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Abstract: An aircraft engine’s performance depends largely on the compressors’ aerodynamic design,
which aims to achieve higher stage pressure, efficiency, and an acceptable stall margin. Existing design
methods require substantial prior knowledge and different optimization algorithms to determine the
2D and 3D features of the blades, in which the design policy needs to be more readily systematized.
With the development of artificial intelligence (AI), deep reinforcement learning (RL) has been
successfully applied to complex design problems in different domains and provides a feasible method
for compressor design. In addition, the applications of AI methods in compressor research have
progressively developed. This paper described a combined artificial-intelligence aerodynamic design
method based on a modified deep deterministic policy gradient algorithm and a genetic algorithm
(GA) and integrated the GA into the RL framework. The trained agent learned the design policy
and used it to improve the GA optimization result of a single-stage transonic compressor rotor.
Consequently, the rotor exhibited a higher pressure ratio and efficiency owing to the sweep feature,
lean feature, and 2D airfoil angle changes. The separation near the tip and the secondary flow
decreased after the GA process, and at the same time, the shockwave was weakened, providing
improved efficiency. Most of these beneficial flow field features remained after agent modification to
improve the pressure ratio, showing that the policy learned by the agent was generally universal.
The combination of RL and other design optimization methods is expected to benefit the future
development of compressor designs by merging the advantages of different methods.

Keywords: reinforcement learning; genetic algorithm; turbomachinery; design; optimization

1. Introduction

The compressor is one of the most critical components in an aero engine, exhibiting
viscous, compressible, and unsteady flow. In previous studies on transonic axial com-
pressors [1], considerable efforts have been spent on improving the stage pressure ratio,
efficiency, and stability margin. Historically, research about axial compressor design relied
on empirical data correlations, and then the through-flow methods were proposed [2,3].
Over the past two decades, computational fluid dynamics (CFD) has played a dominant
role [3], while empirical information is still needed.

Using CFD, researchers have efficiently analyzed the complex 3D compressor flow
field [4]. A great deal of previous research has applied CFD tools with the Reynolds-
averaged Navier-Stokes (RANS) equations [4,5] because of the computational resource
limitation. As a result of the computational capability improvement, several studies have
emerged to evaluate the multistage and unsteady case [4].

A large and growing amount of the literature has investigated the optimization of
compressors [6], including two main kinds of methods [7]: stochastic and gradient-based
methods. The genetic algorithm (GA), a widely used stochastic method, has been suc-
cessfully applied since the 2000s [8,9]. Using the advanced NSGA-II algorithm [10], the
pressure ratio, efficiency, and operating range of single-stage transonic axial compressors
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were improved in several cases [11,12]. Ma et al. [13] compared particle swarm optimiza-
tion (PSO) [14], GA, and a hybrid PSO-GA algorithm, then suggested that the hybrid
PSO-GA algorithm performed best in a centrifugal compressor. In another aspect, several
studies [15,16] have used gradient-based algorithms in turbomachinery and focused on
improving the efficiency and pressure ratio. Generally, better compressors can be found by
optimization at certain constraints and objective settings; those studies outline a critical
role for optimization in compressor design.

One limitation of the above optimization methods is that their results cannot directly
guide design; prior knowledge of the designers is needed, especially when the designs
need to be modified frequently in a multidisciplinary or engineering context. Learning
the design policy becomes possible with the development of reinforcement learning (RL)
methods [17], which train the machine to learn the design like humans. In the past few
years, RL methods have been used to successfully solve many complex design problems,
including designing personalized therapies [18], designing proteins [19], and even finding
matrix multiplication algorithms [20].

There are relatively few studies attempting to apply RL in aerodynamic design, fo-
cusing mainly on 2D airfoils for easier CFD analysis. Several deep RL algorithms [21]
have been developed for a continuous state space, corresponding to the design space of
compressors. Some authors have considered the usage of 2D external flow airfoils. A
recent study by Viquerat et al. [22] involved an application of proximal policy optimization
(PPO) [23], which maximized the lift-to-drag ratio by exploring the design space. Similarly,
Li [24] also used PPO to minimize the drag of a supercritical airfoil. In the turbomachinery
field, internal flow airfoils have also been considered. Qin [25] demonstrated that the total
pressure loss could be reduced by modifying the 2D airfoil via a trained agent using a
deep deterministic policy gradient (DDPG) [26]. These studies clearly indicated that RL
methods could successfully learn the design policy of 2D airfoils and improve aerodynamic
performance. However, no corresponding attempts for the 3D rotor case have been found
to date.

