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Abstract: In the realm of retail supply chain management, accurate forecasting is paramount for
informed decision making, as it directly impacts business operations and profitability. This study
delves into the application of tree-based ensemble forecasting, specifically using extra tree Regressors
(ETRs) and long short-term memory (LSTM) networks. Utilizing over six years of historical demand
data from a prominent retail entity, the dataset encompasses daily demand metrics for more than
330 products, totaling 5.2 million records. Additionally, external variables, such as meteorological and
COVID-19-related data, are integrated into the analysis. Our evaluation, spanning three perishable
product categories, reveals that the ETR model outperforms LSTM in metrics including MAPE, MAE,
RMSE, and R2. This disparity in performance is particularly pronounced for fresh meat products,
whereas it is marginal for fruit products. These ETR results were evaluated alongside three other
tree-based ensemble methods, namely XGBoost, Random Forest Regression (RFR), and Gradient
Boosting Regression (GBR). The comparable performance across these four tree-based ensemble
techniques serves to reinforce their comparative analysis with LSTM-based deep learning models. Our
findings pave the way for future studies to assess the comparative efficacy of tree-based ensembles
and deep learning techniques across varying forecasting horizons, such as short-, medium-, and
long-term predictions.

Keywords: demand prediction; forecasting; ensemble models; deep learning; extra tree regressor;
LSTM; supply chain management

1. Introduction

Forecasting remains at the forefront of decision making [1,2], especially in the field
of supply chain management where accurate predictions of demand and inventory levels
can have a significant impact on business operations and profitability [3,4]. Forecasting
methodologies and algorithms to predict more accurate results have been developed
throughout the ages [5]. In retail, rapid changes to the business environment, shorter
planning horizons, lower profit margins, and customer service issues make forecasting
more complex [6]. In addition, large numbers of product types compel businesses to adopt
individual models for specific groups of products, covering linear to complex nonlinear
patterns [7]. Global uncertainty and the plethora of complexities in the retail industry make
forecasting accuracy one of the main priorities in this field.

Recently, researchers have utilized advanced methods of forecasting, such as deep
neural networks, like long short-term memory (LSTM) or ensemble learning, to increase
accuracy. Ensemble techniques combine different algorithms into an individual method,
where each algorithm could be more sensitive under varying conditions [8]. Combined
forecasts or “ensemble forecasts” have historical roots in aggregating individual forecasts
and are not a recent development. However, using them in machine learning models

Appl. Sci. 2023, 13, 11112. https://doi.org/10.3390/app131911112 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131911112
https://doi.org/10.3390/app131911112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3562-2240
https://orcid.org/0000-0002-0011-3502
https://doi.org/10.3390/app131911112
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131911112?type=check_update&version=1


Appl. Sci. 2023, 13, 11112 2 of 17

has recently gained increasing popularity in the field of applied artificial intelligence in
business. More than 15% of forecasting research in 2021 mentioned combined machine
learning models [9]. Numerous combination and ensemble techniques have been developed
to improve forecasting accuracy. Among the different machine learning models, tree-based
methods dominate in both accuracy and uncertainty handling [10]. Compared to other
machine learning algorithms, tree-based models have relatively low requirements for data
preparation tasks, like feature scaling [11]. Extra tree regression (ETR), which is a type of
tree-based ensemble model, has gained popularity in predictive research due to its ability
to learn faster with smaller input dimensions [12]. Ensemble forecasting is also utilized in
the retail sector to overcome uncertainties in data, parameters, and models and to decrease
the risks of relying on a single best model. However, the usage of ensemble models in retail
prediction has not been widely investigated in the research [7].

To address this research gap, this paper aims to perform tree-based ensemble demand
forecasting alongside deep learning with LSTM networks. To fulfill this objective, this study
utilizes real-life data from a large-scale research project in retail supply chain management,
comprising over 5.2 million records. More precisely, we utilize data from a prominent
Austrian retailer, including daily demand data for over 330 products. The retail company
has been a partner of a 4-year research project focusing on improving demand prediction
for perishable food in grocery retail by means of advanced analytics. To compare the results
of both approaches and determine the most effective one, the methodology of this paper
builds on an acknowledged set of model evaluation criteria. The contributions of our paper
that distinguish our work from previous studies can be summarized as follows:

• Feature diversity: Our study goes beyond historical demand data by incorporating a
wide array of diverse features, including price and external factors, such as weather
and COVID-19-related data. This enriched dataset enhances our understanding of
demand behavior;

• Real-world applicability: We utilize a substantial dataset from a prominent supermar-
ket, demonstrating the real-world applicability of our findings. This authenticity adds
credibility to our research and enhances its practical relevance;

• Advanced machine learning models: We leverage advanced machine learning tech-
niques by employing two state-of-the-art models selected for their ability to handle
complex datasets and capture intricate demand patterns effectively to improve forecast
accuracy in an uncertain environment;

• Category-based analysis: To comprehensively evaluate our forecasting models, we
conduct category-based analyses across three distinct perishable product categories.
This approach showcases the models’ effectiveness in handling diverse consumer
behaviors and demand patterns.

