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Abstract: Acoustic imaging systems construct spatial maps of sound sources and have potential in
various applications, but large, cumbersome form factors limit their adoption. This paper investi-
gates methodologies to miniaturize acoustic camera systems for improved mobility. Our approach
optimizes planar microphone array design to achieve directional sensing capabilities on significantly
reduced footprints compared to benchmarks. The current prototype utilizes a 128−microphone,
50 × 50 cm2 array with beamforming algorithms to visualize acoustic fields in real time but its
stationary bulk hampers portability. We propose minimizing the physical aperture by carefully
selecting microphone positions and quantities with tailored spatial filter synthesis. This irregular
array geometry concentrates sensitivity toward target directions while avoiding aliasing artefacts.
Simulations demonstrate a 32−element, ≈20 × 20 cm2 array optimized this way can outperform
the previous array in directivity and noise suppression in a sub-range of frequencies below 4 kHz,
supporting a 4× surface factor reduction with acceptable trade-offs. Ongoing work involves building
and testing miniature arrays to validate performance predictions and address hardware challenges.
The improved mobility of compact acoustic cameras could expand applications in car monitoring,
urban noise mapping and other industrial fields limited by current large systems.

Keywords: acoustic imaging; microphone arrays; robust super directive beamforming; array processing;
miniaturization; aperiodic sparse planar arrays; filter-and-sum beamforming; data-independent 3-D
digital beamforming; low-cost acoustic camera; sensor mismatches

1. Introduction

Acoustic imaging is an emerging methodology that aims to create spatial maps of
sound sources analogous to conventional optical cameras. It digitally reconstructs acoustic
fields based on the analysis of sound waves captured by microphone arrays and advanced
signal processing algorithms [1,2]. Well-known and widespread acoustic imaging ap-
plications include sonar and ultrasound [3]. Potential applications include pinpointing
mechanical faults in machines [4], monitoring transport noise pollution [5], locating sniper
fire in combat zones [6], validating room acoustics models [7], and many others spanning
industrial inspection, public health, security, and virtual reality domains. While optical
cameras form images along physical sight lines, acoustic cameras sample sound arriving
from diverse directions and computationally focus on particular points in space to create
visualizations of sound intensity and origin. This allows passive localization and separation
of multiple simultaneous sources based on spatial diversity. The core signal processing
operation is known as beamforming, which applies carefully engineered delays and fil-
ters to the microphone signals to isolate particular propagation directions [3]. However,
performance is subject to physical constraints and trade-offs inherent to the microphone
array design [2,8]. In particular, existing real-time acoustic imaging systems utilize large
multi-microphone apertures to achieve sufficient angular resolution and sensitivity [9].
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This leads to bulky configurations unsuitable for portable applications with lim-
ited size, weight, and power budgets (see for instance https://www.flir.com/browse/
industrial/acoustic-imaging-cameras/, accessed on 14 June 2023). There is strong motiva-
tion to miniaturize such cameras for more accessible and more extensive deployment. This
paper investigates methodologies to reduce the form factor of real-time acoustic imaging
systems by an order of magnitude while minimizing losses in spatial filtering fidelity.
We specifically consider the case study of the Dual Cam (Figure 1), an acoustic camera
prototype developed at the Italian Institute of Technology [10]. It combines a 0.5 × 0.5 m2,
128−element microphone array with an embedded system for real-time beamforming
and visualization over wideband [500, 6400] Hz. While high-performing, the large sta-
tionary apparatus restricts usage scenarios. Our approach is to co-optimize the array
configuration and beamforming filters through simulations to retain directional acoustic
sensing capability on dramatically smaller footprints. We quantitatively demonstrate that a
32−microphone array over a 0.21 × 0.21 m2 aperture optimized for the acoustic frequencies
of interest can provide better directivity than the 128−microphone, 0.50 m aperture Dual
Cam array from 2 kHz to 6.4 kHz. This supports reducing system size by up to 4×with toler-
able imaging trade-offs. Ongoing efforts are focused on constructing miniature microphone
arrays guided by these simulations to develop portable acoustic cameras that interface
with tablets/laptops and smartphones for easy deployment. Enabling compact, real-time
acoustic imaging could expand applications in machine health monitoring where vibration
analysis indicates developing faults before catastrophic failure [11], urban noise pollution
mapping to improve public health interventions [12], and augmented/virtual reality scene
analysis for realistic audio rendering [13,14]. The methodologies and insights presented
provide an array of signal processing starting points for researchers and engineers aiming
to transform acoustic imaging capabilities from the lab to the field.

Figure 1. Dual Cam prototype integrates co-located acoustic and visual imaging modalities using a
planar microphone array paired with a video camera [10].

2. Acoustic Imaging Concepts

Acoustic imaging seeks to form a spatial map of sound sources in a scene analogous to
standard cameras that produce visual images using projected light patterns. Conventional
optics passively focus rays along physical lines of sight to reconstruct perspectives. In con-
trast, acoustic imaging relies on digital sampling, processing, and interpreting acoustic
fields using microphone array receivers and beamforming algorithms [15,16]. We pro-
vide an overview of fundamental principles including angular resolution, aliasing, array
geometry considerations, and beamforming basics.

2.1. Angular Resolution

A key parameter in acoustic imaging is the angular resolution, which determines the
camera’s ability to spatially discriminate sources [1]. This is influenced by the acoustic

https://www.flir.com/browse/industrial/acoustic-imaging-cameras/
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wavelength λ, propagation medium sound speed c, and array physical aperture dimensions.
The angle θ between two visible sources must satisfy:

θ ≥ λ

L
(1)

where L is the array size normal to the direction of arrival; the constraint arises because
waves emitted from within θ will produce signals separated by less than a wavelength,
making them indistinguishable. The approximate relationship shows that larger apertures
provide finer angular resolution. However, simply using more microphones is insufficient—
their positioning is critical, as discussed next.

2.2. Aliasing

The spatial sampling pattern of the microphones can result in aliasing artefacts that
distort the acoustic image (Figure 2).

Figure 2. Broadband beamforming issues (1-D): (a) low directivity at low frequencies and (b) aliasing
at high frequencies. B( f , φ), beampattern; f , function of frequency; φ, DOA (direction of arrival) [17].