Different applications of machine learning methods exist in the literature regarding
turbomachinery research. Much of the previous research on compressor optimization
established the artificial neural network and its variations as surrogate models (such
as [13,16]). Another idea was proposed by Li et al. [27], where a deep convolutional
generative adversarial network was trained to generate airfoils using existing airfoils.
For the CFD solver itself, machine learning methods can improve the model accuracy
of the RANS equations with a lower computational cost than LES and DNS, according
to the summary by Hammond et al. [28,29], but still cannot fully replace conventional
methods. Altogether, these studies indicate that machine learning methods can improve
turbomachinery analysis and optimization from different aspects.

The RL and GA methods have their own frameworks and features. The trained agents
in RL modified the geometries to change the performance with continuous steps, while
the GA process generated a Pareto front that has no relation with other cases in the design
space and was considered a one-step process. This paper proposed integration of the RL
method and GA for the aerodynamic design of a transonic axial compressor with modified
DDPG and NSGA-II algorithms. The policy for improving the pressure ratio was learned
by the agents and used to modify the result of the GA, improving its pressure from lower
to higher than the reference. The remainder of this paper is organized as follows: Section 2
illustrates methods to analyze the rotor, establish the modified DDPG algorithm with
surrogate models, and implement NSGA-II in this context. As described in Section 3, the
agents were trained in the RL environment to learn the design policies, and the GA process
generated the Pareto front. Then, cooperation was implemented by integrating the GA
process into the RL framework. Section 4 discusses the mechanism of improvement, the
details of the flow field, and the computational resource cost.
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2. Methods

The compressor aerodynamic design was considered a Markov decision process
(MDP) [17], so different design and optimization methods were considered steps in the
MDP and integrated into the RL framework. Figure 1 shows the overall structure of the
methods, where surrogate models were applied to reduce the computational cost of CFD.
The RL agent interacted with the environment by giving an action at according to the
design variables st of step t. Then, the environment generated rt and st+1, determined only
by st and at. The GA process reused the RL environment to calculate the fitness functions
of individuals and output the result case from the final pop. The results of the RL agents,
GA process, and cooperative result after modification by the trained agents were checked
by CFD directly.
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2.1. CFD Method
2.1.1. CFD Tools

The commercial software package NUMECA 14.1 was selected for CFD analysis, in
which AutoGrid generated an O-H structured grid from the rotor geometry and Fine Turbo
solved the 3D RANS equations. After the calculation was finished, NUMECA CFView
completed the postprocessing. All tools were automatically driven by the scripts.

The viscous and inviscid fluxes were determined using second-order Jameson-type
dissipation, and an explicit Runge–Kutta scheme was applied for time discretization. The
Spalart–Allmara (S–A) model was selected to close the RANS equation. As one of the
most successful one-equation turbulence models, the S-A model performs well in the
boundary layer and pressure gradient area, so it is widely used to predict complex flows
with separation, showing attractiveness in turbomachinery analysis. Moreover, the S-A
model in NUMECA has been widely validated and applied [30–32], and it consumes less
additional CPU and memory than the k–ε model.

2.1.2. Rotor 67 Simulation

NASA Rotor 67 [33] is a low-aspect-ratio transonic axial-flow fan rotor with experi-
mental data that was used as the reference design. Table 1 shows the primary features of
Rotor 67. Note that the observed tip clearance was 0.061 cm rather than the designed value
of 0.101 cm [33].
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Table 1. Specifications of Rotor 67 [33].

Parameter Value Parameter Value

Rotational speed (rpm) 16,043 Relative tip Mach number 1.3
Tip clearance (cm) 0.101 Mass flow rate (kg/s) 33.25
Number of blades 22 Pressure ratio 1.63

Different grids were calculated, with node numbers of 0.8 M, 1.2 M, 1.6 M, and 2.0 M.
The setting y+ = 1 was specified for all grids, and the 1.2 M grid was shown in Figure 2.
The calculated operating characteristics and the experimental results are plotted in Figure 3.
The pressure ratio and efficiency fit the experimental data well for the medium (1.2 M) and
fine (1.6 M and 2.0 M) meshes, while the coarse mesh deviated from the experimental values.
The calculated chock mass flow rate was 34.3 kg/s, slightly less than the experimental
value and considered acceptable.
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Physically, rotating stall is an unsteady process, but the rotor was analyzed at steady
state. Thus, some of the time-averaged features or convergence criteria could approximately
indicate the ‘numerical stall point’ [15,34,35]. The calculation was considered converged if
the adiabatic efficiency variation was less than 0.04% per 100 iterations and was regarded
as stalled if it did not converge. The calculated stall mass flow was about 93% for the
grids with 1.2 M, 1.6 M, and 2.0 M nodes. Due to the insufficient special resolution, CFD
cases with 0.8 M grid were harder to diverge and obtained a lower stall mass flow rate
numerically. Moreover, the pressure ratio and efficiency were also changed since the 0.8 M
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grid captured fewer flow details. The near stall mass flow rate and the pressure ratio at
.