The remainder of the paper is structured as follows. Section 2 presents the findings of
a comprehensive literature review on the use of ensemble methods in different domains.
Section 3 outlines the methodology of the study, including data source, cleaning, prepara-
tion, and modeling steps. Section 4 evaluates the demand forecasting results of two chosen
methods and compares their performance in predicting demand for three product groups.
Finally, Section 5 concludes the paper and offers insights for future research.

2. Background

Traditional machine learning techniques used for forecasting can be categorized into
three main groups: (1) time series analysis, (2) regression-based approaches, and (3) super-
vised and unsupervised methods [13]. Time series analysis methods are the most widely
used, encompassing techniques like autoregressive integrated moving average (ARIMA)
and Holt Winter Exponential Smoothing (HW). These methods, particularly in the context
of retail demand forecasting, are highly regarded for their ability to capture trends and sea-
sonal demand patterns [14,15]. Regression-based methods have the flexibility to consider
both independent and dependent variables [5]. And third, supervised and unsupervised
models, like artificial neural networks (ANNs) or long short-term memory (LSTM), have



Appl. Sci. 2023, 13, 11112 3 of 17

been shown to perform better in nonlinear data [16]. The utilization of advanced mod-
els in forecasting has experienced growth in various industries, including oil, food and
agriculture, public transportation, and retail. The performance of these models has been
investigated in these industries, and it was found that ensemble models could outperform
other models regarding accuracy [17–19].

To gain a deeper understanding of the application of advanced algorithms in demand
forecasting, we have conducted a search using the keywords “demand forecasting” and
“ensemble” in online databases focusing on recent years. We found a significant number of
studies that have used advanced machine learning approaches in the field of energy. For
instance, Yu et al. (2016) proposed a new method for predicting crude oil prices using an
ensemble empirical mode decomposition (EEMD) and extended extreme learning machine
(EELM) to forecast electricity load [20]. Ribeiro et al. (2019) have presented a framework
for short-term load forecasting using the Wavenet ensemble [21]. The framework involves
transforming the data, determining an optimal time window, and selecting features. The
proposed framework outperforms existing similar forecasting techniques, like multilayer
perceptron neural networks. In electricity price forecasting, Zhang et al. (2022) introduced a
hybrid deep neural network approach, which utilizes the Catboost algorithm for feature se-
lection and a bidirectional long short-term memory neural network (BDLSTM) as the main
forecasting engine [22]. In a recent study, Da Silva et al. (2021) proposed a new method for
short-term prediction in microgrids called the Ensemble Prediction Network (EPN). The
EPN comprises an ensemble of nine linear predictive nodes and is designed to provide an
optimal estimate of predicted demand through least-squares optimization under certain
constraints [23]. To overcome uncertainty, Yang et al. (2017) used combination approaches
in a HAR model that considers lags of realized volatility and other potential predictors [24].
In the tourism industry, Cankurt (2016) developed and implemented ensemble learners
for tourism demand forecasting based on M5P and M5-Rule model trees and random
forest algorithms. The learners were evaluated using bagging, boosting, randomization,
stacking, and voting techniques for forecasting tourism demand in Turkey [17]. Ensemble
models have also been applied in public transportation, where Dai et al. (2018) presented a
data-driven framework for short-term metro passenger flow prediction that utilizes both
spatial and temporal information. The passenger flow information is obtained from smart-
card data, and passenger flow patterns are explored. The proposed framework consists of
two basic prediction models and a probabilistic model selection method (random forest
classification) to combine the outputs for better prediction [25]. In an agricultural applica-
tion field, Ribeiro and dos Santos Coelho (2020) investigated the accuracy of forecasting
agricultural commodity prices through regression ensembles. The aim of their study was
to compare the performance of ensembles (bagging, boosting, and stacking) with reference
models such as support vector machine (SVR), multilayer perceptron (MLP), and K-nearest
neighbor (KNN) in forecasting prices one month ahead. Their study used monthly time
series data for the price of soybean and wheat in the state of Parana, Brazil [26]. In the
steel industry, Raju et al. (2022) compared the performance of different machine learning
models for demand forecasting in the steel industry. Their study found that the best results
came from a combination of models called STACK1 (extreme learning machine + gradient
boosting + XGBR-SVR [27].

In the retail industry, a new heuristic approach was applied in a Turkish retail chain
(SOK Market) with 4000 stores and 1500 SKUs. The results led to a reduction in stock
outs, increased revenue by 30%, a 10% decrease in stock days, and a 34% reduction in
waste for perishable products [8]. Das Adhikari et al. (2017) introduced a new ensemble
technique using an averaging method that prioritizes algorithms with good accuracy and
reduces deviation from actual sales. The method gives importance to algorithms that
perform well based on historical data and penalizes those that deviate from actual sales [28].
Wang et al. (2018) applied ensemble empirical mode decomposition (EEMD) for global
food price volatility and decomposed the original food price series into intrinsic mode
functions and a residual. In their study, they mentioned that the low-frequency component
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contributes more to food price volatility, which is caused by notable events and policies.
High-frequency components are mainly influenced by small events and market adjustments
in a time series analysis. In the long term, food prices are determined by an intrinsic trend
from global economic development. The findings reveal that food price volatility is a
complex issue with multiple factors affecting both low and high frequencies [29]. In
another study, daily optimal ordering quantities of fresh products using six methodologies
(LSTM, SVR, RFR, GBR, XGBoost, and ARIMA) were analyzed. The paper compared
the performance of conventional statistics, like ARIMA, and various machine learning
algorithms, including RNNs (LSTM), SVRs, decision trees/ensemble methods (RFRs), and
boosted trees (GBR, XGBoost). It was found that the LSTM and SVR machine learning
algorithms outperformed the other demand forecasting models for the dataset [30].