Aliasing occurs when sources at different angular positions generate identical ar-
ray signals, preventing unique localization. Uniform linear or grid arrays are especially
prone due to their periodic sampling structure. Sources separated by multiples of the
angular period:

p = sin−1
(

λ

d

)
(2)

where d is the grid spacing, will be aliased since the path length difference between micro-
phones is identical. The resulting grating lobes complicate acoustic imaging by introducing
ghost sources and ambiguity. For instance, if we simulate a periodic displacement in a pla-
nar array of 25 × 25 cm2 by putting 32 microphones in a regular grid (Figure 3), analysing
the beampattern in the window of frequencies [2, 6.4] kHz, we found grating lobes, more
evident at higher frequency (Figure 4). A common solution is breaking periodicity by
using randomized or aperiodic array layouts [18,19]. However, this must be balanced with
microphone density and area coverage to retain sensitivity. Careful array optimization is
required to design alias-free configurations suited for imaging.
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Figure 3. Simulation of a periodic 32−microphone positioning on a planar array 25 × 25 cm2.

Figure 4. Two−dimensional beam pattern using a periodic positioning of 32−microphones on a
planar array 25 × 25 cm2 (Figure 3) at different frequencies: (a) beam pattern at 2 kHz, (b) beam
pattern at ≈6 kHz, both functions of θ and φ (u and v; see later on). Increasing the frequency,
the grating lobes equal the main central lobe. The colorbar maps from 0 dB (yellow) to -30 dB (blue).

2.3. Array Geometry

Microphone array geometry plays a critical role in acoustic imaging performance. Key
factors are:

• Aperture —The overall physical size determines angular resolution. Larger apertures
improve discrimination.

• Number of microphones—More microphones provide enhanced spatial sampling at
the cost of complexity.

• Layout—Positions within the aperture area. Uniform grids simplify analysis but suffer
aliasing. Randomized arrangements help reduce lobes.

• Symmetry—Circular/spherical arrays enable uniform coverage but planar designs
are easier to manufacture.

The greater the physical dimensions that an array of sensors has compared to what a
single transducer allows, with the same wavelength λ considered, the greater the capacity
for spatial discrimination of the directions of origin of the signals, and therefore the greater
the resolution, referred to in this context as angular resolution. Usually, the dimensions
of an array are quantified by evaluating its spatial opening D defined as the maximum
distance that separates two elements belonging to it. Therefore, the spatial discrimination
capacity of an array coincides with a value proportional to D/λ. An array has properties
of flexibility unattainable by the single sensor with the same implementation simplicity.
In fact, in many applications, it may be necessary to modify the spatial filtering function in
real time to maintain an effective attenuation of the interfering signals to the advantage
of the desired ones. This becomes essential in imaging applications in which the pointing
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direction changes constantly in order to scan all possible directions of arrival of the signal.
This change, in a system that adopts an array of transducers, is achieved simply by varying
the way in which the beamforming combines the data coming from each sensor in a linear
fashion; in the case of a single transducer, the change is impractical as it would be necessary
to act directly on the physical characteristics of the sensor.

2.4. Beamforming

Beamforming is the digital signal processing technique that allows microphone arrays
to focus on particular directions [20]. It computationally mimics the capability of parabolic
dish antennas to isolate radio sources. Delay-and-sum is the simplest beamforming ap-
proach. Signals originating from the look direction arrive simultaneously and in phase
at the central reference point when appropriately time-shifted. Coherent summation of
the aligned microphone signals passes the source undistorted. Off-axis sources remain
misaligned, causing attenuation after summing. More advanced optimal and adaptive
methods synthesize filters to achieve configurable directional selectivity. The ability to
digitally steer the focus point enables scanning to form full acoustic images. Beamforming
transforms the microphone array into a highly directional virtual sensor with sensitivity
patterns tailored through data-dependent signal processing. However, fundamental lim-
its arise from the array geometry and ambient noise. Robust acoustic imaging requires
jointly optimizing the array configuration with advanced beamforming techniques [21–24]
designed to maximize directional resolution.

Ideally, the array would be infinitely large with continuous spatial sampling. In prac-
tice, size constraints necessitate designing optimized configurations to maximize imaging
capabilities given physical limitations. There are inherent trade-offs between aperture di-
mensions, microphone density, aliasing artefacts, and processing load that acoustic camera
architectures must balance.

The filter-and-sum beamforming algorithm [17,19,25–34] provides improved perfor-
mance over the delay-and-sum algorithm by applying filters to the microphone signals.
This allows the array to focus on a specific direction more effectively and reduce the
sidelobes, resulting in a clearer and more detailed acoustic image.

3. Dual Cam Acoustic Camera

We provide an overview of Dual Cam, an acoustic camera prototype developed at the
Italian Institute of Technology [10,18]. It combines a co-located planar microphone array
and video camera for aligned audiovisual imaging, as illustrated in Figure 1. The current
implementation utilizes a 0.5 × 0.5 m2 128−element microphone array fabricated on a
custom-printed circuit board working over wideband [500–6400] Hz. Each microphone
output is digitized and processed in real time by an embedded system that performs
beamforming over an azimuth–elevation scan region, where (θ, φ) equals (90 × 360) de-
grees. This generates acoustic images registered to the synchronized video feed, enabling
visualization of spatial sound sources. However, the large form factor makes the device
cumbersome for portable applications. Our goal is to significantly miniaturize the system
while retaining imaging fidelity. Reducing the form factor exacerbates grating lobes and
limits low-frequency coverage. Advanced optimization of the layout and beamforming
filters is necessary to recover imaging performance on smaller scales through irregular con-
figurations with microphone positioning tailored to the sensors and frequencies of interest.