m = 0.97 of different grids were plotted in Figure 4, showing that the results changed only
slightly at grid numbers larger than 1.2 M. Thus, the grid independency was acceptable,
and the 1.2 M grid was selected. The shock wave structure of different spans is shown in
Figure 5. The calculated shock wave showed similar features to the experiment [33]. An
oblique shock wave was identified at the leading edge of the blades, and normal shock
waves were found in the passages.
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The pressure ratio and temperature ratio distributions of the near-peak efficiency are
plotted in Figure 6. The CFD results fit the experimental results well. The CFD tools and
methods were confirmed to give suitable results and were then applied to generate and
evaluate the rotor geometries generated by agents.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 27 
 

 
Figure 6. Variable distributions in the span of the experiment [33] and CFD: (a) pressure distribution 
in the span; (b) temperature distribution in the span. 

2.1.3. Rotor Performance 
The most notable performance metrics of a compressor are the mass flow m , pres-

sure ratio π , efficiency η , and stability margin SM  extracted from the operating char-
acteristic curve. The back pressure outp  was changed according to a geometric progres-
sion distribution, decreasing the pressure interval near the stall pressure. A typical oper-
ating characteristic curve generated by CFD is shown in Figure 7. The peak efficiency 
point was selected as the working point, and then the mass flow Wm , pressure ratio Wπ , 
and efficiency Wη  were determined. 

 
Figure 7. Typical operating characteristics calculated by CFD, with the definition of 7 selected per-
formance variables. 

Furthermore, several variables were defined to evaluate the whole operating charac-
teristic curve generated by CFD. A range of satisfactory efficiency [ , ]l hm m   was defined 
after setting an efficiency threshold tη , as shown in Figure 7. The criteria involved the 
numerical stall feature of the rotors, so these criteria were used to replace the exact stall 
point when training agents, saving computational resources. 

Figure 6. Variable distributions in the span of the experiment [33] and CFD: (a) pressure distribution
in the span; (b) temperature distribution in the span.

2.1.3. Rotor Performance

The most notable performance metrics of a compressor are the mass flow
.

m, pressure
ratio π, efficiency η, and stability margin SM extracted from the operating characteristic
curve. The back pressure pout was changed according to a geometric progression dis-
tribution, decreasing the pressure interval near the stall pressure. A typical operating
characteristic curve generated by CFD is shown in Figure 7. The peak efficiency point was
selected as the working point, and then the mass flow

.
mW , pressure ratio πW , and efficiency

ηW were determined.
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Furthermore, several variables were defined to evaluate the whole operating character-
istic curve generated by CFD. A range of satisfactory efficiency [

.
ml ,

.
mh] was defined after

setting an efficiency threshold ηt, as shown in Figure 7. The criteria involved the numerical
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stall feature of the rotors, so these criteria were used to replace the exact stall point when
training agents, saving computational resources.

Then, the integral efficiency η̂ and pressure ratio π̂ were expressed as shown in
Equations (1) and (2) to indicate the efficiency and pressure ratio of the whole operating
characteristic curve, respectively. The rotor performance was ultimately described by
7 dimensions, denoted by pi ∈ P =

{ .
ml ,

.
mh, η̂, π̂,

.
mW , πW , ηW

}
, i = 1, 2, . . . , 7.

η̂ =

.
mh∫
.

ml

η(
.

m)d
.

m

.
mh −

.
ml

(1)

π̂ =

.
mh∫
.

ml

π(
.

m)d
.

m

.
mh −

.
ml

(2)

2.2. RL Components
2.2.1. Rotor Parameterization

A parameterization generator was built to generate the rotor geometry. Design vari-
ables were defined to generate the 3D features and the distribution of 2D parameters of
different spanwise locations, and then the 3D rotor blade was staked by 2D airfoils.

Eighteen geometric parameters were selected to be design variables and generate the
span distribution of geometric features using 3rd-order Bezier curves. The reference values
were extracted from the original NASA Rotor 67 geometry, which also provided the lower
and upper bounds.