Arora et al. (2020) focused on forecasting sales demand using historical data from
a wholesale alcoholic beverage distributor. They employed an ensemble approach by
combining traditional statistical models, multivariate models, and deep learning models.
The study showed a reduction in the sale forecasting error by almost 50% and 33.5% for
the most sold and highest revenue-grossing products respectively, compared to a naive
model. The authors concluded that each product needs a unique model for accurate
demand forecasting [31]. Sharma and Omair Shafiq (2020) used historical retail purchase
data to predict the probability of item purchases. An ensemble learning model was built
using random forests (RFs), Convolutional Neural Networks (CNNs), Extreme Gradient
Boosting (XGBoost), and a voting mechanism. The model was evaluated using metrics
such as accuracy, precision, F1 score, sensitivity, and specificity, and they experienced better
performance using ensemble models than existing solutions [32].

Zhang et al. (2022) aimed to forecast weekly retail sales using Walmart’s retail data
from over five years. The forecast subject was divided into twenty-one time series based on
different departments and states. Four machine learning models (naïve, moving average,
prophet, ETS) were used to train the data, and stacking was used as the ensemble technique.
The results showed that while the ensemble model using linear regression performed the
best in the validation stage, the weighted average method supported by random forests was
the best in the testing stage. Linear regression was found to be overfitting. The research con-
cluded that ensemble learning, especially weighted average, was a recommended method
for forecasting [33]. Another previous study examined data mining’s role in predicting
retail sales for Walmart’s outlets using supervised machine learning techniques. By ana-
lyzing factors like past sales, promotions, holidays, and economic indicators, the research
helps businesses optimize sales forecasts and marketing strategies. The results suggest that
simple regression techniques might not be optimal for short-term sales prediction with
limited historical data. Ensemble learning techniques, involving the averaging of results
from multiple decision trees, show better accuracy. Thus, for such scenarios, business own-
ers are advised to opt for ensemble learning models [34]. Seyedan et al. (2022) proposed a
demand forecasting methodology for the sports retail industry using ensemble learning.
The methodology includes a cluster-based demand prediction using the time-series fore-
casting methods LSTM and prophet and majority voting and BMA as ensemble learning
techniques. The aim was to improve the accuracy of future daily demand forecasting by
combining different models and assigning higher weights to better-performing models.
The results show that the clustered–ensembled approach improves prediction accuracy
compared to using single models, leading to minimum values of MAPE, MAE, and RMSE.
Their proposed framework had a considerable increase in prediction accuracy in various
seasonal and monthly cases [18]. Ma et al. (2022) introduced a Spatial–Temporal Graph
Attentional LSTM (STGA-LSTM) neural network for predicting short-term bike sharing
demand utilizing various data sources. This model outperforms baseline approaches, lever-
aging deep learning to capture spatiotemporal patterns in bike sharing systems [35]. Table 1
provides a summary of selected previous works, focusing on the application domain,
ensemble algorithms applied, and features used.
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Table 1. Overview of selected previous works.

Publication Year Domain Ensemble Algorithms Features

[20] 2016 Crude oil price
forecasting EEMD and EELM

[17] 2016 Tourism demand
forecasting

Bagging, boosting,
randomization, and stacking

[8] 2017 Retail demand
forecasting Boosting Daily sale, special days, and

promotion days

[28] 2017 Supply chain demand
forecasting Averaging ensemble model

[24] 2017
Agriculture

commodities
forecasting

Bagging

[36] 2017 Hog price forecasting EEMD

[25] 2018 Metro passenger flow
forecasting Averaging ensemble model

Eight neighboring
origin–destination (OD) flows are

utilized as features for a single
target OD flow

[29] 2018 Food price volatility
forecasting EEMD

[30] 2019 Retail demand
forecasting

Bagging (RFR) and boosting
(GBR and XGBR) Daily sales

[21] 2019 Electricity load time
series forecasting .

