
Citation: Malivert, F.; Labbani-Igbida,

O.; Boeglen, H. Comparison and

Improvement of 3D-Multilateration

for Solving Simultaneous

Localization of Drones and UWB

Anchors. Appl. Sci. 2023, 13, 1002.

https://doi.org/10.3390/app13021002

Academic Editor: Yangquan Chen

Received: 16 November 2022

Revised: 1 January 2023

Accepted: 4 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Comparison and Improvement of 3D-Multilateration
for Solving Simultaneous Localization of Drones
and UWB Anchors
Franck Malivert, Ouiddad Labbani-Igbida * and Hervé Boeglen

XLIM Research Institute, CNRS UMR 7252, Limoges and Poitiers Universities, 87000 Limoges, France
* Correspondence: ouiddad.labbani-igbida@xlim.fr

Abstract: Drone fleets have attracted a lot of attention from the research community in recent years.
One of the biggest challenges in deploying such systems is localization. While GNSS localization
systems can only be effective in open outdoor environments, new solutions based on radio sen-
sors (e.g., ultra-wideband) are increasingly being used for localization in various situations and
environments. However, self-localization without prior knowledge of anchor positions remains an
open problem, which, for example, makes it impossible to track a moving target. In this article,
we provide a comparison of different variants of gradient descent-based algorithms, with a new
improved variant, for solving the localization problem using relative distance measurements and
multilateration. Extensive simulation results are provided, varying the number of neighboring nodes
for multilateration, algorithm initialization, and cost functions, in addition to accounting for node
positioning errors and ultra-wideband sensor noise. They help set the adequate rate for fixed step
descent when used and produce a damping effect in the variable step rate, which will otherwise di-
verge. In particular, we consider three scenarios: (i) self-localization of anchors; (ii) tracking moving
targets using ultra-wideband range sensors; and (iii) simultaneously estimating unknown positions
of ultra-wideband anchors and mobile agents (drones). The latter shows a great improvement in
localization accuracy.

Keywords: sensor/UAVs networks; localization; multilateration; ultra-wideband (UWB) sensors;
gradient descent optimization

1. Introduction and Related Work

In recent years, drones have aroused the interest of the scientific community as they
offer huge potential in many civil applications [1,2], such as first aid in natural disasters
or inspection to prevent forest fires [3–5]. With the evolution of technology, the miniatur-
ization of electronics, and the increase in the processing power of on-board systems, it is
currently possible to carry out complex missions with small and inexpensive drones, or
even fleets of drones [6,7]. Drone fleet missions have proven to be more efficient in terms of
scalability, survivability, and rapid response. However, swarm flight poses several research
problems. The most important is undoubtedly the localization of drones in a global or
relative reference system. Depending on the type of environment (indoor, outdoor, indus-
trial [8], etc.), but also on the type of system to be localized, there are different levels of
localization complexity [9].

GNSS (Global Navigation Satellite System) positioning, such as GPS, is the most com-
monly used solution for outdoor localization [10]. However, the localization accuracy may
be insufficient, especially for missions operated in swarms, or simply ineffective in indoor
environments. To overcome this limitation, other localization systems can be used such
as cameras [11] and inertial measurement systems [12]. Some promising methods use RF
chips implementing different standards such as RFID, Bluetooth [13], or WiFi [14,15]. Since
these methods are low-cost, require low processing power, and have a long range [16],
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this article will focus on RF-based methods. The best known RF technique is the Received
Signal Strength Indicator (RSSI) [17–20]. Knowing the power emitted and the propagation
attenuation model makes it possible to calculate the propagation distance. With the use
of specific antennas, it is possible to obtain the Angle of Arrival (AOA) of the transmitted
wave and to obtain the position by triangulation. Using the propagation speed, travel
time measurement techniques such as Time of Arrival (ToA) or Time Difference of Arrival
(TDoA) [21–24] allows one to obtain the position with a trilateration calculation. In partic-
ular, TDoA-based ultra-wideband (UWB) sensors are very popular [25,26] as they allow
very accurate distance measurements at a relatively low cost.

RF-based positioning can be solved analytically [27–30] when exact models are known
or using numerical optimization methods. Several optimization algorithms can be found in
the literature [31] to solve multilateration. It should be mentioned that the computation
may be difficult due to the non-linearity and/or non-convexity of the estimation problem,
potentially leading to local minima or divergence. An interesting approach [32], based on a
variant of the original Space Alternating Generalized Expectation Maximization (SAGE) al-
gorithm [33], leads to the joint estimation of the Direction of Arrival (DoA), time-delay, and
range estimation, aiming to improve the estimation accuracy of communicating vehicles.

This work deals with the multilateration localization problem in non-GPS environ-
ments, using UWB relative distance measurements whose anchoring positions are unknown
or are known but with uncertainties. We address the problem of localization in different
scenarios, including (i) the positioning of a fleet of drones based on RF measurements to
anchors with poorly known positions; (ii) estimating the position of UWB anchors based
on the distances measured to one or more drones located by on-board sensors; and (iii) si-
multaneously combining the two estimates of the positions of the anchors and the drones
to improve the localization accuracy of the system as a whole. The estimation problem is
solved using gradient-descent-based optimization while considering different formulations
for the cost functions and proposing a new adaptation.

The rest of the paper is organized as follows. Section 2 presents a unified formulation
of the estimation problem we address. To solve this problem, different formulations of
the gradient descent-based optimization are presented in Section 3. Then, in Section 4,
simulation results are described and analyzed before concluding this work in Section 5.

2. Problem Statement

Trilateration, and more generally, multilateration, is an important technique for 3D
position estimation using distance measurements to four or more anchors with known
position coordinates. Multilateration localization is used here to co-estimate the 3D posi-
tions of a set of fixed nodes and mobile agents (drones) capable of taking relative distance
measurements in various scenarios. The first scenario consists in retrieving unknown 3D
positions of a set of mobile agents given their relative distance measurements to a set of
known anchors (Figure 1a). The second scenario (Figure 1b) consists of retrieving the
3D positions of a set of anchors using a set of mobile agents. In this case, an estimate of
the positions of the mobile agents is assumed to be given using on-board sensors. The
third scenario is a hybrid case where recovered positions of the anchors will improve the
localization of moving agents. It deals with the problem of simultaneously obtaining an
accurate estimation of the positions of drones and the active fixed sensors.