2.2.2. Surrogate Model

The surrogate model gives a relatively accurate approximation of CFD analysis with
a much lower computational cost, thus accelerating the design process. This work used
kriging models [36] to approximate the rotor performance because this approach needs
fewer sample points, even in high-dimensional design space. Moreover, the sample points
were determined by the maximin Latin hypercube design [37]. Finally, seven separate
kriging models were trained to approximate the rotor performance.

p′i = pi,max +
1
ap

ln(ap
pi,max − pi

pi,max − pi,min
+ 1)× (pi,max − pi,min) (3)

The error reduction process successfully enhanced the kriging model’s performance
and reduced the necessary sample number by restricting the influence of the few poor
sample points. In Equation (3), the parameter ap indicated the strength of the restriction,
with the performance pi ∈ P decreasing if this parameter exceeded the reasonable range
[pi,min, pi,max]. The reasonable range was determined according to pi distributions in sample
points, guaranteeing that most of the restriction occurred on the side that did not influence
the expected performance. The reconstructed restricted performance p′i has the same
monotonicity and first-order smoothness.

Different combinations of hyperparameters were applied to determine surrogate mod-
els, with error reduction parameter ap ∈ {0, 3, 5}, sample points N > 300, and parameters
of the kriging model Pmin = {1.3, 1.5, 1.7} and θmax = {10, 30}. The surrogate models
were trained in the different number of sample points and other parameter combinations,
as shown in Figure 8. Since the surrogate models had been trained in different sample
point sets and several times, the results were regarded as consistent. Then, the surrogate
models of each pi with the best coefficient of determination R2 were selected as shown in
Table 2, where the mean absolute error (MAE) was also listed. The surrogate models were
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accurate enough to predict the rotor performance, so the RL environment was established
based on these surrogate models.
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Table 2. Selected models for different performance.

pi R2 MAE N ap θmax Pmin
.

ml 0.886 0.011 377 5 30 1.7
.

mh 0.968 0.005 377 5 10 1.7
η̂ 0.938 0.001 377 5 30 1.7
π̂ 0.942 0.004 377 5 10 1.5
.

mW 0.987 0.003 377 0 10 1.5
πW 0.965 0.001 377 5 10 1.5
ηW 0.920 0.005 377 5 30 1.5

2.2.3. Modified DDPG Algorithm

The DDPG algorithm [26] is a model-free and off-policy algorithm that can solve
challenging problems robustly in a continuous state space, including high-dimensional
problems. With the assistance of an actor–critic structure and replay buffer, the DDPG
algorithm is appropriate for compressor design optimization. The Adam optimizer [38]
and L2 normalization were applied, and the reward of the environment was defined by the
performance metric pi ∈ P of the rotors when implementing the algorithm.

It was observed that some distortion remained at the end of the MDP state sequences
generated by trained agents, even with similar accumulated rewards. To decrease the
distortion, the DDPG algorithm was modified in three aspects as follows. First, high-order
feedback was applied to guide the exploration by recording the detected best state and
delivering it to the environment. As a part of high-order feedback, randomness was added
when resetting the environment. Second, an artificial tip was evaluated with an additional
correction term δrart, which improved the gradient near the detected optimized state and
accelerated the training. Third, a virtual area extended the design space to ensure that the
agent adequately explored the area near the boundary and the correction term δrvir showed
its effect.

r = a1rraw + a2 + ∑
pi∈P

δrpi + δrart + δrvir (4)

The reward of the environment was defined as expressed in Equation (4), where rraw
was a function of the performance pi, which determined what the agents were expected to
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learn. In addition, a1 and a2 were constants used to scale rraw. The punishment term δrpi

indicated how much the performance pi of a given state exceeded its reasonable range.

2.3. NSGA-II Application

NSGA-II [10] is a multiobjective evolutionary algorithm with nondominated sorting
and crowding distance sorting. This algorithm has been widely used in compressor
optimization problems.

2.3.1. NSGA-II Algorithm

Algorithm 1 showed the NSGA-II procedure, in which nondominated sorting, crowd-
ing distance sorting, and binary tournament selection were applied. The methods above
lessen the computational complexity of NSGA-II relative to previous genetic algorithms.
NSGA-II adapted to the multiobjective problems well and generated a Pareto front for
these questions.

Algorithm 1: NSGA-II procedure [10]

Initialize a random parent population P0
Create an offspring Q0
for t = 0, N do

Form the first combined population Rt = Pt ∪Qt
Sort the R according to nondomination, and generate sets F1, F2, . . . , Fl , . . .
Choose the best individuals F′l in Fl using the crowded-comparison method
Obtain the new population Pt+1 = F1 ∪ F2 ∪ . . . ∪ Fl ′
Create a new population Qt+1 by tournament selection, crossover and mutation
t = t + 1

end for
Select individuals from the final population PN

2.3.2. Fitness Function

Two fitness functions were established by the performances calculated in the RL
environment with surrogate models. The genes of NSGA-II were the 18-dimensional
design variable s ∈ S, which is also the state of the RL environment. The two fitness
functions expressed in Equation (5) aimed to improve the pressure ratio and efficiency.

f1 = π̂ − π̂0 − a1,1Nbad − a1,2δ fL − a1,2δ fW
f2 = η̂ − η̂0 − a2,1Nbad − a2,2δ fL − a2,3δ fW

(5)

where f1 and f2 were the fitness functions and π̂0 and η̂0 were the reference values of the
integrated pressure ratio π̂ and integrated efficiency η̂, respectively. Nbad was the number
of dimensions of pi ∈ P that were worse than the reference value pi. The parameters
ai,j (i = 1, 2. j = 1, 2, 3) were constants indicating the strength of the correct terms.