[37] 2020 Energy load forecasting ETB
Hour, DayOfWeek, IsWorking,

Dewpnt, Drybulb, prior 1 h, prior
1 day, prior 1 week, and season

[31] 2020 Wholesale distribution
demand forecasting

Weighted and non-weighted,
depending on product

Monthly sales, product type, local
weather, price promotions,

marketing campaigns, holidays,
and special events

[32] 2020 Retail purchase
probability forecasting

RF, CNN, XGBoost, and
voting classifier

Transactional data and newly
generated features

[22] 2022 Electricity price
forecasting CatBoost

Hourly electricity price, hour of
the day, weekend (the current day

is weekend or not), and the
day name

[26] 2020 Agribusiness
prediction

Bagging (RFR), boosting (GBR
and XGBR), and stacking

(STACK)

[38] 2021
Food and raw materials

in restaurant
forecasting

Stacking

Independent variables (year,
month, date, day, weather

conditions, public holidays, and
festive season). Dependent

variables (chicken niryani, mutton
biryani, dal tadka, paneer
lababdar, and curd rice)

[34] 2021 Retail demand
forecasting Extra tree regression

Date, weekly sales, holiday,
temperature, fuel price, CPI,

and unemployment

[33] 2022 Retail demand
forecasting Stacking State, weekly sales, price

[27] 2022 Steel demand
forecasting

Bagging (RFR), boosting (GBR
and XGBR), and stacking

(STACK)

Availability, raw
materials, workers, working

days, holidays, down time, and
demand level

[18] 2022 Retail demand
forecasting Majority voting

Fifty-two features related to stores,
customers, products, sales, orders,

shipping, and delivery
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These models, showcased through studies ranging from predicting oil prices and elec-
tricity load to optimizing passenger flow and commodity prices, consistently demonstrate
superior accuracy and performance compared to traditional methods. This trend extends to
retail, where ensemble approaches have led to reduced stock outs, increased revenue, and
enhanced sales forecasting precision. The remarkable versatility and success of these mod-
els across various sectors highlight their potential to reshape and refine demand forecasting
practices, ultimately leading to more informed and effective decision-making processes.

3. Research Methodology

The aim of this paper is to perform demand forecasting for a supermarket located
in Austria by building two machine learning models and evaluating their accuracy by
comparing the results. Our problem is a supervised regression machine learning problem,
and we will concentrate on forecasting the demand for day t based on the historical data
up to day t− 1 and other relevant data available at day t. The analysis will be performed
at the product category level, with a focus on three product categories (A, B, and C). The
first model is a tree-based ensemble model, and the second is a deep learning model with
long short-term memory (LSTM) networks. For convenience, we will refer to the first model
as ETR and the second model as DL. The demand forecasting process is shown in Figure 1.
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Subsequently, each step is described in more detail.

3.1. Initial Dataset

Our initial dataset consists of three distinct components:

(i) Historical demand data: Our dataset comprises historical demand data, which is also
our target variable, covering a 76-month period from January 2016 to February 2022.
It includes daily demand amounts for over 330 products across 3 main product
categories: fruits (A), fresh meat (B), and soft drinks (C). In total, the dataset spans
more than 6 years, resulting in over 5.2 million available records for training and
testing. The data are extracted from a sales transaction dataset from a supermarket
located in Austria;

(ii) Internal data: This component includes data that results from business decisions, such
as pricing and promotions. Key components of these internal data include pricing
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information and promotional activities. This dataset includes daily price values for
each product;

(iii) External data: In addition to internal factors, our dataset incorporates external vari-
ables that are beyond the direct control of the retail company. These external variables
encompass various factors, including calendar-related data, weather conditions, and
COVID-19-related data. Calendar-related data provide information for each day,
including the month of the year, week of the year, day of the week, day of the month,
and any special day or event. Weather data include temperature in Celsius, wind
speed in m/s, amount of precipitation in mm, and precipitation type (no precipitation,
rain, snow, rain–snow). COVID-19-related data include information about the type of
lockdown, including no lockdown and lockdown.

3.2. Data Preparation

This step mostly covers all activities that involve the construction of the final dataset
that will be fed into the modeling part from the initial datasets. The tasks include selecting
the tables, records, and attributes, as well as transforming, cleaning, and mapping the data.

3.3. Feature Creation

In this step, features are created and extracted from the existing data attributes and
transformed into a standard input dataset that can be utilized for the next steps. The creation
of these features is based on prior research [8,30,33], business insights, and experience. The
created features are shown in Table 2.

Table 2. Created features.

Feature Type

Demand value (t− 1, t− 2, . . . , t− 24) Numeric
Price value (t, t− 1, . . . , t− 24) Numeric

Month of the year (t) Categorical–Nominal
Week of the year (t) Categorical–Nominal
Day of the week (t) Categorical–Nominal

Day of month (t) Categorical–Nominal
Special day status (t) Categorical–Nominal
Day after status (t) Categorical–Nominal

Day before status (t) Categorical–Nominal
COVID-19 lockdown type (t) Categorical–Nominal

Temperature (t) Numeric
Wind speed (t) Numeric
Precipitation (t) Numeric

Precipitation type (t) Categorical–Nominal

Lagged features, such as the demand from the previous day or week, are also created in
this step. In our case, there are six working days, and lagged features for demand and price
have been created for the previous four weeks, which are labeled (t− 1, t− 2, . . . , t− 24)
in Table 2. The rest of the features only require current values, which are labeled (t).