Acoustic imaging systems utilizing microphone arrays enable novel techniques for
localizing and separating multiple simultaneous sound sources. However, real-world
deployment remains limited given the unwieldy equipment required. The array’s 128 mi-
crophones are strategically positioned using an optimized irregular layout [18,19,35–39]
to synthesize directional acoustic images of the sound field when paired with beamform-
ing algorithms [40] (Figure 5). These acoustic images represent spatial auditory infor-
mation by mapping frequencies to pixels corresponding to locations. While originally
high-dimensional, the key acoustic data can be compressed into perceptually relevant
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mel-frequency cepstral coefficients to reduce computational costs [41] (Figure 5). Studies
demonstrate acoustic images can boost model performance by transferring spatial represen-
tations to improve audio classification accuracy. The addition of spatial audio details also
helps disambiguate sources and generalize to new datasets [42]. However, real-world sys-
tems may lack these imaging capabilities. This work examines methodologies to distil the
benefits of acoustic images even without access to specialized hardware. Optimized planar
arrays provide more accurate spatial audio details compared to individual microphones
by sampling sound fields from varied directions. Advanced beamforming techniques
enable directionally focused listening to isolate specific sources in noisy scenes. Processing
multi-microphone signals remains computationally intensive, though emerging algorithms
and parallel computing facilitate real-time performance. The filter-and-sum [3,43] beam-
former synthesizes an array of impulse responses to steer directional sensitivity. While
specially designed microphone arrays can provide valuable spatial auditory images, this
research investigates generalized approaches using array signal processing to improve
audio sensing tasks without access to imaging hardware.

Figure 5. From raw audio (a) to 3-D acoustic image (b) to 2-D energy heatmap (c) (from red maximum
sound to blue minimum sound) [44].

The filter-and-sum beamforming algorithm is a method for synthesizing the finite
impulse response (FIR) coefficients [17,25,43] for small-sized two-dimensional microphone
arrays [19]. This method can be used to generate acoustic images by focusing the array on
a specific direction in space and enhancing the signal coming from that direction.

The live acoustic imaging pipeline consists of:

1. Digitizing microphone outputs through multichannel audio sampling.
2. Partitioning the multichannel record into short time frames.
3. Synthesizing beamformer filters according to designed array geometry.
4. Applying filters and aligning signals for each scanning direction.
5. Coherently summing aligned microphone channels to obtain beam pattern power.
6. Repeating overall look directions to generate acoustic image frames registered to video.

This digital signal chain transforms the raw multichannel audio into visualizations
of spatial sound intensity (Figures 5 and 6). However, the fidelity is contingent on array
configuration, density, and beamforming approach. We investigate techniques to co-
optimize these parameters for compact, real-time acoustic cameras without prohibitive
degradation compared to larger form factors.
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(a) (b) (c)
Figure 6. Three examples from a collected dataset. We visualize the acoustic image by summing the
energy of all frequencies for each acoustic pixel. The resulting map (from red maximum sound to
blue minimum sound) is overlaid on the corresponding RGB frame. From left to right: (a) drone,
(b) train, (c) vacuum cleaner [42].

4. Materials and Methods

Recent advancements in acoustic imaging have enabled novel techniques for localizing
and separating multiple sound sources within complex auditory scenes. However, current
implementations are often constrained to laboratory settings due to large, unwieldy equip-
ment. This research aims to transform an existing prototype (Figure 1) into an engineered
portable device for real-world sound source separation (Figure 7). Through compact micro-
phone array design and machine/deep learning algorithms run on a coupled tablet/laptop
(for instance Microsoft Surface Pro or Dell Latitude 7230EX) (Figure 8), we can achieve a
handheld multimodal camera that captures and processes synchronized audio and video
to map multiple simultaneous sounds.

Figure 7. New Dual Cam 2.0 POC (proof of concept) idea. The periodic positioning of the microphones
is generic and for illustrative purposes only.

CNNs (convolutional neural networks) frequently employ image classification and
segmentation tasks through acoustics. Acoustic images provide automatic learning oppor-
tunities for CNNs’ relevant features. Leading CNN structures like ResNet and U-Net have
been adopted for acoustic image evaluation. Using RNNs (recurrent neural networks) like
LSTMs enables the examination of audio visualization sequences evolving with time. Use-
ful applications exist for monitoring items or procedures within video acoustic microscopy
information. Acoustic image denoising and reconstruction are tasks that autoencoders
excel at performing. The encoded data enables the decoder to recreate the revitalized
picture flawlessly. Using GANs (generative adversarial networks) realistic sound imagery
is generated, benefiting data amplification and modelling initiatives. Coordinated develop-
ment through shared training brings the generator and discriminator closer to perfection.
From a historical perspective, these classic ML algorithms—including random forests and
support vector machines—continue to serve us well. Manual feature creation makes their
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training process speedier and more straightforward. Two prominent unsupervised learning
approaches—k-means clustering and principal component analysis—assist in identifying
hidden patterns within acoustic information. Interactive queries enable users to efficiently
annotate crucial data points through active learning techniques. Model selection hinges on
parameters like dataset size, work objective, and processing capacity. By investing time
and resources into rigorous evaluation, we can create models capable of producing consis-
tent outputs. To retain directional sensitivity in a smaller form factor, we optimize array
layouts using analytical filter synthesis and stochastic optimization, assessing robustness
via statistical error analysis. Novel steps in our approach are:

• We optimize the analytic form of the cost function in order to cut the simulation
computational load. This optimization of the cost function is a novel contribution
beyond the existing state-of-the-art methods, improving computational efficiency.

• We include the statistical evaluation of the mismatches of the microphones that are
more important in shrinking the array size. The statistical characterization of micro-
phone mismatches enables novel array size reduction.

• We optimize the FOV (field of view) and the frequency bandwidth according to the
array size reduction to explore upper harmonic reconstruction to determine whether
intelligibility is retained without fundamental frequencies. The joint optimization of
FOV, frequency band, and array size reduction using the upper harmonics for intelli-
gibility preservation is an unexplored area representing a novel research direction.