This work gives a unified formulation to these scenarios, and solves the multilateration
estimation problem with and without taking into account noisy range measurements and
location uncertainties.

In the following, each agent or active sensor node i of unknown position will be
referred to as xi = (xi, yi, zi)

T , denoting its 3D coordinates in a global reference frame
and having di,j distance measurements to k ≥ 4 neighboring nodes with known position
coordinates, denoted as xn j = (xj, yj, zj)

T , 1 ≤ j ≤ k.
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Figure 1. Multi-drone/anchor localization scenarios. (Left): A set of UWB tags with known positions
are used to track a set of drones. (Right): A drone or a set of drones with estimated poses are used to
retrieve unknown positions of a set of fixed UWB tags.

Position/distance constraints can be formulated by (1) expressing that any node i of
unknown an 3D position, xi = (xi, yi, zi)

T , lies at the intersection of k ≥ 4 circles centered
on the detected neighboring nodes with known positions and having the estimated range
di,j as their radii: 

(xi − x1)
2 + (yi − y1)

2 + (zi − z1)
2

(xi − x2)
2 + (yi − y2)

2 + (zi − z2)
2

...
(xi − xk)

2 + (yi − yk)
2 + (zi − zk)

2

 =


d2

i,1
d2

i,2
...

d2
i,k

 (1)

This leads to a nonlinear least squares problem that can have multiple local minima.
The authors [34] have proposed a solution to the convex relaxation of this problem, but
there will still be no guarantee that the solution will be optimal. Another way to solve
this problem is to consider a linear solver by forming differences between pairs of these
equations leading to the deletion of quadratic terms in (1). For instance, by subtracting the
last component ||xi − xk||2 from all others in (1), the problem (1) can then be rearranged
and reformulated as follows:

A(k−1)×3 xi = D(k−1)×1 (2)

where

A =


(xk − x1) (yk − y1) (zk − z1)
(xk − x2) (yk − y2) (zk − z2)

...
(xk − xk−1) (yk − yk−1) (zk − zk−1)

; D =
1
2


d2

i,1 − d2
i,k + x2

k − x2
1 + y2

k − y2
1 + z2

k − z2
1

d2
i,2 − d2

i,k + x2
k − x2

2 + y2
k − y2

2 + z2
k − z2

2
...

d2
i,k−1 − d2

i,k + x2
k − x2

k−1 + y2
k − y2

k−1 + z2
k − z2

k−1


Note that the matrices A and D are expressed only as a function of neighboring nodes

whose positions and relative distance measurements are known.
Several methods have been proposed to solve the estimation problem (2). It could

be solved using either the least squares approximation or other algebraic methods since,
in the general case, the matrix A is not necessarily square (depending on the number of
neighboring nodes with known positions). This provides an exact solution if it exists and
an approximate solution otherwise. To be noted, the matrix A is singular, and the solution
does not exist if all the neighboring nodes are collinear. If the measured distances are
disturbed by measurement noise, the equalities in (1) and (2) would no longer hold. The
problem of finding the unknown positions of the nodes is then approached by forming
the residuals of the system and then minimizing a cost function of these residuals. In the
following, we study different formulations of the estimation problem with noisy range mea-
surements, harnessing different cost functions to minimize the localization error. They are
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summarized below in (3)–(6) and will be thoroughly discussed under different conditions
in the following sections.

Definition 1 (Problem 1). The optimal estimate of the unknown position of a node i, xi having
measurements di,j to nodes xn j, j = 1 . . . k with known positions, is usually given by:

x?i = argmin
xi∈R3

k

∑
j=1

(
‖xi − xn j‖ − di,j

)2 (3)

This is a nonlinear optimization problem aimed at minimizing the sum of the squares
of the residuals between the measured distances and the hypothetical distances based on
the known location of nodes.

Definition 2 (Problem 2). An alternative formulation to the cost function (3) could be defined by
the following to provide an optimal node location estimate:

x?i = argmin
xi∈R3

k

∑
j=1

1
2

(
‖xi − xn j‖2 − d2

i,j

)2
(4)

This still leads to a nonlinear, nonconvex optimization problem, aiming to minimize
the quadratic error between the squared measured distances and the squared relative
positions of the nodes.

The formulations (3) and (4) do not explicitly take into account uncertainties. However,
the nodes of known positions could be affected by uncertainties, and the acquired distances
are also affected by measurement errors. In these cases, the previous problems are modified
to include position and measurement errors and are formulated as follows:

Definition 3 (Problem 3). In the presence of positioning and measurement errors, the optimal
estimate derived from (3) is given by:

x?i = argmin
xi∈R3

k

∑
j=1

(
‖xi − (xn j + epos)‖ − (di,j + ed)

)2 (5)

where epos and ed denote the position and range measurement errors, respectively.

Definition 4 (Problem 4). The alternative formulation derived from (4) of the cost function while
including position and measurement errors leads to the optimal estimate:

x?i = argmin
xi∈R3

k

∑
j=1

1
2

(
‖xi − (xn j + epos)‖2 − (di,j + ed)

2
)2

(6)

Localization by multilateration consists of solving one of the previous formulations
of the optimization problems (3)–(6), which differ mainly by the cost functions used and
by considering explicitly or not the uncertainties in the position of the anchor nodes and
the range measurements. These formulations are of great importance and will impact not
only the precision of the solution, but also the computation time and even the possibility of
finding a solution to the localization problem.

3. Multilateration Estimation Resolution

Gradient descent (GD) is one of the most used algorithms for many recent applica-
tions [35,36] due to its simplicity and computational efficiency in optimizing an objective
function. We consider in this work two variants of GD methods to solve multilateration
problems (3)–(6) based on fixed or variable rates in the gradient descent step. We also
introduce a revisited formulation of the variable step descent. Indeed, it is well known
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that choosing a proper descent step can be tricky. Too small a descent step leads to slow
convergence, while a too large descent step can hinder convergence and cause the utility
function to fluctuate around the minimum or even diverge. Some approaches [37] use Line
Search methods or variants, solving a second iterative optimization problem under specific
conditions to find an appropriate fixed step length.