δ fL = −1
2
‖s− s0‖2

2 (6)

The correction term δ fL provided L2 normalization of the design variables, as ex-
pressed in Equation (6), where s was the design variable and s0 was the reference value.
Normalization ensured that the design variable modifications would decay if they were
located in dimensions that could not significantly influence the fitness function.

δ fW = aW
∣∣ .
mW −

.
mW,0

∣∣ (7)

The correction term δ fW constrained the working point of the optimized rotors to
change only minimally. As expressed in Equation (7),

.
mW,0 was the working point of the

reference rotor, and the constant aW defined the strength and shape of δ fW . If
.

mW was
modified excessively, δ fW increased and reduced the fitness functions.
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2.4. The Combination of RL and GA

Since the agents learned the design policy in the whole design space, they can co-
operate with the GA before the designers fully understand the mechanism of the pol-
icy. This universality was an intriguing aspect of intelligent design, and the cooperation
showed advantages.

As shown in Figure 9, the GA process was considered the first step of the MDP, which
provided information by giving the initiating state of the agents. In Figure 9a, the trained
agents learned the design policy but could not determine the initial state to start an MDP
itself, so the state of the reference rotor was selected as the initial state. After several
modification steps, the performance improved, and the MDP ended. In Figure 9b, however,
the result of the GA process acted as the initial state of the MDP. The agent gave different
actions and made relatively minor modifications to the GA results, which kept the result
gained by the GA when trying to improve the performance further.
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The combination merged the characteristics of RL and GA, where the two methods
worked complementarily. The agents can learn and reuse different design policies, which
avoids another GA process if the design objective changes. On the other hand, the GA
result can be modified continuously to obtain the expected performance improvement.

3. Results
3.1. Policy for Improving the Pressure Ratios

The pressure ratio is one of the most noteworthy aspects of compressor performance.
The stage pressure ratio improvement reduces the compressor’s size and weight. In previ-
ous work, agents were trained to improve the pressure ratio of the rotors and successfully
learned the design policy, with rraw = π̂ − π̂0.

Figure 10 shows the operating characteristics of the rotors after different steps of
modifications from the reference rotor. The more steps were taken, the higher the pressure
ratio was. After the 15-step modification,

.
mW and ηW were almost equal to the reference,

and πW increased by 1.01%. The agent further improved the pressure ratio if a slight
decrease in ηW was accepted. The trained agent could start the design at different states and
modify the geometry very quickly, enabling cooperation with other optimization methods.
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3.2. Optimization by NSGA-II

NSGA-II was applied to optimize the rotor to improve the pressure ratio and efficiency.
The initial population P0 was randomly generated in the normalized design space and
then evolved by NSGA-II. The performance of individuals was evaluated using surrogate
models in the RL environment.

The evolved population is shown in Figure 11, and the maximum fitness of each gen-
eration was monitored as shown in Figure 11a. As the evolution process continued and the
calling times of surrogate models increased, the maximum fitness increased and fluctuated
within a specific range. Surrogate models markedly reduced the calculation cost so that
the population could evolve adequately. The population’s fitness after 500 generations was
plotted in Figure 11b, revealing a prominent Pareto front. The evolution of each condition
was repeated five more times and plotted together, verifying that the influence of random
parameters in the GA process had little influence on the results. The term δ fW changed
the distribution of the fitness function, so the Pareto front was shorter than before, and its
value changed after constraining the working point.
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Seven individuals in the Pareto front were selected to check the operating charac-
teristics, as also marked in Figure 11b, from which the individuals with specific fitness
and minimum geometry modification were selected. For the L2 normalized condition, the
ranges were f1 ∈ [0.05, 0.07] and f1 ∈ [0, 0.01], while for the L2 normalized + working
point condition, the ranges were f1 ∈ [0.04, 0.05] and f1 ∈ [0, 0.01].