3.4. Input Dataset

The input dataset holds all the features created in the previous step, along with the
target variable (demand value at day t), will be used in the next steps for feeding into the
model-building process. The input dataset is split into two parts: (i) the training dataset,
which includes almost 80% of the data from January 2016 to December 2020 and is used
for building the models (aggregating around 4.1 million records), and (ii) the test dataset,
which covers the remaining period from January 2021 to February 2022 (aggregating around
1.1 million records) and is held out and will be used for the final evaluation step as unseen
data in the models.
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3.5. Feature Scaling and Encoding

In this step, depending on the type of model being used, we may need to scale our
numeric features and encode our categorical features in a format that can be utilized in the
model training process. One advantage of tree-based models is that they do not require
feature scaling [11]. Therefore, numeric features are only scaled for the DL model using
Max-Min normalization. To handle categorical features, we utilized one-hot encoding to
transform them (e.g., day status and precipitation type).

3.6. Feature Selection

The objective of this step is to select features from the input dataset and choose the
optimal combination that produces the best results for each model. Various methods
can be employed to achieve this objective. One such method involves using feature
importance scores, which assign scores to each feature, prioritizing their contribution to
the prediction [36–38]. In this study, we employ a feature importance technique based on
tree-based ensembles [39]. Feature importance is measured by the extent of error reduction
(such as MAE or RMSE) that each feature contributes [40]. To accomplish this, we utilize the
feature importance based on decision trees available in the Python scikit-learn library [41]
to identify the most suitable features for the model. Finding the optimal sliding window
for using lagged features in the models is an important task of this step. For each model,
the best sliding window was determined to be 6 days, meaning that lagged data from the
previous 6 days will be used.

3.7. Model Training

In this step, the model is fed with features from a training dataset. The model uses
these data to learn and estimate the parameters of the model through optimization with
the objective of reducing errors and improving the generalization of the representations
learned from the data. During this step, the machine learning algorithm adjusts the model
parameters iteratively based on the training data, attempting to minimize the difference
between the model’s forecasting and the true target values. In this research, we attempt to
use two different models.

3.7.1. Model 1—Extra Tree Regressor (ETR)

In this model, we aim to design a tree-based ensemble model based on the bagging
algorithm, which is an ensemble technique that combines the results of a large number
of decision trees to produce a single forecasting. To accomplish this, we utilized the
Extremely Randomized Tree (ERT) method [42]. The ERT constructs multiple decision
trees by selecting random subsets of features and making random splits at each node.
Unlike random forests, the ERT does not search for the best split; instead, it selects the
splits randomly. This approach is particularly useful for forecasting tasks and has strength
in accuracy and computational efficiency compared to other similar algorithms, such as
random forest [42,43]. In this work, we implemented the Extremely Randomized Tree
using the extra tree regressor model from the ensemble module of the Python scikit-learn
library [41].

3.7.2. Model 2—LSTM-Based Deep Learning (DL)

In this model, our aim is to design a neural network that allows us to consider both
lagged features and other related features in one deep learning model. To achieve this,
we propose a neural network model that includes both LSTM and dense layers. This
model was implemented in Python using Tensorflow and Keras [44]. The description of
the primary components of our proposed deep learning model is as follows.

LSTM layer: LSTM is a special type of recurrent neural network (RNN) that is first
introduced by Hochreiter and Schmidhuber (1997). It offers powerful capabilities for cap-
turing complex temporal patterns and has become a valuable tool for time series forecasting
due to its ability to capture intricate temporal patterns. LSTM learns from a sequence of
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data points by constructing a mathematical model that represents the relationships within
the input sequence. It evaluates the data at each point in the sequence, processes them,
updates their internal state, and subsequently progresses to the next time step) [45]. The
LSTM architecture is illustrated in Figure 2. In this architecture, ft represents a forget gate,
it is an input gate, ot stands for an output gate, ct denotes a cell state, and ht signifies a
hidden state. The simplified forms of the equations are described in Equation (1).

ft = σg

(
W f xt + U f ht−1 + b f

)
it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)
ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc)

ht = ot � σh(ct)

(1)

where σ is an activation function and the operator � denotes the Hadamard product.
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Dense layer: A dense layer, also known as a fully connected layer, is a fundamental
component of neural networks. It connects every neuron from one layer to all neurons
in the next layer, with each connection having a weight learned during training. The
operation of a dense layer includes multiplying input values from the previous layer
by their corresponding weights, summing these weighted inputs for each neuron, and
optionally adding a bias term. An activation function is applied to the output of each
neuron in a dense layer, introducing nonlinearity to the neural network and enabling it to
capture complex, nonlinear data relationships.

3.8. Model Evaluation and Tuning

In this step, we aim to evaluate the trained model based on its input features and
optimize its hyperparameters. This is performed by iteratively adjusting the inputs and
hyperparameters until the best results are achieved. We aimed to find the optimal attributes
for each model, such as the number of trees and the maximum depth of the trees for the
ETR model, and the network configuration, activation function, learning rate, batch size,
and number of epochs for the DL model. These hyperparameter tuning tasks are carried
out using random search techniques and were implemented using the scikit-learn library
in Python.