To solve problems (3)–(6), starting from an initial guess xi,0 ∈ R3 of a node position xi,
a sequence of solutions is produced iteratively by:

xi,k+1 = xi,k − αkgk (7)

where xi,k is the position estimate at iteration k, gk is the gradient of the utility function,
and αk is the gradient descent step defined by Equation (8). αk could be constant in a fixed
step descent or, depending on H, the Hessian matrix of the utility function. The proposed
revisited formulation introduces a damping parameter 0 < β ≤ 1 in the variable step rate:

αk =



α using the fixed rate step,
gT

k g
gT

k Hgk
using the variable rate step,

β
gT

k g
gT

k Hgk
using the revisited formulation.

(8)

These methods are implemented and evaluated in the next section, with the objective
of finding the optimal parameters and conditions necessary to solve the cases presented
by the localization scenarios. Table 1 summarizes the different combinations with the
evaluated parameters.

Table 1. Overview of the evaluated methods and the varied parameters in the simulations.

Methods evaluated GD using a fixed rate step, a variable rate step, and a variable rate
step including a damping parameter.

Problem formulation Cost functions (3)–(6) without and with explicitly including
positioning and measurement errors.

Anchor nodes 100 randomly selected sample points in a 3D map.

Algo. initialization 100 randomly chosen initial points.

Number of relative
measurements

Varying from 4 to 10 neighboring points and relative
distance measurements.

4. Simulation Results

To evaluate the resolution methods with respect to the formulations considered, we
carry out extended statistical analyses by varying the number of neighboring nodes and
the parameters of the algorithms. The simulation environment is a simulated 3D space
of 100 m × 100 m × 50 m (x, y, z dimensions, respectively) centered on a global reference
frame with the origin (0, 0, 0). It contains a large population of randomly distributed fixed
nodes (anchors) and a set of drones with predefined trajectories. For each test scenario,
multilateration localization is solved for 100 randomly selected nodes with unknown
positions, using k ∈ [4, 10] randomly selected neighboring nodes of known coordinates and
100 random initial guesses to start the execution of the algorithm. The random character
also makes it possible to evaluate the impact of the distribution and the relative positioning
of the nodes. They are only constrained to have a minimum relative measurement distance
of 1 m. This leads, for each test scenario, to 10,000 simulation tests, run under Matlab on
a Linux Ubuntu 16.04 OS with 16 GB of memory and an Intel Core i7-4710MQ processor
(using a single 2.5 Ghz core for the simulations).

For the estimation problems (5) and (6) expressing uncertainties, the errors on the
assumed known positions of the nodes are modeled by a Gaussian noise centered on the
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real position of the simulated nodes with a standard deviation σxn determined empirically.
Measurement errors are modeled based on the approximation given in (10) [38] and con-
firmed by our experimental study using UWB sensors in indoor and outdoor environments:

epos = N (0; σxn) (9)

ed = euwb = e0 + e1di,j + e2d2
i,j + e3d3

i,j (10)

with the following experimentally identified parameters:

e0 = 2.361e−3, e1 = 1.805e−3,
e2 = 4.808e−5, e3 = 4.655e−7.

4.1. Fixed-Step GD Estimation

Solving a multilateration problem with fixed-step gradient descent can diverge if
the step is too large or slow down convergence considerably if it is too small. At the
expense of additional optimization cost, some authors [37,39] have proposed to use the
backtracking line search algorithm, thus solving an additional optimization problem in
order to define a suitable step length that satisfies certain conditions. Here, we propose
performing a statistical analysis to determine a good approximation of the best fixed-step
descent parameter for each formulation of the estimation problems (3)–(6).

The convergence results for the formulations (3) and (4) (without explicitly considering
position and range measurement noises) are presented in Figure 2. A solution is considered
convergent if the positioning error, i.e., the Euclidean distance between the real position of
the target and its estimate, is less than 20 cm. Obviously, it can be noted that increasing the
fixed descent step length reduces the convergence rate, in particular when the number of
neighboring nodes used in the estimation increases. Therefore, by reducing the descent step,
the convergence rate is increased. Using problem formulation (3), notice the appearance of a
plateau whose value depends on the number of neighboring nodes used in multilateration.
This means that below a certain value, it is useless to continue to decrease the step of descent,
which will lead to increasing the computation time without improving the convergence
success. It should be noted that these "plateau" values will be chosen as fixed parameters
of the descent step in the comparative simulations. It can also be noted that increasing
the number of measurements improves the convergence rates up to a certain threshold
(here, 8), beyond which no improvement is detected. Similar observations can be made
for the problem formulation (4), noting that convergence for very small step values is
extremely slow and the algorithm stops after exceeding the maximum number of iterations.
The number of iterations until convergence for both formulations is given in Figure 3 and
confirms this observation. It can be concluded that for equivalent performances, problem
formulation (4) converges much more slowly than (3).
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Figure 2. Convergence results on 10,000 simulations using GD with fixed-step descent for estimation
problems (3) (a) and (4) (b), respectively, without explicitly considering positioning and measurement
error models and by varying the number of neighboring nodes from 4 to 10.
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Figure 3. Mean number of iterations to convergence with standard deviation on 10,000 simulations
using GD with fixed-step descent for estimation problems (3) (a) and (4) (b), respectively, with-
out explicitly considering position and measurement error models and by varying the number of
neighboring nodes from 4 to 10.

The same tests are carried out by incorporating in the cost functions the position (9) and
the measurement (10) error models in the estimation problems (5) and (6). Figures 4 and 5
give the results of convergence and the number of iterations until convergence over
10,000 simulations for the two formulations and for a different number of neighboring
nodes, depending the length of the fixed step and the number of distance measurements.
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Figure 4. Convergence results on 10,000 simulations using GD with fixed-step descent for estimation
problems (5) (a) and (6) (b), respectively, including position and range measurement error models
and by varying the number of neighboring nodes from 4 to 10.
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Figure 5. Mean number of iterations to convergence with standard deviation on 10,000 simulations
using GD with fixed-step descent for estimation problems (5) (a) and (6) (b), respectively, including
position and range measurement error models and by varying the number of neighboring nodes
from 4 to 10.