A key goal is extending as much as possible the minimum detectable frequency to
improve directivity with fewer elements. While reducing array aperture, we must balance
performance trade-offs from decreased low-frequency directivity and potential under-
sampling artefacts. This work details simulations on irregular aperiodic subsampling
to concentrate high-frequency information while avoiding grating lobes (Figure 4) and
exploring upper harmonic reconstruction to determine whether intelligibility is retained
without fundamental frequencies reducing the device’s bandwidth to optimize the simula-
tion metrics. Following prototype optimization and evaluation using audio test signals,
we compare metrics like signal-to-noise ratio to the original large-scale system. This study
aims to progress acoustic imaging capabilities from constrained laboratory settings to-
wards real-world applications through engineered mobile platforms. This work aims to
re-engineer a compact, portable prototype (Figure 7) that transmits synchronized audio
and video data streams to a commercial tablet or laptop. The audio is captured by an array
of microphones on the primary module, while the video is acquired by a thermographic
or conventional camera. These peripheral modules interface with the central unit via
multiple USB connections. Embedding an FPGA onboard the central module alongside an
ARM processor enables straightforward interfacing leveraging their integrated architecture
(Figure 8). The system operates on battery power with LED indicators and debugging
ports and can dock to the tablet mechanically. A remote internet link via WiFi, LTE, or 5G
facilitates control and data sharing. The tablet/laptop display provides a visualization
interface to process the multimodal data streams using algorithms, machine learning, and
deep neural networks. This integrated design retains the core functionality of the original
laboratory prototype while minimizing size and maximizing portability for real-world
deployment. Ongoing work focuses on implementation challenges including power opti-
mization, heat dissipation, enclosure design, calibration, and field testing. By progressing
acoustic imaging capabilities from constrained lab settings to handheld adaptable plat-
forms, this research aims to unlock new applications in machine condition monitoring,
spatial sound mapping, and other domains limited by current large-scale wired systems.
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Figure 8. The Dual Cam board is based on an FPGA that reads continuously from the I2S MEMS
microphones (TDK/InvenSense); using a programmed DMA the read microphones values are stored
in a RAM buffer. In our new proof of concept (POC) the processor can easily read data from RAM
and redirect them to the USB port.

5. Array Optimization Methodology

Reducing the physical array aperture while maintaining usable imaging resolution re-
quires balancing size, microphone number, spatial sampling, and angular coverage. Simply
downscaling a regular grid array would significantly increase grating lobes (Figures 4 and 9).
We instead utilize array signal processing optimization procedures that allow unconven-
tional configurations with microphone numbers and positions tailored to imaging require-
ments. Irregular layouts are synthesized based on maximizing acoustic power focused
toward directions of interest and minimizing ghost images. Key concepts are briefly
introduced below (Figure 9), with formulations adapted from [8,18,35].

Figure 9. Conceptual framework in the microphone array simulation.

5.1. Problem Parameterization

We consider a planar array of N microphones located at positions rn = (xn, yn) in the
xy plane (Figure 10). Acoustic sources at frequency f impinge on the array from angles
θ and φ. The goal is to generate high-resolution, low-artefact acoustic images over the
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signal band [ fmin, fmax]. The array geometry and frequency-dependent beamformer filter
coefficients w( f ) = [w1( f ), . . . , wN( f )]T are jointly optimized to maximize directional
sensitivity. The complex beam pattern B(θ, φ, f ) encodes the array response at each look
angle and is parameterized as:

B(θ, φ, f ) =
N

∑
n=1

wn( f )e−j2π f r̂(θ,φ)·rn (3)

where r̂(θ, φ) is the source position unit vector. The expression depends on both the layout
rn and filter coefficients wn( f ) which are microphone-specific filters to be optimized. The ex-
pression has directionality dependence on both the layout rn and filter responses wn( f ). To
allow joint optimization, a cost function J(w, r) is formulated that balances simultaneously
directional focus, artefact suppression, frequency coverage, and robustness. It incorporates
an idealized unity gain beampattern B0(θ, φ, f ) at the look direction and minimizes the
deviation from this response over angle-frequency space. Regularization terms manage
overall beamformer gain and robustness. The optimization determines array configurations
and filters customized for the imaging application. With the beam pattern expressed as
B(θ, φ, f ) = wT( f )V(θ, φ), the filter coefficients w( f ) can be analytically extracted from
the cost function into a closed-form solution wopt( f ) = R−1( f )q( f ). For the array layout
optimization with wopt( f ) fixed, simulated annealing avoids poor local minima. Iterative
stochastic perturbations to microphone locations rn are accepted probabilistically based
on the cost function to enable escaping local minima. After sufficient iterations, the array
geometry converges to enhance directionality. To improve robustness, the cost function
is averaged over possible microphone gain and phase errors modelled as random vari-
ables. This penalizes configurations with low white noise gain, minimizing sensitivity
to imperfections. The expected beam pattern E[B(θ, φ, f )] is incorporated to account for
errors; this optimization framework (Figure 9) allows the designing of array geometries
and filters customized for compact, robust acoustic imaging over desired frequency bands.
The resulting unconventional configurations maximize power focused on look directions
while minimizing off-axis contributions and artefacts using small apertures.

Figure 10. Cartesian coordinates system and steering angles (θ0, φ0).

The cost function J(w, r) balances several competing objectives:

1. Directional focus. Minimizing deviation of the achieved beam pattern B(θ, φ, f ) from
the ideal unity gain pattern B0(θ, φ, f ) at the look direction over angle-frequency
space. This is quantified by the integral term:∫∫∫

Θ,Φ,F
|B(θ, φ, f )− B0(θ, φ, f )|2dθdφd f
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2. Artefact suppression. Minimizing the beam pattern gain away from the look direction,
incorporated through: ∫∫∫

Θ,Φ,F
|B(θ, φ, f )|2dθdφd f

3. Frequency coverage. Optimizing over the full band [fmin, fmax] through integration
over f.

4. Robustness. Averaging over microphone imperfections by modelling gain and phase
as random variables An.

The overall form is a weighted combination of these terms:

J(w, r) =α
∫∫∫

|B(θ, φ, f )− B0(θ, φ, f )|2dθdφd f + (1− α)
∫∫∫

|B(θ, φ, f )|2dθdφd f

where α ∈ [0, 1] controls the trade-off between directional focus and artefact suppression.
To minimize J, the filter coefficients w( f ) are first optimized analytically for a fixed array
layout by extracting them into a quadratic form with closed-form solution wopt( f ).

The microphone locations rn are then optimized stochastically using simulated anneal-
ing to avoid poor local minima:

• Iterative random perturbations ∆rn are applied to the microphone locations.
• New locations are accepted probabilistically based on the cost J.
• Acceptance probability is higher at higher initial “temperatures” and cooled over iter-

ations.
• After sufficient iterations, rn converges to a geometry minimizing J.

