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Abstract: Due to the increasing reliance on social network platforms in recent years, hate speech
has risen significantly among online users. Government and social media platforms face the chal-
lenging responsibility of controlling, detecting, and removing massively growing hateful content
as early as possible to prevent future criminal acts, such as cyberviolence and real-life hate crimes.
Twitter is used globally by people from various backgrounds and nationalities; it contains tweets
posted in different languages, including code-mixed language, such as Hindi–English. Due to the
informal format of tweets with variations in spelling and grammar, hate speech detection is especially
challenging in code-mixed text. In this paper, we tackle the critical issue of hate speech detection
on social media, with a focus on a mix of English and Hindi–English (code-mixed) text messages
on Twitter. More specifically, we aim to evaluate the impact of data pre-processing on hate speech
detection. Our method first performs 10-step data cleansing; then, it builds a detection method based
on two architectures, namely a convolutional neural network (CNN) and a combination of CNN
and long short-term Memory (LSTM) algorithms. We tune the hyperparameters of the proposed
model architectures and conduct extensive experimental analysis on real-life tweets to evaluate the
performance of the models in terms of accuracy, efficiency, and scalability. Moreover, we compare our
method with a closely related hate speech detection method from the literature. The experimental
results suggest that our method results in an improved accuracy and a significantly improved runtime.
Among our best-performing models, CNN-LSTM improved accuracy by nearly 2% and decreased
the runtime by almost half.

Keywords: speech recognition; hate speech; code-mixed; multilingual; neural networks

1. Introduction

Recent years have witnessed a tremendous rise in Internet usage worldwide. One
primary reason for this is the increased usage of social media websites that became popular,
attractive, and addictive to users in a short time [1]. Twitter is one of the prevalent social
media platforms widely used by people, generating massive online content and big data.
Such platforms allow users to connect faster and easier and openly share and express their
opinions and thoughts, free of cost, through photos, videos, or messages/tweets, giving
them near unconditional freedom of speech.

Despite the above-mentioned positives, there is also a more negative side to social
media. With increased usage and addiction to social media, there has been a significant rise
in users openly using hate speech and offensive language. Nockleby [2] defined hate speech
as “communications of animosity or disparagement of an individual or a group on account of a group
characteristic such as race, color, national origin, sex, disability, religion, or sexual orientation”.
Since all interactions are virtual, certain users take advantage of being anonymous and opt
for posting hateful content against specific individuals or communities, a behavior that the
same users would be much less likely to exhibit in real life.
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Hateful content gives rise to cyberviolence and hate crimes, affecting individuals’
social and mental health and impacting human lives. Most platforms forbid the usage
of hate speech, but due to the massive amount of content generated by hateful users,
controlling communication is becoming an increasingly challenging task. Hence, it is
crucial for the government and social media websites to control, detect, and eliminate
hateful content as early as possible to prevent real-life violence likely to be take place
as a consequence [3]. Hate speech detection is so crucial that, in March 2021, an Indian
politician requested for legislation to immediately regulate online hate speech since it had
become uncontrollable [4]. Like India, many other countries have also imposed strict laws
to combat online hate speech [5,6]. Twitter is adamant on removing hateful content but is
still criticized for not being effective at it [7].

In this study, we tackle the critical issue of hate speech detection on social media,
with a focus on short text messages on Twitter. Twitter is a free-of-charge global social
networking platform for sharing short text (tweets), where each tweet can contain up to
280 characters. People from various backgrounds and nationalities use Twitter. Thus, some
tweets may include code-mixed text. Code-mixing is defined as embedding linguistic
units such as words, phrases, or morphemes of one language into the utterance of another
language [8]. In other words, code-mixing involves writing the words of one language
using the alphabets of another. Examples 1.1 and 1.2 demonstrate one hate and one non-
hate tweet in code-mixed text, respectively, along with their English translations. We note
that, due to the obscene language used in real-life hateful tweets, we resort to showing a
benign version in Example 1.1.

Example 1.1 (hate tweet in code-mied Hindi–English). This example shows a hate
tweet in a team sport context written in Hindi–English code-mixed text. That is, the tweet
is written with Hindi words using the English alphabet along with a few English words
(“team”, “captain”, and “hate”):

“Agar is team ka captain Dhoni nhi to ye team kuch nhi, chahe kisi Ko bhi le aao, Lakho
log aaj apki team Ko hate krne lge h”.

Translation:

“If Dhoni is not the captain of this team, then this team is nothing, no matter whoever
you bring, millions of people have started hating your team today”.

Example 1.2 (non-hate tweet in code-mixed Hindi–English). This example shows
a non-hate tweet in a media context written in Hindi–English code-mixed text. That is,
the tweet is written with Hindi words using the English alphabet along with an English
word (“media”):

“Magar ye media walay to jaan boojh ker paise ke liye sab karrahe hain”.