3.9. Trained Model

The output of the previous steps is the best model with optimized parameters on the
training dataset, which is designed to generalize to new data. We use this trained model to
make forecasting on unseen data (test dataset) and evaluate its performance for the final
comparison. The best-trained model for the ETR and DL models was trained with the
following setup.
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3.9.1. Model 1—ETR

This model was trained with the mean squared error (MSE) as the function for measur-
ing the quality of a split (criterion = mse) with 300 trees in the forest (n_estimators = 300),
each tree having a maximum depth of 100 (max_depth = 100). The maximum number
of features considered for each split was 50 percent of the total number of features in the
dataset (max_features = 0.5). The minimum number of samples required to split an internal
node was set at 10 (min_samples_split = 10), and the minimum number of samples required
to be at a leaf node was set at 2 (min_samples_leaf = 2).

3.9.2. Model 2—DL

In this model, the lagged features (historical demand and price) are first processed by
two LSTM layers with sixty-four units each, while other features are processed by a single
dense layer with sixty-four units. The output from the LSTM layers is then concatenated
with the result from the dense layer and passed through another dense layer with 128 units
before finally reaching the output layer, which contains only 1 unit to produce a single
scalar value. To prevent overfitting, dropout with a rate of 0.2 is applied to all layers. The
network structure of the trained DL model is depicted in Figure 3. The model was trained
with an activation function of ReLU in each layer, an Adam optimizer, a learning rate
of 0.001, a batch size of thirty-two, and thirty epochs. The loss function used in the model
was the mean squared error (MSE).
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3.10. Final Evaluation

In this step, we have compared the trained models by evaluating the forecasting results
from the test dataset. To have a comprehensive comparison, we use four metrics to evaluate
and compare each model, which are defined as follows:

Mean Absolute Percentage Error (MAPE) :

MAPE = 1
n

n
∑

t=1

|ŷt−yt |
yt

Mean Absolute Error (MAE)

MAE = 1
n

n
∑

t=1
|ŷt − yt|
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Root Mean Square Error(RMSE)

RMSE =

√
1
n

n
∑

t=1
(ŷt − yt)

2

Coefficient of Determination (R2)

R2 = 1− ∑n
t=1(ŷt−yt)

2

∑n
t=1(yt−yt)

2

where yt and ŷt are the actual and forecast demand for the time interval (day) t, respectively.
MAPE, MAE, RMSE, and R2 have often been used in the literature to evaluate model

quality and output accuracy. For example, Dou et al. (2021 and 2023) have used MAPE,
MAE, RMSE, and R2 to evaluate the accuracy and effectiveness of ML models [46,47]. We
followed their approach and chose these acknowledged criteria for the final evaluation of
model performance.

4. Results and Discussion

In the subsequent Section 4.1, the comparison results of ETR (our main tree-based
ensemble model) and LSTM are presented. To analyze the performance of alternative tree-
based ensembles, three additional models are introduced, and their results are compared
with the chosen ETR approach in Section 4.2.

4.1. Comparison of ETR and DL

Demand prediction is of crucial importance in retail—especially when the future de-
mand for perishable products is to be forecasted. In the paper, we have compared tree-based
ensembles and LSTM-based deep learning models. The evaluation results for the three
product categories are presented in Table 3. Product category A (fruits) comprises around
20 products, product category B (fresh meat) includes around 100 products, and category C
(soft drinks) consists of around 200 products. To better understand the performance of the
models, we have also included the results for the baseline model, which is the historical
moving average, represented as “MA” in Table 3. The running times for both models to
make forecasts on the test dataset were consistently below one minute, demonstrating that
both of our models exhibit efficient computational performance in our use case. Overall, in
all three product categories, both the ETR and DL models clearly outperformed the baseline
(MA) model according to the evaluation metrics, as performed, e.g., by Ma et al. (2022)
to compare LSTM performance in the context of bike sharing demand prediction with
baseline models [35]. This highlights the advantage of using machine learning models over
traditional methods.

Table 3. Model evaluation results.

Product Category Model Name MAPE MAE RMSE R2

A
MA 22.53% 2053.06 2728.39 0.06
ETR 12.29% 1141.47 1794.09 0.60
DL 12.33% 1199.89 1840.46 0.59

B
MA 35.00% 963.48 1216.12 0.05
ETR 12.48% 431.92 805.47 0.58
DL 16.63% 569.69 922.02 0.45

C
MA 27.08% 5299.60 7745.05 0.01
ETR 10.56% 2344.92 5193.20 0.55
DL 12.33% 2768.68 5549.90 0.48

The table also shows that in all three product categories, the ETR model performs
better than the DL model in terms of all evaluation metrics. The performance difference
between these two methods is especially noticeable in product category B (fresh meat). As
mentioned, the models were trained on an 80% training set aggerating around 4.1 million
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records and tested on a 20% test set, aggregating around 1.1 million records. Their outcomes
were compared with real-world data, i.e., the real demand as recorded in the test data.

Overall, we have revealed that our results are in line with previous research [17–19]
where the accuracy of ensemble models is higher than traditional models and deep learning
models. In addition, our results support the expectation that tree-based models would
perform better than other models [10]. Contrary to the findings of Zhang et al. (2022), our
results show that the ETR model performed better in both the train and test datasets [33].
Similarly, in previous research, it was found that LSTM outperformed traditional machine
learning models, like random forests and extra tree regressors (ETRs), in predicting the
short-term demand for shared bikes. The results showed significantly better results for
LSTM (R2 score = 0.922, RMSE = 314.17) than ETR (R2 score = 0,724, RMSE = 487.95). A
focus was on the hourly prediction of bike demand using publicly available data on shared
bikes in London [48]. Compared to our current study, where the prediction horizon spans
over a year with a focus on daily predictions, LSTM proved to be more powerful on this
very short-term level. It would be interesting to compare their results and our results on a
long-term basis.