The profiles of the curves are similar to the results of the formulations without error
models; the only changes are a decrease in performance due to the integration of errors,
which impacts situations with a low number of measurements more significantly. It can
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also be noticed that the plateau levels are close to the previous values, and at equivalent
performance, the numbers of iterations at convergence are lower for the formulation (5)
compared to (6).

4.2. Variable-Step GD Estimation

An alternative approach to fixed-length step descent is to adapt the rate step to the
normalized gradient, as defined by (8). The same scenarios from the previous tests are
reconsidered using the variable-step descent algorithm. The simulation results showed
a very weak convergence (around 20%) with all the formulations of cost functions, with
and without explicit incorporation of error models. This observation motivated us to
investigate the problem and led us to reformulate the gradient step by introducing a
damping parameter β, as defined in (8). The results are shown in Figure 6, with and
without position and measurement errors. Note that β = 1 corresponds to the classical
formulation of the variable-step descent (i.e., without damping).

First, one can notice the increase in convergence rates with the number of relative
measurements used in the estimation. This is particularly noticeable for a small number
of measurements. Moreover, when the number of measurements exceeds seven, the
convergence rate varies very little. Another point to note is the impact of the value of the
damping parameter β. Indeed, using a value close to 0.1 for the optimization problem (3)
gives better results than the classical variable step (β = 1) for any number of measurements.

The analysis of the number of iterations until convergence (second row of Figure 6)
shows that reducing the damping parameter improves the convergence results but, con-
sequently, also increases the number of iterations to convergence. For instance, a value
β = 0.1 leads to 95% of convergent estimates in less than 500 iterations for optimization
problem (3). Similar results are shown for the optimization problem (4) with a slight de-
crease in performance. It therefore appears more interesting to use the cost function (3) with
value β = 0.1 in the case of an adaptive descent with free-error models. While integrating
positioning and measurement error models into the formulations, the curves also confirm
these trends with a slight drop in performance. This confirms that the cost function (5)
seems to give better results than (6), and that a damping value of β = 0.1 is an appropriate
choice, even with positioning and measurements errors.

Further analysis of the adaptive step descent is carried out in Figure 7, revealing
different cases of convergence of the algorithm: (i) the algorithm converges towards the
correct estimate; (ii) the algorithm converges towards an erroneous estimate corresponding
to a local minimum; (iii) the algorithm does not have time to converge and reaches the
maximum number of iterations; and finally, (vi) the algorithm diverges. The results in
Figure 7 are given for the estimation problem (5), including position and measurement
errors, based on measurements acquired from 4 and 10 neighboring nodes, but similar
results have been observed for the other cases. They clearly indicate the importance of
increasing the number of measurements to improve the convergence of the algorithm to
correct solutions. Convergence to local minima solutions is greatly reduced when using a
significant number of relative measurements in the estimation. A clear improvement can
be noticed when the damping parameter is used in the gradient descent step. It should be
noted that the number of situations where the slow convergence of the algorithm does not
lead to any solution is very limited except for very small values of the damping parameter
which will obviously not be used. These results clearly show the relevance of introducing
a damping parameter whose value could be suitably chosen according to the number of
measurements available or desired for the estimation.



Appl. Sci. 2023, 13, 1002 9 of 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n
u

m
b

e
r 

o
f 

c
o

n
v

e
rg

e
n

t 
s

o
lu

ti
o

n
s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

m
e

a
n

 a
n

d
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

o
f 

th
e

 n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

0.02 0.04 0.06 0.08 0.1

500

1000

1500

2000

2500

3000

3500

4000

4500

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n
u

m
b

e
r 

o
f 

c
o

n
v

e
rg

e
n

t 
s

o
lu

ti
o

n
s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
e

a
n

 a
n

d
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

o
f 

th
e

 n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

0 0.02 0.04 0.06 0.08 0.1

1000

2000

3000

4000

5000

(d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n
u

m
b

e
r 

o
f 

c
o

n
v

e
rg

e
n

t 
s

o
lu

ti
o

n
s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

(e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

value of the damping parameter in the variable GD-step

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

m
e

a
n

 a
n

d
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

o
f 

th
e

 n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

2 4 6 8 10

10
-3

2000

3000

4000

5000

6000

7000

(f)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n
u

m
b

e
r 

o
f 

c
o

n
v

e
rg

e
n

t 
s

o
lu

ti
o

n
s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

(g)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

value of the damping parameter in the variable GD-step

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

m
e

a
n

 a
n

d
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

o
f 

th
e

 n
u

m
b

e
r 

o
f 

it
e

ra
ti

o
n

s

4 measurements

5 measurements

6 measurements

7 measurements

8 measurements

9 measurements

10 measurements

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1000

2000

3000

4000

5000

(h)

Figure 6. Convergence results (left column) with the mean and standard deviations of the number
of iterations until convergence (right column) over 10,000 simulations of the GD using variable-
step descent as a function of the damping parameter, for estimation problems (3)–(6), with and
without positioning and measurement error models and by varying the number of neighboring
nodes from 4 to 10. (a) Problem (3) w/o errors; (b) Problem (3) w/o errors; (c) Problem (4) w/o
errors; (d) Problem (4) w/o errors; (e) Problem (5) w/errors; (f) Problem (5) w/errors; (g) Problem (6)
w/errors; (h) Problem (6) w/errors.

