Simulation Tool for Blockchain Systems. Front. Blockchain 2020, 3, 28.
[CrossRef]

12. Goel, A.; Agarwal, A.; Vatsa, M.; Singh, R.; Ratha, N. DeepRing: Protecting Deep Neural Network With Blockchain. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach,
CA, USA, 16–17 June 2019. [CrossRef]

13. Srivastava, G.; Crichigno, J.; Dhar, S. A light and secure healthcare blockchain for iot medical devices. In Proceedings of the 2019
IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–5.

14. Yong, B.; Shen, J.; Liu, X.; Li, F.; Chen, H.; Zhou, Q. An intelligent blockchain-based system for safe vaccine supply and
supervision. Int. J. Inf. Manag. 2020, 52, 102024.

15. Chowdhury, D.; Banerjee, S.; Sannigrahi, M.; Chakraborty, A.; Das, A.; Dey, A.; Dwivedi, A.D. Federated learning based
COVID-19 detection. Expert Syst. 2022, e13173. [CrossRef]

16. Kim, H.; Kim, S.H.; Hwang, J.Y.; Seo, C. Efficient Privacy-Preserving Machine Learning for Blockchain Network. IEEE Access
2019, 7, 136481–136495. [CrossRef]

17. Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained Anomaly Detection Models for
Federated Learning: An Intrusion Detection Case Study. Appl. Sci. 2018, 8, 2663. [CrossRef]

18. Sun, Y.; Esaki, H.; Ochiai, H. Blockchain-Based Federated Learning Against End-Point Adversarial Data Corruption. In
Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA,
14–17 December 2020. [CrossRef]

19. Qi, Y.; Hossain, M.S.; Nie, J.; Li, X. Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future
Gener. Comput. Syst. 2021, 117, 328–337. [CrossRef]

20. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and Privacy-Preserving Deep Learning with
Blockchain-based Incentive. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2438–2455. [CrossRef]

21. Jan, S.; Musa, S.; Syed, T.A.; Nauman, M.; Anwar, S.; Tanveer, T.A.; Shah, B. Integrity verification and behavioral classification
of a large dataset applications pertaining smart OS via blockchain and generative models. Expert Syst. J. Knowl. Eng. 2021, 38.
[CrossRef]

22. Rana, M.; Gudla, C.; Sung, A.H. Evaluating machine learning models on the ethereum blockchain for android malware detection.
In Intelligent Computing-Proceedings of the Computing Conference; Springer: Cham, Switzerland, 2019; pp. 446–461.

23. Alsayegh, M.; Moulahi, T.; Alabdulatif, A.; Lorenz, P. Towards Secure Searchable Electronic Health Records Using Consortium
Blockchain. Network 2022, 2, 239–256. [CrossRef]

24. Haber, S.; Stornetta, W.S. How to time-stamp a digital document. J. Cryptol. 1991, 3, 99–111. [CrossRef]
25. Lu, Y. The blockchain: State-of-the-art and research challenges. J. Ind. Inf. Integr. 2019, 15, 80–90. [CrossRef]
26. Namasudra, S.; Deka, G.C.; Johri, P.; Hosseinpour, M.; Gandomi, A.H. The Revolution of Blockchain: State-of-the-Art and

Research Challenges. Arch. Comput. Methods Eng. 2020, 28, 1497–1515. [CrossRef]
27. Aladhadh, S.; Alwabli, H.; Moulahi, T.; Al Asqah, M. BChainGuard: A New Framework for Cyberthreats Detection in Blockchain

Using Machine Learning. Appl. Sci. 2022, 12, 12026. [CrossRef]
28. Perez, D.; Livshits, B. Smart Contract Vulnerabilities: Vulnerable Does Not Imply Exploited. In Proceedings of the 30th USENIX

Security Symposium (USENIX Security 21). USENIX Association, Virtual, 11–13 August 2021; pp. 1325–1341.
29. Torres, C.F.; Schütte, J.; State, R. Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual

Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3389/fbloc.2020.00028
http://dx.doi.org/10.1109/cvprw.2019.00341
http://dx.doi.org/10.1111/exsy.13173
http://dx.doi.org/10.1109/ACCESS.2019.2940052
http://dx.doi.org/10.3390/app8122663
http://dx.doi.org/10.1109/icmla51294.2020.00119
http://dx.doi.org/10.1016/j.future.2020.12.003
http://dx.doi.org/10.1109/TDSC.2019.2952332
http://dx.doi.org/10.1111/exsy.12611
http://dx.doi.org/10.3390/network2020016
http://dx.doi.org/10.1007/BF00196791
http://dx.doi.org/10.1016/j.jii.2019.04.002
http://dx.doi.org/10.1007/s11831-020-09426-0
http://dx.doi.org/10.3390/app122312026
http://dx.doi.org/10.1145/3274694.3274737

	Introduction
	Motivation and Problem Background
	Study Contribution and Novelty
	Why Blockchain?

	Background Study
	Related Literature
	Technological Background
	Blockchain Technology
	Smart Contracts

	Proposed Methodology
	Implementation
	Experimental Dataset Setup
	Writing Dataset
	Reading Dataset
	Parameters Extraction and Preservation
	Scalar Parameters
	SVM Parameters
	MLP Parameters

	ML Detection Implementation
	Scalar Standardization Function
	SVM Decision Function
	MLP Decision Function

	Results and Discussion
	ML Detection Performance
	Smart Contract Performance
	Decision Function Performance
	Overall Performance Comparison

	Conclusions
	References