This joint optimization determines array layouts and filters tailored for directional
imaging over the specified band with artefact suppression and robustness. In the simulation
of the beampattern of a planar array (z = 0) of microphones we have two angles of arrival
θ and φ, two steering angles θ0 and φ0 (Figure 10) and two coordinates for the microphones
xn and yn. The mathematical expression of the ideal superdirective beampattern B in
far-field is:

B(θ, φ, θ0, φ0, f ) =
N

∑
n=1

wn( f )e
−j2π f ·

[
xn ·

sin(θ)−sin(θ0)
c +yn ·

sin(ϕ)−sin(ϕ0)
c

]
(4)

where N is the number of microphones, c = 340 m/s is the speed of the acoustic waves into
the medium (λ = c/ f ), and wn( f ) is the frequency response of the n-th filter:

wn( f ) =
K

∑
k=1

wn,k · e−j2π f ·kTc (5)

5.2. Cost Function Definition

We recall the cost function formulated to allow optimizing the array layout and
beamformer filters for directional acoustic imaging:

J(w, r) = α
∫∫∫

Θ,Φ,F

|B(θ, φ, f )− B0(θ, φ, f )|2 dθ dφ d f + (1− α)
∫∫∫

Θ,Φ,F

|B(θ, φ, f )|2 dθ dφ d f (6)

B0(θ, φ, f ) is the idealized beam pattern with unity gain at the main look direction
and zero elsewhere. The first term drives the achieved response toward the desired
spatial selectivity. The second term balances overall beamformer gain and robustness.
α ∈ [0, 1] controls the trade-off. The integrals are approximated over discrete grids of
angles and frequencies. This cost function steers the optimization toward arrays with high
directionality for acoustic imaging. It encapsulates the desired balance of sharp focus,
minimal artefacts, wide frequency coverage, and robustness within a single numerical
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measure of performance. In order to find the position of the microphones, we have to
minimize the J cost function [18] that we rewrite as:

J(w, r) =
∫ θ0max

θ0min

∫ φ0max

φ0min

∫ θmax

θmin

∫ φmax

φmin

∫ fmax

fmin

|B(w, r, θ, φ, θ0, ϕ0, f )− 1|2+

C|B(w, r, θ, φ, θ0, φ0, f )|2dθdφdθ0dφ0d f

(7)

where r is the vector with the positions of the microphones, w is the vector of the filter
coefficients, and C is a real constant. This tunes the minimization of the first term of the
cost function which is the adherenceterm and the second one which is the energy weighted
term. We want to joint optimization of weights and microphones’ positions and account
for superdirectivity and aperiodicity. Then, the expression (4) of the beampattern B of a
planar array (z = 0) of microphones in 2−D becomes:

B(w, r, θ0, φ0, θ, φ, f ) =
N

∑
n=1

K

∑
k=1

wn,ke
−j2π f ·

[
xn

sin(θ)−sin(θ0)
c +yn ·

sin(φ)−sin(φ0)
c +kTc

]
(8)

where K is the length of the FIR filter and Tc is the sampling period.

5.3. Directivity Optimization

The beam pattern expression can be reduced to:

B(θ, φ, f ) = wT( f )V(θ, φ) (9)

where w( f ) = [w1( f ), . . . , wN( f )]T and V(θ, φ) is an array manifold vector with phase
terms dependent on look direction. This allows extracting the filter coefficients from the
cost function, converting optimization over w( f ) into a quadratic form with a closed-form
solution:

wopt( f ) = R−1( f )q( f ) (10)

where R( f ) and q( f ) accumulate integration terms. The optimal wopt( f ) maximizes
directionality for a given layout.

5.4. Layout Optimization

In order to achieve and improve robustness against microphone imperfections, we
perform an optimization of the mean performance i.e., the multiple integrals of the cost
function over the sensors’ phase e−γn and gain an An = an · e−γn considered as random
variables, getting a robust cost function with the PDF (probability density function) of the
random variable An [38]. The cost function J(w, r) is averaged over possible gain and
phase errors by modelling the microphone responses An as random variables:

Jtot(w, r) =
∫
A0

· · ·
∫

AN−1

J(w, r, A0, . . . , AN−1) fA(A0) · · · fA(AN−1)dA0 · · · dAN−1 (11)

where fA(An) is the PDF of the random variable An. This incorporates robustness into
the optimization. However, evaluating the multiple integrals results in a large number of
variables (microphone positions and FIR filter coefficients) making direct optimization of
Jtot computationally infeasible. To address this, a change of variables is made:{

u = sin(θ)− sin(θ0)
v = sin(φ)− sin(φ0)

(12)
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Substituting into the beam pattern expression gives:

B(w, r, u, v, f ) =
N

∑
n=1

K

∑
k=1

wn,ke−j2π f (xn
u
c +yn

v
c +kTc) (13)

This allows for defining a simplified cost function:

Jtot(w, r) =
umax∫

umin

vmax∫
vmin

fmax∫
fmin

|B(w, r, u, v, f )− 1|2 + C|B(w, r, u, v, f )|2 d f du dv (14)

The filter coefficients w can then be analytically extracted into a quadratic form with a
closed-form solution:

Jtot(w, r) = wTMw− 2wTr + s (15)

Further , the robustness integrals over An can be approximated in closed form. The mi-
crophone positions rn are then numerically optimized using simulated annealing to avoid
local minima. Iterative stochastic perturbations escape suboptimal configurations based
on the cost. This joint optimization determines robust array geometries and filters for
directional imaging. Performance is evaluated using metrics such as directivity D( f ) and
white noise gain WNG( f ). The expected beam pattern power E{|B(θ, φ, f )|2} is also incor-
porated to account for microphone imperfections. Minimizing tolerance to errors improves
reliability. This framework enables the designing of robust, compact arrays tailored for
spatial acoustic imaging over desired bands. The new cost function is a good approximation
of the original one, allowing the number of integrals to be reduced. The vector w can be
extracted from the multiple integrals in the robust cost function obtaining a quadratic form
in w [18]. With ideal filters derived analytically, the microphone locations rn are optimized
stochastically. A simulated annealing approach is used to avoid poor local minima. Iterative
perturbations to rn are accepted probabilistically based on the cost, allowing escape from
local minima at high process “temperatures” that are gradually cooled. After sufficient
iterations, the microphone layout converges toward a configuration with scattering tailored
to enhance directional sensitivity and suppress off-target responses. The joint optimization
determines array geometries and beamformers customized for compact acoustic imaging
over specified bands. For a fixed microphone displacement, the global minimum of the
robust cost function can be calculated in a closed form. Conversely, the presence of local
minima with respect to the microphone position prevents the use of gradient-like iterative
methods. The final solution is given by a hybrid strategy analytic and stochastic based on
the Simulated Annealing algorithm [36,45] (Figure 11). The steps are:

• Iterative procedure aimed at minimizing an energy function f (y).
• At each iteration, a random perturbation is induced in the current state yi.
• If the new configuration, y∗, causes the value of the energy function to decrease, then

it is accepted.
• If y∗ causes the value of the energy function to increase, it is accepted with a probability

dependent on the system temperature, in accordance with the Boltzmann distribution.
• The temperature is a parameter that is gradually lowered, following the reciprocal of

the logarithm of the number of iterations.
• The higher the temperature, the higher the probability of accepting a perturbation

causing a cost increase and of escaping, in this way, from unsatisfactory local minima.
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Figure 11. Flow chart of Simulated Annealing algorithm for function cost minimization.

5.5. Robustness Constraints

We require quantitative metrics to evaluate the algorithm’s beamforming performance.
The key metrics utilized are the frequency-dependent directivity D( f ) and white noise gain
WNG( f ), computed for steering angles θ0 and φ0. For a planar array, the directivity (in dB)
is defined as:

D( f ) =
|B(θ0, φ0, f )|2

1
4π

∫ 2π
0

∫ π
0 |B(θ, φ, f )|2 sin(θ)dθdφ

(16)

The white noise gain (in dB) quantifies robustness towards array imperfections:

WNG( f ) =
|B(θ0, φ0, f )|2

∑N
n=1 |wn( f )|2

(17)

We propose the expected beam pattern power (EBPP) metric to statistically evaluate the
impact of variance in array gain and phase on the beam pattern B( f ):

B2
e (θ, φ, f ) = E|B(θ, φ, f )|2 =∫
A0

. . .
∫

AN−1
|B(θ, φ, f )|2 · fA0(A0) . . . fAN−1(AN−1)dA0 . . . dAN−1

(18)

Microphone imperfections can distort the array away from the ideal modelled response.
As in [38], robustness is incorporated by averaging the cost function over possible gain and
phase errors through the expectation operator E{.}.

E[B(θ, φ, f )] ≈ |B(θ, φ, f )|2 + 1
WNG( f )

(σ2
g + σ2

ψ) (19)

where σ2
g and σ2

ψ are variances of normally distributed microphone magnitude and phase
mismatches, and WNG( f ) is a white noise gain term. Minimizing cost tolerance to mod-
elled errors helps ensure reliable performance. This full optimization framework allows
the designing of microphone array geometries and beamformers customized for compact
acoustic imaging over desired signal bands. The unconventional configurations maximize
power focused toward look directions while suppressing artefacts and minimizing off-axis
contributions to enable resolving spatial sound fields from small apertures. We next uti-
lize this approach in a simulation case study of miniature array optimization. With the
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proposed metrics in place, we evaluate the directivity D( f ), white noise gain WNG( f ),
and expected beam pattern power (EBPP) for our initial simulated array design. We model
the microphone mismatches as Gaussian distributions with σg = 0.03 = 3% for gain error
and σψ = 0.035 rad ∼= 2◦ for phase error. This preliminary simulation provides favourable
results across the three figures of merit, indicating promising performance in reshaping
the sensor array for the Dual Cam 2.0 system. The directivity quantifies the main lobe
sharpness, white noise gain captures robustness, and the expected beam pattern incorpo-
rates statistical variations—together assessing the shaped array’s directional sensitivity,
imperfections tolerance, and expected real-world behaviour. Further refinements to the
array geometry and element tuning will build upon these initial positive findings, working
toward an optimal miniature microphone configuration.

6. Simulation Configuration

We implement the array optimization procedures in MATLAB to enable rapid eval-
uation of miniaturized acoustic camera designs. The custom cost function represents the
mismatch between achieved and ideal beampatterns over angles Θ, Φ and frequencies
F = [0.5, 6.4] kHz. At each iteration, filter coefficients are computed analytically then
microphone positions are perturbed stochastically to minimize artefacts. The optimization
concentrates power within a ±20 degree main lobe while suppressing sidelobes. Array
performance is assessed by analysing:

• Directivity—angular discrimination capability;
• White noise gain (WNG)—robustness to fabrication variations;
• Beam patterns and sidelobe levels—imaging artefacts.

The numerical approach allows for efficient simulation of miniaturized configurations
to quantify expected imaging performance and determine plausible hardware parameters.
We consider three scenarios:

1. A 32−microphone 0.25 m square array optimized from 2 to 6.4 kHz.
2. A 32−microphone 0.21 m square array optimized from 2 to 6.4 kHz.
3. A 32−microphone 0.21 m square array covering [0.5, 6.4] kHz for comparison with

Dual Cam specifications (128−microphone on a 0.5 m square array).

The different number of microphones and expanded frequency range in Case 3 demon-
strates trading off aperture size versus density given constraints. Comparisons with a
modelled 128−element 0.5 m array representing Dual Cam provide context on expected
miniaturization imaging trade-offs. The simulation results guide physical prototype devel-
opment by predicting achievable performance bounds with compact arrays.

7. Miniaturized Array Optimization: Results and Discussion

We present synthesized array configurations from the three simulated case studies
along with an analysis of beam patterns, directivity, and white noise gain for Dual Cam 2.0.

7.1. Thirty-Two-Microphones, [2, 6.4] kHz, Array 25 × 25 cm2

The first scenario optimizes a 0.25 × 0.25 m2 32−microphone array for a 4.4 kHz
bandwidth. After 100 iterations, the cost function converges as shown in Figure 12. The cor-
responding irregular array geometry has an aperiodic structure with variable microphone
spacing tailored for the acoustic parameters.
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Figure 12. Simulation results for [2, 6.4] kHz optimization of a 32−elements 0.25 m acoustic array:
(a) cost function convergence over 100 iterations, (b) optimized 32−microphone 0.25 m array layout.