Figure 12 shows that the operating characteristics, pressure ratio and efficiency of
the selected individuals improved. The efficiency of cases 1 and 2 improved more, and
their pressure ratio improved less, while cases 3 and 4 gained a greater pressure ratio
improvement, meeting the predictions of the fitness functions. Therefore, the NSGA-II
algorithm worked well with the assistance of surrogate models, and the results were
physically verifiable.
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The average mass flow variation at the working point of the final population dmW was
calculated as dmW = 0.0016 before applying the working point constraint and decreased by
61.25% to 0.0069 after δ fW was added. As also shown in Figure 12b, the working points
of cases 5, 6, and 7 were closer to the original case and to each other, showing that δ fW
worked well.

GA optimization can be considered one step in the design process and integrated
into the RL framework. The design variables can be modified directly and continuously
using the trained agent to match the expected performance. For the GA, the Pareto front
has no straightforward relations to other points in the design space. The nearby points in
the Pareto front can have entirely different design variables. Therefore, another evolution
process was necessarily performed to generate modification steps similar to those of the
agents. In addition, prior knowledge was still required to define the fitness function and
select individuals using GA optimization.

3.3. Cooperation of the RL Agents and GA

The GA process was integrated into the RL framework as one kind of MDP step.
Case 1, as shown in Figure 12, obtained a significant efficiency improvement, but the
pressure ratio was lower than that of the reference. The agent trained as described in
Section 3.1 provided a way to directly improve the pressure ratio by directly modifying the
design variables of the case 1 rotor.
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Figure 13 showed the operation characteristics of the modified rotors, in which the
pressure ratio increased incrementally, and the efficiency declined slightly. After 12 steps,
the rotor gained a pressure ratio equal to the reference for almost all mass flows, and a
higher efficiency was also maintained. The chock mass flow rate of the GA case 1 rotor
was less than the reference, and the agent also improved the chock mass flow rate of the
modified agents.
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The variations in the near-peak efficiency performance metrics πW and ηW were
plotted in Figure 14. The performance of different rotors at the same mass flow rate

.
mW,0

was also considered, where
.

mW,0 was the peak efficiency mass flow rate of the reference
rotor. The parameters πW,0 and ηW,0 denoted the pressure ratio and efficiency of the
reference rotor at

.
mW,0, respectively. The pressure ratio at

.
mW,0 raised by approximately

0.52% from the GA case 1 result. The efficiency at
.

mW,0 became higher than πW,0 after
modification by the agent, and the π at near-peak efficiency also improved. The pressure
ratio was found to be further increased when agent modification was conducted over
additional steps.
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The variations in the geometric parameters m, θ, χin, χout, and βy through the spanwise
direction were shown in Figure 15. A combined sweep feature was introduced in GA case 1,
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and the rotor swept forward over most of the span and swept back at the tip region. The
agent reduced the amplitude of the sweep feature in both forward and backward directions.
Case 1 also acquired a blade lean feature with negative dθ, and the agent diminished this
feature. The agent also changed χin and χout, so the airfoil segment angle ∆β rose at the tip
and decreased at the hub relative to the GA case. The parameter βy improved at all spans
in case 1 and was diminished by the agent, especially at the tip and hub. Rotors were also
plotted in Z− R and Z− θr surfaces as shown in Figure 16, where the parameter variations
showed its effect on the rotor geometries.
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4. Discussion
4.1. Performance Distribution

The GA process generated a modified rotor case 1 with a much higher efficiency and
slightly lower pressure ratio, and the agent modified the GA result to further improve the
pressure ratio. Different design variables changed and influenced the flow simultaneously,
making it relatively complex to interpret. The flow mechanisms were analyzed, showing
that geometric modifications were effective and considerably interpretable.

The deviation of the local pressure ratio π, the local efficiency η, and the absolute flow
angle ∆α were plotted in Figure 17. The local η at the near tip region increased and ∆α
decreased in the GA case, which was noted as 0 steps, so the total η improved. The local
π diminished at all spanwise locations, especially those higher than 50%, resulting in a
decline in the total π.
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Then, as the geometry was incrementally modified by the agent, the local pressure
ratio π increased. The local π at spanwise locations higher than 50% surpassed the reference
after 17 steps, which contributed most of the π improvement. The local π near the hub
was also decreased in GA case 1 and improved by the RL agent, with a smaller variation
range than the tip section. Together with π, ∆α increased spanwise by the RL agent, mainly
because of the variation in the design variables βy, χin, and χout. The agent maintained
most of the η improvement gained by the GA while slightly decreasing the local η at 80%
spanwise of the rotor after modification.

4.2. Flow Field Details

The flow field details of the reference rotor, GA case rotor and the result rotors after
modification by the agent were analyzed and compared in this section, indicating that the
improvements were convictive and explicable. The combination of sweep, lean, and change
in other design variables contributed to the improvements.