In Raizada et al. (2021), ETR emerged as the most effective method for forecasting fu-
ture sales of Walmart stores, closely followed by the random forest regression. Completely
in line with our findings, these findings also suggest prioritizing ETR for sales predic-
tion [34], potentially bypassing extensive analyses with alternative supervised machine
learning algorithms or avoiding black-box models, like LSTM. Tree ensembles inherently
offer a more interpretable structure. This transparency can be invaluable in industries
where understanding the rationale behind predictions is crucial for decision making. In
contrast, deep learning models, often dubbed “black boxes”, can be challenging to inter-
pret, although techniques like SHAP (SHapley Additive exPlanations) and LIME (Local
Interpretable Model–agnostic Explanations) are bridging this gap [49,50].

A previous study has applied LSTM in the context of smart buildings and smart
grids and compared it to traditional machine learning approaches, such as random forests
or support vector machines. The results indicate that LSTM performs well in electric
load prediction, mainly due to its capability to include missing values to conserve data
continuity [51]. It would be interesting to apply ETR to their dataset, allowing for a
comparison of performance for this type of environment. Also, it is stated that there is no
one-size-fits-all approach, and LSTM might have performed better for one power profile
and may be worse for other ones. This is also reflected in our results, where the differences
in performance between ETR and LSTM were quite significant in the product category
of fresh meat, while only minor in the context of fruits. This suggests that although ETR
was found to outperform LSTM in all three product groups, the differences strongly vary
depending on data, i.e., product demand behavior. Hence, a generalization in terms of the
“best” approach cannot be made, which also represents a limitation of our paper.

Regarding retail demand forecasting in general, especially for perishable products,
such as fresh meat and fruits, the number of papers comparing tree-based and deep learning
models is low. A previous study by Falatouri et al. (2021) has compared SARIMA and
LSTM. It was found that both models yielded satisfactory to commendable outcomes [5].
Typically, LSTM excelled in forecasting products with consistent demand, whereas SARIMA
was superior for products exhibiting seasonal trends. For enhanced forecast accuracy at the
store level, hybrid strategies are recommended, integrating both SARIMA(X) and LSTM for
analogous, pre-grouped store clusters. It would be interesting to build on these previous
results and compare them with ETR models. All in all, and in line with our findings,
previous research confirms the high performance of tree-based approaches, stating that
such models show high potential in various fields and have a high ability to deliver accurate
predictions [52].
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4.2. Comparison of ETR and Other Tree-Based Ensembles

In this section, we delve into a comparative analysis of ETR alongside other prominent
tree-based ensemble methods. Our primary objective is to provide additional insights
into the performance of ETR compared to its counterparts within the context of tree-based
ensemble methods in retail demand prediction. Hereby, we further want to strengthen
our findings and ensure a detailed comparison of not only the selected main tree-based
ensemble model, ETR, but also additional models. The selected models are as follows:

• Random forest regressor (RFR): the RFR is another ensemble model, like ETR, which
leverages a collection of decision trees to make predictions using the bagging method.
It combines predictions from multiple trees to enhance accuracy and robustness. In
previous research, random forests emerged as the top performer in retail sale prediction
considering calendar dimensions [33];

• Gradient Boosting Regressor (GBR): the GBR is an algorithm that sequentially con-
structs decision trees to minimize prediction errors using the boosting method. It
iteratively refines the model’s predictions by focusing on correcting mistakes in subse-
quent iterations, leading to strong predictive performance. The GBR has been found
to perform especially well in demand prediction when both numerical and categorical
features are involved [53];

• XGBoost: XGBoost is another gradient-boosting algorithm known for its efficiency and
high performance. It incorporates regularization techniques, parallel processing, and
optimized tree construction to achieve high accuracy while maintaining computational
speed. In combination with Convolutional Neural Networks (CNNs), XGBoost (XGB)
was identified as the most suitable choice for predicting purchase probabilities [32].

These ensemble models were also applied to predict demand, and the outcomes are
presented in Table 4.

Table 4. Model evaluation results with other tree-based ensembles.

Product Category Model Name MAPE MAE RMSE R2

A

ETR 12.29% 1141.47 1794.09 0.60
RFR 12.44% 1144.24 1828.58 0.58
GBR 12.80% 1179.25 1816.42 0.58

XGBOOST 12.68% 1157.18 1763.33 0.60

B

ETR 12.48% 431.92 805.47 0.58
RFR 12.66% 432.70 796.95 0.59
GBR 13.02% 440.08 788.16 0.60

XGBOOST 12.78% 436.63 789.01 0.60

C

ETR 10.56% 2344.92 5193.20 0.55
RFR 10.71% 2355.70 5215.72 0.54
GBR 10.13% 2224.36 5029.83 0.57

XGBOOST 10.33% 2269.65 5064.17 0.57

Based on the evaluation results presented in Table 4, it appears that across all product
categories (A, B, and C), each of the four ensemble models (ETR, RFR, GBR, and XGBoost)
exhibits similar performance, indicating their consistent predictive capabilities in our use
case. While there are subtle variations in the evaluation metrics among these models, in
product categories A and B, ETR stands out with a slight advantage in terms of both MAPE
and MAE.