We tried to reduce the planar array aperture (u and v range) to adjust the FOV (field
of view) and to increase the number of iterations. We tested this full setting:

• L = 25 cm;
• N° of microphones = 32 mic;
• K = 31 (FIR length);
• u ∈ [−1. 5; 1.5];
• v ∈ [−1.5; 1.5];
• N° of iterations = 100;
• Bandwidth = [2000, 6400] Hz.

As expected, low-frequency performance is improved relative to the bandwidth
[2, 6.4] kHz 32−elements array. The directivity comparison (Figure 13a) with a 0.21 × 0.21 m2

prototype in the bandwidth [0.5, 6.4] kHz indicates better sensitivity below 4 kHz. This
demonstrates the potential for substantial miniaturization through optimization over the
frequency bandwidth. The 32−microphone design retains 15 dB (Figure 13b) robustness,
with improved low-frequency gains offsetting minor high-frequency trade-offs. The beam
patterns in Figure 14 verify directional selectivity and sidelobe suppression within the band.

The beam patterns in Figure 14 show low sidelobes within the band. However,
some aliasing emerges at higher frequencies due to the reduced aperture size. The 10 dB
directivity in Figure 13a confirms directional sensitivity is retained over most of the band.
Figure 13b indicates above 15 dB robustness to standard fabrication imperfections. In this
first simulation, the performance predictions verify that a ≈4× footprint reduction of the
array surface from the 0.5 m Dual Cam design is plausible with tolerable trade-offs.

Figure 13. (a) Directivity and (b) white noise gain metrics confirm reasonable performance across the
[2, 6.4] kHz band from the 0.25 m array.
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Figure 14. Simulation array 25 × 25 cm2. Beam patterns within the optimization band and the
aperiodic microphone localization exhibit low sidelobes and main lobe focusing (Figure 4). (a) 2 kHz,
(b) ≈4 kHz, (c) ≈6 kHz.

7.2. Thirty-Two-Microphones, [2, 6.4] kHz, Array 21 × 21 cm2

Increasing the number of iterations in the optimization algorithm alone does not fully
suppress grating lobes at higher frequencies, even in an optimized field of view. We hypoth-
esize that enlarging the dimensions of the main acoustic lobe provides additional degrees
of freedom for the algorithm to minimize secondary grating lobes. A wider main lobe
increases the target spatial region for overall sidelobe suppression. However, expanding
the filter tap length can sometimes yield unstable and non-convergent solutions. We exper-
imentally evaluate these trade-offs between main lobe width, number of taps (FIR length),
and iterations. The following experiments systematically vary lobe parameters and tap
length to assess their impact on grating lobe artefacts and algorithm stability. We optimize
over an expanded parameter space to determine configurations that maximize grating
lobe mitigation while maintaining convergence and solution integrity. This exploration
provides practical insights into the interaction between beam pattern specifications, filter
design constraints, and robust algorithm convergence for optimal array performance. We
report the better results of the following simulation (Figures 15 and 16) in comparison to
the previous case:

• L = 21 cm;
• N° of microphones = 32 mic;
• K = 31 (FIR length);
• u ∈ [−1.5; 1.5] ; v ∈ [−1.41; 1.41];
• N° of iterations ≈ 105;
• uMainLobelow = −0.2 ; uMainLobehigh = 0.2;
• vMainLobelow = −0.2 ; vMainLobehigh = 0.2;
• Bandwidth = [2000, 6400] Hz.
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Figure 15. Simulation results for [2, 6.4] kHz optimization of a 32−element 0.21 m acoustic array:
(a) cost function convergence over≈ 105 iterations, (b) optimized 32−microphone 0.21 m array layout.

Figure 16. (a) Directivity and (b) white noise gain metrics confirm reasonable performance across the
[2,6.4] kHz band even from the reduced 0.21 m array.

The 0.21 m array in the bandwidth [2000, 6400] Hz achieves better directivity than the
0.21 m array in the full range [500, 6400] Hz below 4 kHz, confirming substantial miniatur-
ization optimized in a sub-range of frequencies is viable. A sub-range of u and v now opti-
mizes the beampatterns avoiding grating lobes at higher frequencies (Figures 17 and 18),
even if this action reduces of course the FOV of Dual Cam 2.0.

Figure 17. Simulation results for [2, 6.4] kHz optimization of a 32−element 0.21 m acoustic array.
Beampatten comparison: BP (left) vs EBPP (right) at 2 kHz.
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Figure 18. Simulation results for [2, 6.4] kHz optimization of a 32−element 0.21 m acoustic array.
Beampatten comparison: BP (left) vs EBPP (right) at ≈6 kHz.

7.3. Thirty-Two-Microphones, [0.5, 6.4] kHz, 21 × 21 cm2 Array

This section compares the performance of the current acoustic device Dual Cam against
a new prototype with shortened dimensions but equivalent bandwidth. We simulate this
current experimental condition:

• L = 50 cm;
• N° of microphones = 128 mic;
• K = 7 (FIR length);
• u ∈ [−1.5; 1.5] ; v ∈ [−1.41; 1.41];
• N° of iterations ≈ 105;
• uMainLobelow = −0.06 ; uMainLobehigh = 0.06;
• vMainLobelow = −0.06 ; vMainLobehigh = 0.06;
• Bandwidth = [500, 6400] Hz.

Simulations are conducted to analyse the key metrics of white noise gain, directiv-
ity patterns, and grating lobes. The results demonstrate the feasibility of achieving a
compact form factor while maintaining wideband performance through optimization of
design parameters.

In our simulation, the third scenario expands the bandwidth to cover Dual Cam 2.0
specifications for comparison with the current device:

• L = 21 cm;
• N° of microphones = 32 mic;
• K = 31 (FIR length);
• u ∈ [−1,5; 1.5] ; v ∈ [−1,41; 1.41];
• N° of iterations ≈ 105;
• uMainLobelow = −0.2 ; uMainLobehigh = 0.2;
• vMainLobelow = −0.2 ; vMainLobehigh = 0.2;
• Bandwidth = [500, 6400] Hz.