The forward sweep of rotor blades can improve the efficiency and the stable operating
range, according to Zhen et al. [39]. The sweep feature changed the shape of the passage
shock, so the shock loss and pressure ratio of GA case 1 were reduced. Denton [40] affirmed
that the shock waves in the tip region of the transonic rotor are essential for the pressure
ratio, so the local pressure ratio of the GA case decreased at the tip region. The agent
improved χin, reduced χout, and simultaneously changed βy to increase the pressure ratio.

Figure 18 shows the isentropic Mach number distribution at 70% and 90% spans. The
GA step decreased the isentropic Mach number of the suction surface, showing that the
shock wave was weakened. Then, the RL agent moved the peak isentropic Mach number
location toward the leading edge, with the value remaining unchanged. At the pressure
surface, the isentropic Mach number near the leading edge declined upon the GA process
and reduced even further upon the agent’s modification.
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The pressure gradient perpendicular to the end wall must be zero, according to the
illustration of Denton and Xu [41]. Therefore, back sweep at the tip region would reduce
the load of the rotor near the trailing. The relative Mach number of the reference rotor, GA
case 1, and the rotor after 17 steps of modification of agents was plotted in Figure 19 to
visualize the separation region of the rotors. The load reduction and the airfoil segment
angle change downsized the separation near the tip, which is one of the reasons why the
local η increased. Then, the separation did not increase after agent modification, which
helped maintain efficiency.

As marked in the 90% span surface, the shock wave at the leading edge and in the
passage could be identified. The forward sweep feature diminished the Mach number
before the shock waves compared to the reference, as shown in Figure 19b, which reduced
the shock loss and the pressure rise. After modification by RL agents in Figure 19c, the shock
wave at the leading edge became stronger and consequently increased the pressure ratio,
while the passage shock wave remained nearly unchanged. In addition, since the shock
waves changed, the peak relative Mach number at 50% and 70% span also lowered slightly.

A combined lean feature was also introduced and modified. According to Sasaki
and Breugelmans [42], a lean feature caused unloading near the end wall and overloading
around the mid-span if the angle between the end wall and the suction surface was obtuse.
Shang et al. [43] explained that lean features work because they generate a pressure gradient
and drive low-energy flow through the radial direction.

Figure 20 showed the radial velocity Vr distribution at the 80% length axial surface to
analyze the radial secondary flow. The air near the suction surface flowed from the hub
to the shroud because of the centrifugal force and was influenced by the radial pressure
surface. The maximum Vr near the suction surface and the minimum Vr at the same
spanwise location were plotted for each rotor, and it was apparent that Vr declined after
introducing the lean feature. As the RL agent modified the rotor further, Vr increased
slightly because the lean feature was slightly diminished.
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A tip leakage vortex (TLV) was generated by the pressure difference between the pres-
sure surface and suction surface and interacted with the shock waves, which influenced the
performance of the rotors. The geometric modifications changed the pressure distribution
and affected the TLV.

The strength of the TLV depends on the chordwise integration of the pressure differ-
ence between the pressure surface and the suction surface, as illustrated by Chima [44].
Therefore, even though the TLV was stronger when it was just initiated because of the
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higher pressure difference near the leading edge, it was weakened after development
because of the lower pressure of difference at the rear spanwise.
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Figure 20. Radial velocity at the axial surface (80% length).

Figure 21 showed the static pressure distribution around the blade, at the near tip
spanwise at 90% and around the tip clearance spanwise at 99.8%. The tip of the rotor was
swept back, so the load was larger after the GA step, but χin near the tip decreased, so the
peak static pressure at the pressure surface in Figure 21a did not increase much, and the
location moved. Then, when the agent introduced more back sweeps and rose χin, the peak
static pressure increased and moved farther toward the leading edge. The minimum static
pressure near the tip and around the tip clearance was increased, and the modification of
the agent further improved the static pressure downstream after the minimum location.
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Figure 22 showed the tip clearance flow feature of the rotors, together with the static
pressure distribution at a 98% span. It was observed that the TLV did not expand after
modification, even when the pressure difference between the pressure surface and suction
surface increased near the leading edge.
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The passage shock wave caused a severe rise in pressure, which can interact with
the TLV and distort it, as analyzed by Suder [45]. The inverse pressure gradient declined
in the GA case and the RL results, as plotted in Figure 22. As a result, the distortion of
the TLV was diminished compared with the reference rotor case, which helped raise the
overall efficiency.

The modifications added by GA and RL also enhanced the flow field by influencing
the end wall secondary flow. As emphasized in Figure 22, the leakage flow in the reference
rotor moved across the whole passage and passed the next tip clearance, which generated
considerable loss. In the flow field of the GA case, a larger portion of the leakage flow was
directed downstream rather than toward the next tip clearance. This flow feature remained
after the RL agents modified the rotor and benefited the overall efficiency.