Finally, more detailed and comparative results revealing the average behavior over
10,000 simulations of each multilateration formulation scenario are summarized in Tables 2–8.
They are compared with respect to the localization errors versus the ground truth positions
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of the nodes, the average rate of convergence, and the computation time for the different
formulations of the estimation algorithms.
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Figure 7. Analysis of convergence results over 10,000 simulations using the adaptive gradient
descent for estimation problem (5) including position and measurement error models, based on the
measurements from 4 and 10 neighboring nodes, respectively. The red curves show the number
of correct estimates, the blue curves correspond to the number of estimates corresponding to local
minima, and the green and black curves correspond to non-convergence of the estimation due to
reaching the maximum number of iterations (very slow convergence) or to the divergence of the
estimation algorithm, respectively. Note that β = 1 corresponds to the classic formulation of variable-
step gradient descent. (a) Based on 4 relative measurements; (b) Based on 10 relative measurements.

Table 2. Comparative localization results using the different formulations of the estimation problem,
based on 4 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 4 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 77.6% 0.0328 ± 0.0381 49.4 ± 49.9 0.14 ± 0.155

Variable-step GD/Equation (3) (w/o errors) 74.2% 0.033 ± 0.038 345 ± 358 3.2 ± 3.3

Fixed-step GD/Equation (4) (w/o errors) 72.0% 0.0003 ± 0.0004 2881 ± 2363 11.1 ± 9.1

Variable-step GD/Equation (4) (w/o errors) 63.3% 0.0005 ± 0.0014 1701 ± 2229 5.0 ± 6.7

Fixed-step GD/Equation (5) (w/errors) 76.6% 0.0517 ± 0.0374 49.4 ± 50.3 0.134 ± 0.147

Variable-step GD/Equation (5) (w/errors) 72.9% 0.055 ± 0.038 350 ± 370 3.0 ± 3.1

Fixed-step GD/Equation (6) (w/errors) 71.2% 0.051 ± 0.028 2795 ± 2266 6.7 ± 6.4

Variable-step GD/Equation (6) (w/errors) 63% 0.053 ± 0.030 1647 ± 2146 5.6 ± 7.3

Table 3. Comparative localization results using the different formulations of the estimation problem
based on 5 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 5 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 93.0% 0.024 ± 0.033 46.4 ± 41.9 0.119 ± 0.110

Variable-step GD/Equation (3) (w/o errors) 88.9% 0.025 ± 0.033 544 ± 647 2.5 ± 3.1

Fixed-step GD/Equation (4) (w/o errors) 89.0% 0.0002 ± 0.0002 2796 ± 21.20 12.3 ± 9.7

Variable-step GD/Equation (4) (w/o errors) 72.2% 0.0002 ± 0.0003 1395 ± 1864 4.2 ± 5.6

Fixed-step GD/Equation (5) (w/errors) 90.5% 0.051 ± 0.032 45.9 ± 45.7 0.231 ± 0.247

Variable-step GD/Equation (5) (w/errors) 86.3% 0.053 ± 0.032 539 ± 651 2.8 ± 3.3

Fixed-step GD/Equation (6) (w/errors) 86.3% 0.063 ± 0.034 2672 ± 1992 5.1 ± 4.4

Variable-step GD/Equation (6) (w/errors) 70.0% 0.063 ± 0.036 1340 ± 1792 5.2 ± 6.8
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Table 4. Comparative localization results using the different formulations of the estimation problem
based on 6 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 6 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 96.3% 0.014 ± 0.017 38.0 ± 31.2 0.107 ± 0.051

Variable-step GD/Equation (3) (w/o errors) 95.7% 0.015 ± 0.017 1281 ± 1282 12.7 ± 13.5

Fixed-step GD/Equation (4) (w/o errors) 95.4% 0.0001 ± 0.0001 2105 ± 1649 5.3 ± 5.2

Variable-step GD / Problem (4) (w/o errors) 88.0% 0.0001 ± 0.0002 1239 ± 1633 7.0 ± 10.4

Fixed-step GD/Equation (5) (w/errors) 95.3% 0.059 ± 0.029 38.3 ± 33.4 0.116 ± 0.104

Variable-step GD/Equation (5) (w/errors) 94.2% 0.060 ± 0.030 1261 ± 1281 7.9 ± 8.0

Fixed-step GD/Equation (6) (w/errors) 95.5% 0.069 ± 0.034 2121 ± 1673 2.5 ± 2.4

Variable-step GD/Equation (6) (w/errors) 87.2% 0.071 ± 0.036 1232 ± 1644 9.9 ± 13.1

Table 5. Comparative localization results using the different formulations of the estimation problem
based on 7 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 7 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 98.9% 0.008 ± 0.006 27.1 ± 18.5 0.076 ± 0.051

Variable-step GD/Equation (3) (w/o errors) 95.5% 0.008 ± 0.006 232 ± 228 1.5 ± 1.4

Fixed-step GD/Equation (4) (w/o errors) 99.7% 0.0001 ± 0.0001 1522 ± 1407 6.3 ± 5.9

Variable-step GD/Equation (4) (w/o errors) 90.0% 0.0000 ± 0.0001 1032 ± 1404 3.9 ± 5.3

Fixed-step GD / Problem (5) (w/errors) 99.3% 0.069 ± 0.029 28.0 ± 21.4 0.115 ± 0.121

Variable-step GD/Equation (5) (w/errors) 95.5% 0.071 ± 0.029 235 ± 225 2.7 ± 2.6

Fixed-step GD/Equation (6) (w/errors) 97.4% 0.078 ± 0.034 1466 ± 1306 2.8 ± 3.3

Variable-step GD/Equation (6) (w/errors) 88.0% 0.079 ± 0.033 982 ± 1337 8.6 ± 11.6

Table 6. Comparative localization results using the different formulations of the estimation problem
based on 8 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 8 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 100.0% 0.006 ± 0.004 31.5 ± 15.6 0.066 ± 0.032

Variable-step GD/Equation (3) (w/o errors) 95.7% 0.006 ± 0.004 237 ± 178 1.7 ± 1.3

Fixed-step GD/Equation (4) (w/o errors) 100.0% 0.0000 ± 0.0000 2038 ± 1441 7.1 ± 5.6

Variable-step GD/Equation (4) (w/o errors) 90.0% 0.0000 ± 0.0000 775 ± 1138 3.1 ± 4.4