Conversely, in product category C, the GBR demonstrates a slight advantage across all
metrics, including MAPE, MAE, RMSE, and R2. This suggests that the GBR may be better
suited for this specific category, where the underlying data patterns may be better captured
by its boosting approach.

These findings highlight the robustness and consistent performance of ensemble
tree models across diverse product categories. However, it is crucial to emphasize that
the choice of the most suitable model should be made carefully, considering the unique
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requirements and objectives of the application. Additionally, the relative importance of
different performance metrics should be carefully weighed against each other, as they can
provide insights into various aspects of predictive performance.

5. Conclusions, Limitations, and Outlook

The purpose of this paper is to enhance the accuracy of demand forecasting by investi-
gating ensemble demand forecasting approaches and comparing selected techniques using
real-life data. We assessed a tree-based ensemble model and a deep learning model on
supermarket store data. Our analysis of the ETR models yielded several valuable insights.
Firstly, ETR requires less data preparation, such as feature scaling. Secondly, ETR generates
its own feature importance metrics, which is highly beneficial for model interpretability.
Thirdly, ETR is quicker to train and tune since it has fewer hyperparameters compared to
DL. Finally, defining the best network structure can be a complex task in DL, whereas ETR
methods do not have such requirements. To strengthen the results, we have compared the
ETR results with three additional, acknowledged tree-based ensemble models, i.e., RFR,
XGB, and GBR. As expected, the results for ETR and these three additional tree-based
ensemble approaches were very similar.

Our paper’s contribution can be summarized in the following ways. First, we ex-
tend beyond using only historical demand data by incorporating diverse features, such as
price and external factors, like weather and COVID-19-related data. This enriched dataset
enables a more comprehensive understanding of demand behavior. Second, our study
employs a substantial dataset from a prominent supermarket, ensuring the real-world
applicability of our findings. This authenticity lends credibility to our research and en-
hances its practical relevance. Third, we leverage the power of advanced machine learning
techniques by employing two state-of-the-art models. These models are carefully chosen for
their ability to handle complex datasets and capture intricate demand patterns effectively.
Lastly, to comprehensively evaluate our forecasting models, we analyze their performance
across three distinct perishable product categories. This approach highlights the models’
effectiveness in handling diverse consumer behaviors and demand patterns.

From a practitioner’s and managerial point of view, our results serve as a starting basis
for selecting suitable approaches for demand prediction in a retail context. ETR’s ability to
generate its own feature importance metrics provides businesses with a clear understanding
of which factors significantly influence demand. This can guide managers in making
informed decisions based on the most impactful variables. Furthermore, ETR is quicker to
train and tune due to its fewer hyperparameters. This can expedite the forecasting process,
enabling businesses to respond more swiftly to changing market conditions. The same
applies to data preparation: tree-based models require less data preparation, such as feature
scaling, compared to deep learning models. This can lead to time and resource savings
for businesses, allowing them to focus on other critical areas. By incorporating diverse
features such as price, weather, and COVID-19-related data, businesses can gain a holistic
view of demand behavior. This can aid in crafting more effective marketing and sales
strategies. Our results also show that forecasting accuracy varies across product categories.
Managers can leverage these insights to tailor their demand forecasting strategies for
different product lines. Notably, when predicting customer demand for fresh meat, tree-
based ensembles significantly improved forecasting accuracy, achieving more than a 25%
reduction in MAPE. Thus, products exhibiting similar patterns to fresh meat could also
benefit from the application of tree-based ensembles in real-world scenarios.

The limitations of our work are as follows. Firstly, the findings may not directly apply
to other domains or datasets, given that the performance and characteristics of models
can vary significantly based on the specific data to which they are applied. Secondly, the
research is solely focused on comparing an ETR model and a deep learning model. There
are a wide array of demand forecasting techniques and algorithms that could potentially
produce different outcomes when contrasted with the ETR approach. Consequently, this
study might not provide a comprehensive understanding of the optimal model for our spe-
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cific use case. Thirdly, as previously mentioned, designing a deep learning model involves a
greater number of hyperparameters and diverse network structures. While we made efforts
to identify the most suitable parameters using random search techniques, it is possible that
this research did not cover the entire hyperparameter space and network structure.

Future research could compare tree-based ensembles and deep learning approaches,
like LSTM, based on different time horizons, focusing on short-term, medium-term, and
long-term demand predictions. In a previous publication, we conducted store clustering
before training and testing demand prediction models [54]. In this context, it would
be worthwhile to investigate the differences in performance between ETR and LSTM in
clusters of differently behaving retail stores, which represents an interesting opportunity for
future research. Furthermore, although ETR models generate important feature metrics to
enhance interpretability, this aspect is not thoroughly examined in the excerpt. Subsequent
studies could delve further into this matter, potentially yielding valuable insights for
future analysis.
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