The static pressure downstream in Figure 22 indicated the change in the pressure
ratio, which also agreed with the local pressure ratio change in Figure 17. The flow
with relatively high static pressure mixed with the flow at lower spanwise, and the static
pressure decreased. The static pressure downstream was lower than the reference; then,
upon modification by the RL agent, the static pressure improved and became higher than
the reference.

Figure 23 showed the entropy distribution at the outlet of the rotors in the axial
surface, which also indicated the improvement after the modifications. As marked by
arrows, the thickness of the flow area with relatively high entropy decreased in the GA case,
then slightly increased in the RL result and remained better than the reference. A similar
reduction in entropy appeared in the wake flow area, as marked in the dashed circle, where
the high entropy area was reduced.
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In summary, the GA step improved the efficiency by adding a combined sweep feature
and a combined lean feature and changing the 2D airfoil features. The efficiency improve-
ment arose mainly from the separation and shock wave reduction, which simultaneously
declined the pressure ratio. Then, the agent modified the 3D feature, changed the distribu-
tion of χin, χout, and decreased βy to obtain a higher pressure ratio. Most of the beneficial
features of the flow field were retained, so the efficiency remained high compared with that
of the reference rotor.

4.3. Computational Cost

The computational cost has always been a primary concern in compressor design
optimization. The computation consumption of the RL agent and GA process was consid-
ered in this section. Since the surrogate models accounted for most of the computational
cost, it was appropriate to evaluate different algorithms’ costs in training and execution by
counting the calling time of surrogate models.

The convergence history when training the agent was plotted in Figure 24, where
the mean line was calculated by all R curves still in training. The training process was
repeated several times to reduce the influence of randomness in network initialization and
noise action. The mean R increased before 5000 episodes, and many agents converged
and stopped training, so the mean R decreased at 5000–6000 episodes. One episode
contained 100 steps, so 5000 episodes corresponded to 500,000 calls of the surrogate model,
approximately two times that of the NSGA-II evolutionary process and on the same order
of magnitude. The agent learned the policy of the whole design process with the same
order of magnitude of computational cost as NSGA-II learning a Pareto front.
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The trained agent showed its advantage in generating the new design because of the
different running logic. Agents could modify all designs in the design space and improve
the performance designers expect, with only one calling surrogate model for each step. The
modified design variables changed continuously.

For the GA, the Pareto front had no straightforward relations to other points in the
design space. The nearby points in the Pareto front could have entirely different design
variables. Therefore, another evolution process needed to be performed with different
fitness functions and extra constraints to generate modification steps similar to those of the
agents. Thus, the agents yielded modifications much faster than the GA. As described in
Section 3.2, one GA step consumed 14,705 times the calling times of surrogate models as
17 RL steps.

In summary, training agents had a higher computational cost than the GA, but the
trained agents produced modifications much faster. It was appropriate to initialize the RL
design process at the GA results rather than initiate at the reference or random design states
and then modify the rotor using trained agents to obtain rotors that met the requirements.

5. Conclusions

This study showed that the modified DDPG and NSGA-II algorithms could work
in conjunction in the RL framework, combining the universality of RL agents and the
effectiveness of the GA process and demonstrating the corresponding advantages. The
trained agent modified one of the GA result cases, improved the pressure ratio from lower
than the reference to higher than the reference, and maintained high efficiency.

The new rotor obtained a sweep and lean feature, and the associated 2D airfoils were
modified. The flow field analysis evidence suggested that the modifications made by the
agent and GA process were explicable. It was revealed that the efficiency of the redesigned
rotor improved because the separation near the tip was released, the shock wave weakened,
the influence of the TLV was reduced, and the radial secondary flow was alleviated. These
beneficial features remained after agent modification, and the pressure ratio improved
mainly because of the increase in the flow turn angle.

The agents with the modified DDPG algorithm learned a valid policy to improve
the pressure ratio across the whole design space. The results of the NSGA-II algorithm
indicated that novel fitness functions reduced the variation in geometry modification and
working points. The integration of the trained agent and GA process yielded favorable
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results with a higher pressure ratio and efficiency. Moreover, the computational costs were
compared, showing that agents modified the design much faster than the GA process, with
more training of agents cost.

The results of this study indicated that the RL method could incorporate other methods
and that better designs could be generated by combining agents with different policies, GA
methods, prior knowledge, and other optimization methods. More efforts are needed to
improve the RL methods and surrogate models, involving, for example, hierarchical RL to
extend the generalization ability. The RL methods can be further applied to assist future
compressor design and have the potential to complete the design automatically and utilize
more existing knowledge after improvement.
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