Translation:

“But these media people are deliberately doing everything for money”.

India is a large country with diverse languages within its many populations and com-
munities [9]. Consequently, code-mixed language, namely Hindi–English, is used naturally
and effectively by people when writing tweets for ease of expression and communication.
Code-mixed text is usually a language with an informal format and non-grammatical struc-
ture with a significant number of variations in slang and spellings [8]. Due to the informal
format caused by the mixture of different languages, hate speech detection in code-mixed
text is challenging. Hence, we need to have a softwarized mechanism to automatically
detect and control such hateful content regardless of the language to ensure the security as
well as the social and mental well-being of users.

This study targets a mix of English and Hindi–English (code-mixed) tweets. In the area
of hate speech detection, relevant research work has been conducted on pure languages
such as English [10,11]. Moreover, there exists research work on code-mixed languages,
such as Hindi–English [8,12,13]. However, hate speech detection in a mix of multiple
languages (multilingual) has not been explored extensively in the literature.
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1.1. Contribution

The main contribution of this study is that it evaluates the impact of data pre-
processing on hate speech detection in a multilingual context. The impact of data pre-
processing is evaluated in terms of prediction accuracy (percentage of correctly predicted
tweet categories), prediction efficiency (runtime), and method scalability with respect to
the size of the input dataset.

To the best of our knowledge, the study by Elouali et al. [7] is the only study that
addresses the detection of hate speech in a mix of different languages, including pure
English and code-mixed Hindi–English. In this study, we propose an efficient method to
accurately detect hate speech in a mix of English and Hindi–English tweets. Our method
first subjects all tweets to 10-step data cleansing (not performed by [7]); then, it uses a CNN
as well as a combination of CNN and LSTM algorithms with character-level embedding
to build a hate speech prediction model. We perform extensive experimental analysis on
real-life tweets by evaluating the performance of our proposed method in terms of accuracy,
efficiency (runtime), and scalability, and by comparing it with a closely related method
proposed by [7]. Experimental evaluation suggests that our method has an improved
accuracy and a significantly improved runtime.

1.2. Organization

This paper is organized as follows: Section 2 provides a literature review over existing
studies conducted in the area of hate speech detection. Section 3 provides a detailed
description of the datasets used for the experiments in our study. In Section 4, we detail
our proposed model architectures for detecting hate and non-hate tweets. Experimental
evaluation is provided in Section 5. This paper is concluded in Section 6.

2. Related Work

In the past decade, several research studies have been conducted to detect toxic (hate,
offensive, or aggressive) speech on social media [14]. These studies targeted toxic speech
detection in text written in English and a few other languages. Hate and abusive contents
on social media are independent of the language they are written in; hence, we need to
address this problem regardless of the informality or complexity of the language, whether
code-mixed or pure. Our study targets short text, and particularly published tweets on
Twitter. Hence, we group toxic speech detection techniques into three categories based on
the targeted tweet language. The first category includes research on the detection of toxic
speech in English text only, the second includes research in Hindi–English code-mixed
text only, and the third includes research in multilingual text (text written in multiple
languages).

2.1. Toxic Speech Detection in English Text

The literature includes several proposed approaches to detecting toxic content in
the English text. Researchers have identified English toxic text by detecting hate
tweets [10,11,15–19], offensive tweets [20–22], and a mix of both [23–25]. Various algo-
rithms were proposed for detecting toxic content in English text, namely machine learning
(ML)-based classification algorithms [10,15,16,20,22–24] and deep learning (DL)-based
classification algorithms [11,17,21,25].

Kwok and Wang [10] built a bag-of-words naïve Bayes classifier model to predict
English hate tweets targeting the Black community. The model resulted in an accuracy of
76%. Kwok and Wang found out that 86% of the racist tweets were categorized as racist only
because they contained offensive words. Hence, by considering only the unigram features
of the tweets, the model was not sufficiently accurate since the presence of offensive words
in a non-hate tweet can also lead to the wrong classification of tweets as anti-Black. Hate
speech needs to be carefully understood since it can even be expressed subtly without
offensive words.
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Waseem and Hovy [20] used critical race theory and built a logistic regression classifier
that considers additional features to tweets, primarily demographic and geographic data.
Even though demographic features did help enhance the accuracy of prediction, this type
of information is usually not directly available or reliable on Twitter.