Compensating for the larger wavelength at 0.5 kHz required shrinking once again
the array to 0.21 × 0.21 m2 to maintain the density with 32 microphones to give the
area reduction. The cost convergence in Figure 19a follows a similar trend but more
iterations are needed to escape poor local minima. The layout in Figure 19b retains an
irregular structure with permutations tailored to the acoustic parameters. The current
Dual Cam working prototype (Figure 20) has a better WNG and directivity, especially at
low frequencies (Figures 21 and 22); also, the main lobe of the BP and EBPP is sharper
(Figures 23 and 24). Instead, the grating lobes at high frequencies are more or less the
same. The directivity comparison (Figure 13a) with a 0.21 × 0.21 m2 prototype in the
bandwidth [0.5, 6.4] kHz in Figure 21a indicates better sensitivity below 4 kHz. The beam
patterns in Figure 14 verify directional selectivity and sidelobe suppression within the
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band (Figure 21b). Some tradeoffs are highlighted between miniaturization and resolution.
Further work is suggested to refine the simulations and investigate the impacts of varying
filter lengths (Figure 25). The simulated performance demonstrates that high-fidelity
acoustic imaging over audio frequencies can plausibly be achieved with array apertures
4× smaller than the Dual Cam benchmark.

Figure 19. Simulation results for [0.5, 6.4] kHz optimization of a 32−element 0.21 × 0.21 m2 planar
acoustic array: (a) cost function convergence over ≈ 105 iterations, (b) optimized 32−microphone
0.21 m array layout.

Figure 20. Current Dual Cam prototype. Simulation results for [0.5, 6.4] kHz optimization of a
128−element 0.50 × 0.50 m2 planar acoustic array: (a) cost function convergence over ≈105 iterations,
(b) optimized 128−microphone 0.50 m array layout.

Figure 21. Dual Cam 2.0 with larger audio bandwidth [500, 6400] Hz on a 0.21 × 0.21 m2 array.
Directivity (a) and WNG (b).
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Figure 22. Current Dual Cam prototype. Expected beam pattern power at different frequencies:
(a) 500 Hz, (b) ≈2.5 kHz, (c) ≈6 kHz.

This supports developing compact prototypes based on these optimized configura-
tions. Ongoing research is focused on the physical implementation of miniaturized arrays
guided by these modelling results.

Figure 23. Current Dual Cam prototype: (a) Directivity and (b) WNG over the full bandwidth [500,
6400] Hz on a 50 × 50 cm2 array.
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Figure 24. Dual Cam 2.0 cted beam pattern power at different frequencies: (a) 500 Hz, (b) ≈2.5 kHz,
(c) ≈6 kHz.

Figure 25. Dual Cam 2.0 with larger audio bandwidth [0.5, 6.4] kHz: effect of the FIR length on the
metrics of the evaluation. (a) Directivity with K = 7 (red) vs K = 21 (blue); (b) WNG with K = 7 (red)
vs. K = 21 (blue).

8. Hardware Development Considerations

Constructing optimized microphone arrays to realize portable acoustic cameras presents
additional implementation challenges including:

• Fabricating irregular array geometries with a large number of elements;
• Microphone calibration and mismatch compensation;
• Embedded platform with multichannel digitization and processing;
• Robust beamforming algorithms executable in real time;
• Packaging, power, and interfacing for field deployment.

The printed circuit board population provides a potential fabrication approach for
unconventional layouts. The layout can be rendered as copper traces linking microphone
footprints. Micro-electromechanical system (MEMS) technology enables compact sen-
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sors [46]. Calibration tools measure each microphone response to derive compensation
filters. FPGAs offer parallelism for multichannel acquisition and beamforming [47,48].
Robust and adaptive algorithms help counteract model errors. Energy-efficient architec-
tures would enable battery-powered operation. A USB- or WiFi-linked interface with a
smartphone or tablet app could provide deployment flexibility. Ongoing research is fo-
cused on addressing these areas to translate the simulated performance gains into practical
miniature acoustic cameras for expanded applications. In addition to hardware, robust
calibration procedures and beamforming software refinement would help approximate
idealized models. User studies assessing video augmented with acoustic imaging for
tasks like machine diagnostics can quantify real-world benefits. Developing the signal
processing, microphone technologies, and system integration techniques to realize compact
acoustic cameras would represent a breakthrough for broader adoption in noise monitoring,
condition-based maintenance, virtual reality, and other fields constrained by large form
factors today.

9. Conclusions

This paper investigated methodologies to minimize the physical aperture of real-time
acoustic cameras for improved mobility.

Acoustic systems rely on an array of microphones to perform directional processing.
Reducing the physical aperture of the array typically decreases the angular resolution and
introduces grating lobes. However, making the assumption of using higher audio harmon-
ics while maintaining intelligibility without the fundamental frequencies and with careful
selection of design parameters, compact arrays may still achieve wideband performance
on par with larger arrays. This work investigates this premise through simulation of a
current acoustic system and proposed compact prototype. A case study of the Dual Cam
prototype that utilizes a 0.5 × 0.5 m2, 128−microphone planar array to generate acoustic
field visualizations in real time revealed limitations around size, weight, power, and com-
putational complexity that restrict widespread adoption. To transform such cameras into
portable devices, we proposed co-optimizing the array layout and beamforming filters
through simulations to concentrate directional sensitivity and minimize artefacts. Analyses
quantified that a 32−element 0.21 × 0.21 m2 array optimized for the bandwidth [2, 6.4]
kHz operation could theoretically achieve better directivity than the full-scale Dual Cam
prototype up to 4 kHz, confirming substantial miniaturization is viable with tolerable
performance trade-offs. Ongoing efforts are focused on constructing miniature microphone
arrays guided by these numerical optimizations to develop hand-held acoustic cameras
that interface with tablets and smartphones for easy deployment. Realizing compact, real-
time acoustic imaging devices could expand applications in structural health monitoring,
urban noise mapping, VR/AR audio rendering, and other fields currently constrained by
large form factors. This paper provided an array of signal processing insights to guide
physical prototype development towards transforming acoustic imaging capabilities from
constrained lab settings into widely accessible mobile platforms. With further progress in
microphone technologies, embedded computing, and calibration techniques, ubiquitous
acoustic imaging could become viable—providing uniquely valuable spatial and semantic
context across applications ranging from the industrial internet of things to smart city
sound monitoring (Figure 26).
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Figure 26. Dual Cam 2.0 Business Model Canvas.
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