Fixed-step GD/Equation (5) (w/errors) 100.0% 0.091 ± 0.032 31.7 ± 15.9 0.133 ± 0.065

Variable-step GD/Equation (5) (w/errors) 95.9% 0.09 ± 0.032 239 ± 185 1.7 ± 1.3

Fixed-step GD/Equation (6) (w/errors) 100.0% 0.099 ± 0.039 2050 ± 1462 6.6 ± 5.0

Variable-step GD/Equation (6) (w/errors) 90.0% 0.099 ± 0.039 791 ± 1183 6.8 ± 10.2
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Table 7. Comparative localization results using the different formulations of the estimation problem
based on 9 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 9 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 100.0% 0.005 ± 0.003 28.0 ± 15.4 0.066 ± 0.036

Variable-step GD/Equation (3) (w/o errors) 95.5% 0.005 ± 0.003 249 ± 218 3.3 ± 2.8

Fixed-step GD/Equation (4) (w/o errors) 100.0% 0.0000 ± 0.0000 1801 ± 1296 7.7 ± 5.8

Variable-step GD/Equation (4) (w/o errors) 91.5% 0.0000 ± 0.0000 779 ± 1263 3.5± 5.6

Fixed-step GD/Equation (5) (w/errors) 97.2% 0.108 ± 0.035 27.7 ± 15.3 0.095 ± 0.054

Variable-step GD/Equation (5) (w/errors) 93.4% 0.108 ± 0.035 247 ± 212 1.6 ± 1.4

Fixed-step GD/Equation (6) (w/errors) 92.0% 0.113 ± 0.041 1715 ± 1237 5.9 ± 5.1

Variable-step GD/Equation (6) (w/errors) 84.6% 0.113 ± 0.041 692 ± 1112 6.0 ± 9.7

Table 8. Comparative localization results using the different formulations of the estimation problem
based on 10 relative measurements, with and without taking into account uncertainty models.

Localization Results Based on 10 Relative Measurements

Method Convergence Rate Localization Error (m) Number of Iterations Computation Time
(ms)

Fixed-step GD/Equation (3) (w/o errors) 100.0% 0.004 ± 0.005 22.6 ± 15.5 0.066 ± 0.043

Variable-step GD/Equation (3) (w/o errors) 96.6% 0.004 ± 0.005 233 ± 173 1.5 ± 1.2

Fixed-step GD/Equation (4) (w/o errors) 100.0% 0.0000 ± 0.0000 1237 ± 1006 5.6 ± 5.3

Variable-step GD/Equation (4) (w/o errors) 94.0% 0.0000 ± 0.0000 526 ± 810 1.5 ± 2.3

Fixed-step GD/Equation (5) (w/errors) 92.3% 0.130 ± 0.032 22.9 ± 16.7 0.076 ± 0.055

Variable-step GD/Equation (5) (w/errors) 88.9% 0.130 ± 0.032 240 ± 177 1.8 ± 1.3

Fixed-step GD/Equation (6) (w/errors) 82.0% 0.131 ± 0.040 1218 ± 1025 2.6 ± 3.0

Variable-step GD/Equation (6) (w/errors) 77.5% 0.131 ± 0.040 471 ± 681 4.2 ± 6.0

4.3. Towards Realistic Experimental Scenarios

To conclude this study, we perform a realistic simulated scenario using a fleet of drones
and a set of fixed anchors to evaluate the efficiency of solving the localization problem by
multilateration of anchors and drones based on distance measurements. In this scenario
(Figure 8), we consider 10 drones starting from different locations on the map. They are
each equipped with an inertial measurement unit allowing us to obtain an odometry subject
to significant errors, and an ultra-wideband sensor that can serve either as a track or as
an anchor. The map is made up of 200 anchors of unknown positions scattered randomly
across the map. Each drone executes a local trajectory and will therefore have the possibility
of being within the range of certain anchors. The goal is to solve the twofold problem
of locating as many anchors as possible, then to use the anchors located, to improve the
odometric localization of the drones which is only given by inertial measurements.

Figure 9 shows the results of the estimated positions of the anchors detected by
each drone, superimposed on the real positions (ground truth) on the initial map. One
can observe a very small number of outliers compared to the number of well-located
anchors. Some anchors have been located by different drones with small differences in
their estimates. Interesting future work will be to merge and filter these different estimates
to further improve the localization accuracy.
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Figure 8. Multi-drone and anchor localization scenario. Fixed anchors with unknown positions are
marked with green dots. The ten drones and their local trajectories are represented using solid and
dashed curves of different colors.
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Figure 9. Localization of anchors by a fleet of drones. The colors correspond to the different drones
and the corresponding located anchors.

Figure 10 shows the results of an example drone localization scenario based on inertial
measurements and enhanced by integrating distance measurements to anchors when they
are located. The localization of each drone is first estimated by integrating the measure-
ments of the inertial unit, which inevitably induces a strong drift depending on the distance
traveled. The difficulty is therefore to take measurements at the start of the flight and to
quickly locate a set of anchors before the drift and the localization error become too great
to make multilateration unusable. When a sufficient number of anchors are located, the
resolution of the multilateration localization optimization problem is re-initialized, which
results in a significant improvement in the drone localization. The curves also indicate
the localization errors in each case, with and without the use of the localized anchors
to improve the drone localization. Points marked ’+’ on the blue curve indicate when
anchor positions are made available and are therefore used to correct drift errors in inertial
measurements, improving the localization accuracy. Note that the drone has no prior
information on the location of the anchors. The positions of the detected anchors are first
calculated with reference to the drone’s low-drift odometry; they are then exploited to
correct the position of the drone, which explains the constant self-localization error. This
process continues iteratively, which makes it possible to contain localization errors within a
very limited interval.
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Figure 10. Comparative localization results of one drone of the fleet. (Top): The trajectories estimated
using only inertial odometry (green curve) and using inertial measurements and distance measure-
ments to the anchors located by the drone (blue curve). The ground truth trajectory is represented by
the dark curve. (Bottom): The Euclidean error of the localization in each case. Points marked ‘+’ on
the blue curve indicate when multilateration is used in the estimation algorithm.

5. Conclusions

This paper presents a unified formulation of the multilateration localization problem
involving fixed sensors (anchors) and mobile agents (drones) based on ultra-wideband-
range measurements. Different gradient descent methods have been studied, using a
constant rate, a variable rate, and a new formulation introducing a damping parameter in
the descent step. We have proposed a detailed study of the influence of various parameters
such as the number of neighboring nodes for multilateration, the initialization of the algo-
rithm, and the choice of the cost function, in addition to considering the positioning errors
of the nodes and the sensor measurement noise. This leads, depending on the localization
scenario, to parameter settings being chosen which allow for the best results according to
the rate of convergence of the system, the localization error, and the computation time. In
particular, the fixed-step gradient parameter can be set based on the number of neighboring
nodes and produced good convergence and accuracy results in most scenarios. A thorough
discussion is given based on extensive simulation results. The results have clearly shown
good efficiency in locating anchors without prior knowledge of their positioning and, sub-
sequently, the use of multilateration to perform drone tracking, thus improving its position
given by the inertial unit. Trends of interest for future work include merging distributed
estimates from multiple drones to further improve localization using global optimization,
as well as carrying out experimental tests in real environments.

Author Contributions: Conceptualization, O.L.-I.; Methodology, F.M., O.L.-I. and H.B.; Software,
F.M.; Validation, F.M.; Writing—original draft, F.M.; Writing—review & editing, O.L.-I. and H.B.; Su-
pervision, O.L.-I. and H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 1002 15 of 16

References
1. Valavanis, K.P.; Valavanis, K.P. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, 1st ed.; Springer

Publishing Company, Incorporated: New York, NY, USA, 2007.
2. Bouvry, P.; Chaumette, S.; Danoy, G.; Guerrini, G.; Jurquet, G.; Kuwertz, A.; Muller, W.; Rosalie, M.; Sander, J. Using heterogeneous

multilevel swarms of UAVs and high-level data fusion to support situation management in surveillance scenarios. In Proceedings
of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany,
19–21 September 2016; pp. 424–429.

3. Dehghan, S.M.M.; Farmani, M.; Moradi, H. Aerial localization of an RF source in NLOS condition. In Proceedings of the IEEE
International Conference on Robotics and Biomimetics, Guangzhou, China, 11–14 December 2012; pp. 1146–1151.

4. Martinez Hernandez, L.A.; Perez Arteaga, S.; Sanchez Perez, G.; Sandoval Orozco, A.L.; Garcia Villalba, L.J. Outdoor location of
mobile devices using trilateration algorithms for emergency services. IEEE Access 2019, 7, 52052–52059. [CrossRef]

5. Laclau, P.; Tempez, V.; Ruffier, F.; Natalizio, E.; Mouret, J.B. Signal-based self-organization of a chain of UAVs for subterranean
exploration. Front. Robot. AI 2021, 8, 614206. [CrossRef] [PubMed]

6. Bekmezci, I.; Sahingoz, O.K.; Temel, S. Flying Ad-Hoc Networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270.
[CrossRef]

7. Yanmaz, E.; Costanzo, C.; Bettstetter, C.; Elmenreich, W. A discrete stochastic process for coverage analysis of autonomous UAV
networks. In Proceedings of the IEEE Globecom Workshops, Miami, FL, USA, 6–10 December 2010; pp. 1777–1782.

8. Saeed, N.; Nam, H.; Al-Naffouri, T.Y.; Alouini, M.S. A state-of-the-Art survey on multidimensional scaling-based localization
techniques. IEEE Commun. Surv. Tutorials 2019, 21, 3565–3583. [CrossRef]

9. Dieudonné, Y.; Labbani-Igbida, O.; Petit, F. Deterministic robot-network localization is hard. IEEE Trans. Robot. 2010, 26, 331–339.
[CrossRef]

10. Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System; Springer: Berlin/Heidelberg, Germany, 2001.
11. Teuliere, C.; Marchand, E.; Eck, L. 3-D model-based tracking for UAV indoor localization. IEEE Trans. Cybern. 2015, 45, 869–879.

[CrossRef] [PubMed]
12. Herath, S.; Irandoust, S.; Chen, B.; Qian, Y.; Kim, P.; Furukawa, Y. Fusion-DHL: Wifi, imu, and floorplan fusion for dense history

of locations in indoor environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Xi’an, China, 30 May–5 June 2021; pp. 5677–5683.

13. Vorst, P.; Sommer, J.; Hoene, C.; Schneider, P.; Weiss, C.; Schairer, T.; Rosenstiel, W.; Zell, A.; Carle, G. Indoor positioning via three
different RF technologies. In Proceedings of the 4th European Workshop on RFID Systems and Technologies, Bremen, Germany,
10–11 June 2008; pp. 1–10.

14. Zhuang, Y.; Syed, Z.; Li, Y.; El-Sheimy, N. Evaluation of two WiFi positioning systems based on autonomous crowdsourcing of
handheld devices for indoor navigation. IEEE Trans. Mob. Comput. 2016, 15, 14. [CrossRef]

15. Pakanon, N.; Chamchoy, M.; Supanakoon, P. Study on accuracy of trilateration method for indoor positioning with BLE beacons.
In Proceedings of the 6th International Conference on Engineering, Applied Sciences and Technology, Chiang Mai, Thailand,
1–4 July 2020; pp. 1–4.

16. Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE
INFOCOM, Tel Aviv, Israel, 26–30 March 2000; pp. 775–784.

17. Rusli, M.E.; Ali, M.; Jamil, N.; Din, M.M. An improved indoor positioning algorithm based on RSSI-trilateration technique
for Internet of Things (IoT). In Proceedings of the International Conference on Computer and Communication Engineering,
Kuala Lumpur, Malaysia, 6–8 September 2016; pp. 72–77.

18. Koohifar, F.; Kumbhar, A.; Guvenc, I. Receding horizon multi-UAV cooperative tracking of moving RF source. IEEE Commun.
Lett. 2017, 21, 1433–1436. [CrossRef]

19. Heurtefeux, K.; Fabrice, V. De la pertinence du RSSI pour la localisation dans les réseaux de capteurs. In Proceedings of the
AlgoTel, La Grande Motte, France, May 2012.

20. Yang, B.; Guo, L.; Guo, R.; Zhao, M.; Zhao, T. A Novel trilateration algorithm for RSSI-based indoor localization. IEEE Sens. J.
2020, 20, 8164–8172. [CrossRef]

21. Guvenc, I.; Chong, C.C. A survey on ToA based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv.
Tutorials 2009, 11, 107–124. [CrossRef]

22. Pradhan, S.; Pyun, J.Y.; Kwon, G.R.; Shin, S.; Hwang, S.S. Enhanced location detection algorithms based on time of arrival
trilateration. In Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA,
2–5 November 2014; pp. 1179–1183.

23. Nguyen, T.; Huynh, T.H. Experimental study of trilateration algorithms for ultrasound-based positioning system on QNX
RTOS. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics, Angkor Wat, Cambodia,
6–10 June 2016; pp. 210–215.

24. Wei, M.; Lihua, X.; Wendong, X. Decentralized TDoA sensor pairing in multihop wireless sensor networks. IEEE Signal Process.
Lett. 2013, 20, 181–184.

25. Mekonnen, Z.W.; Slottke, E.; Luecken, H.; Steiner, C.; Wittneben, A. Constrained maximum likelihood positioning for UWB based
human motion tracking. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Zurich,
Switzerland, 15–17 September 2010; pp. 1–10.

http://doi.org/10.1109/ACCESS.2019.2911058
http://dx.doi.org/10.3389/frobt.2021.614206
http://www.ncbi.nlm.nih.gov/pubmed/33969000
http://dx.doi.org/10.1016/j.adhoc.2012.12.004
http://dx.doi.org/10.1109/COMST.2019.2921972
http://dx.doi.org/10.1109/TRO.2010.2042753
http://dx.doi.org/10.1109/TCYB.2014.2337652
http://www.ncbi.nlm.nih.gov/pubmed/25099967
http://dx.doi.org/10.1109/TMC.2015.2451641
http://dx.doi.org/10.1109/LCOMM.2016.2603977
http://dx.doi.org/10.1109/JSEN.2020.2980966
http://dx.doi.org/10.1109/SURV.2009.090308


Appl. Sci. 2023, 13, 1002 16 of 16

26. Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, E. Recent advances in indoor localization:
A survey on theoretical approaches and applications. IEEE Commun. Surv. Tutorials 2017, 19, 1327–1346. [CrossRef]

27. Farooq-I-Azam, M.; Ni, Q.; Dong, M. An analytical model of trilateration localization error. In Proceedings of the IEEE Global
Communications Conference, Big Island, HI, USA, 9–13 December 2019; pp. 1–6.

28. Pradhan, S.; Hwang, S.; Cha, H.; Bae, Y. Line Intersection Algorithm for the enhanced ToA trilateration technique. Int. J. Humanoid
Robot. 2014, 11, 1442003. [CrossRef]

29. Hwang, S.; Shin, S. Advanced ToA trilateration algorithm for mobile localization. In Proceedings of the IEEE Asia-Pacific
Conference on Antennas and Propagation, Auckland, New Zealand, 5–8 August 2018; pp. 543–544.

30. Farooq-I-Azam, M.; Ni, Q.; Dong, M. Extreme values of trilateration localization error in wireless communication systems.
In Proceedings of the IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications,
London, UK, 31 August–3 September 2020; pp. 1–6.

31. Larsson, M.; Larsson, V.; Astrom, K.; Oskarsson, M. Optimal trilateration is an eigenvalue problem. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 5586–5590.

32. Marinho, M.A.M.; Vinel, A.; Tufvesson, F.; Antreich, F.; Costa, J.P.C.L.D.; De Freitas, E.P. Spherical wave array based positioning
for vehicular s cenarios. IEEE Access 2020, 8, 110073–110081. [CrossRef]

33. Fessler, J.A.; Hero, A.O. Space-alternating generalized expectation maximization algorithm. IEEE Trans. Signal Process. 1994,
42, 2664–2677. [CrossRef]

34. Beck, A.; Stoica, P.; Li, J. Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process. 2008,
56, 1770–1778. [CrossRef]

35. Dogo, E.M.; Afolabi, O.J.; Nwulu, N.I.; Twala, B.; Aigbavboa, C.O. A comparative analysis of gradient descent-based optimization
algorithms on convolutional neural networks. In Proceedings of the 2018 International Conference on Computational Techniques,
Electronics and Mechanical Systems (CTEMS), Belagavi, India, 21–22 December 2018; pp. 92–99.

36. El-tanany, A.S.; Hussein, K.; Mousa, A.; Amein, A.S. Evaluation of Gradient Descent Optimization method for SAR Images Co-
registration. In Proceedings of the 12th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, 7–9 July 2020;
pp. 288–292.

37. Zhang, H.; Hager, W.W. A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim.
2004, 14, 1043–1056. [CrossRef]

38. Di Pietra, V.; Dabove, P.; Piras, M.; Lingua, A.L. Evaluation of positioning and ranging errors for UWB indoor applications. In Pro-
ceedings of the International Conference on Indoor Positioning and Indoor Navigation, Pisa, Italy, 30 September–3 October 2019;
pp. 227–234.

39. Absil, P.A.; Mahony, R.; Andrews, B. Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim.
2005, 16, 531–547. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/COMST.2016.2632427
http://dx.doi.org/10.1142/S0219843614420031
http://dx.doi.org/10.1109/ACCESS.2020.3001062
http://dx.doi.org/10.1109/78.324732
http://dx.doi.org/10.1109/TSP.2007.909342
http://dx.doi.org/10.1137/S1052623403428208
http://dx.doi.org/10.1137/040605266

	Introduction and Related Work
	Problem Statement
	Multilateration Estimation Resolution
	Simulation Results
	Fixed-Step GD Estimation
	Variable-Step GD Estimation
	Towards Realistic Experimental Scenarios

	Conclusions
	References