Magu et al. [16] proposed an ML-based classification algorithm to detect racist tweets
in English that use unique hate code words referencing specific communities to avoid
violating social media policies. A support vector machine (SVM) classifier was built to
classify the racist tweets that used hate code words intentionally and the non-hate tweets
that used the code words in a regular context. The model achieved an accuracy of 79.4%.
The model was further used to identify the user handles who posted hateful tweets using
code words and the frequency of tweets above a threshold value. These results helped the
model understand the usage patterns of such users showing racism.

Davidson et al. [23] proposed an ML-based classification algorithm to classify hate
speech, offensive language, or neither in English tweets. Logistic regression with L2
regularization was used as a multi-class classification model, which achieved a precision
of 91%, recall of 0.90%, and F1-score of 90%. Predictions, accuracies, and errors were
closely analyzed to understand the possibilities and difficulties in accurately classifying
hate speech, offensive language, and neither. Homophobic and racist tweets were mainly
classified as hateful, sexist tweets were classified as offensive, and the tweets without any
hateful or offensive terms were difficult to be classified.

Watanabe et al. [24] used features such as unigrams, patterns, sentiments, and seman-
tics to detect hate speech and offensive English language. The J48graft algorithm was built
to perform classification using the WEKA toolkit. An accuracy of 87.4% was achieved
for binary classification of tweets (offensive or clean) and 78.4% for ternary classification
(hateful, offensive, or clean) using all the features combined.

Zampieri et al. [26] proposed ML and DL-based classification algorithms to classify
offensive content on Twitter and further identify the type and target of these offences.
SVM, Bi-directional LSTM (BiLSTM), and CNN models were built, and their performances
were compared using a macro-averaged F1-score. The CNN model performed best in all
three stages: detecting offensive tweets, categorizing the type of offense, and identifying
the target.

De Souza and Da Costa-Abreu [22] proposed ML-based classification algorithms to
detect offensive language in tweets and enhance the performance through the quality of
features and data configuration. Linear SVM (LSVM) and naïve Bayes classification models
were built to detect offensive language; LSVM achieved a 90% accuracy and a 92% recall,
whereas naïve Bayes achieved a 92% accuracy and a 95% recall. LSVM was sensitive to data
type and normalization and required proper parameters and a balanced input to attain
good results. On the other hand, such issues were not found in the naïve Bayes classifier;
hence, it performed better than LSVM and was easier to implement.

Recently, there have been some attempts to identify hate speech in contents composed
of images associated with text [27,28]. While this is a great contribution to aggressive
speech research, we believe the problem, and thus the proposed method, differs from that
of ours, i.e., aggression in purely textual contents.

2.2. Toxic Speech Detection in Hindi–English Code-Mixed Text

Researchers proposed several approaches to detecting toxic content in the code-mixed
language of Hindi–English text via detecting hate tweets [8,12,29–31] and aggressive
tweets [13]. Various algorithms were proposed by these researchers, mainly ML-based
classification algorithms [12,30] and DL-based classification algorithms [8,13,29].

Bohra et al. [12] proposed ML-based classification algorithms to introduce hate speech
detection in code-mixed (Hindi–English) posts on Twitter. SVM and random forest (RF)
classifiers were built. The performance of SVM was better than RF, with the highest
accuracy being 71.7% when all the features were used. Considering individual features,
character n-grams in SVM and word n-grams in RF achieved the highest accuracy.
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Kamble and Joshi [29] proposed DL-based classification algorithms to detect hate
speech in code-mixed (Hindi–English) tweets on Twitter. The 3849 tweets prepared by
Bohra et al. [12] were used for model evaluation, and a large set of tweets targeting
minority groups were collected to train the domain-specific word embeddings. Domain-
specific word embeddings improved the representation of hate targets much better than
general embeddings. SVM and RF classifiers were built using the same methodology
from Bohra et al. [12] as their baseline. Additionally, three DL models, namely CNN-1D,
LSTM, and BiLSTM, were built using the word embeddings for comparison. CNN-1D
achieved the highest precision (83.34%), F1-score (80.85%), and accuracy (82.62%), whereas
BiLSTM achieved the highest recall of 78.90%. Hence, the results show that the DL models
performed much better than the statistical methods in detecting the semantics and hate
speech contexts.

Singh et al. [13] proposed ML and DL-based classification algorithms to detect ag-
gressive speech in Hindi–English code-mixed posts and comments on Facebook. The data
used had 12,000 posts/comments in Roman and Devanagari from Facebook, published
as part of an online shared task by Kumar et al. [32], labeled into three classes: Covertly
Aggressive, Overtly Aggressive, and Non-Aggressive. Six classification models were built,
namely multimodal naïve Bayes, decision tree, SVM, multilayer perceptron, LSTM, and
CNN, using various combinations of features and parameter tuning. CNN performed the
best, achieving an accuracy of 73.2%. Neural networks do not always serve better than ML
algorithms in speech detection. The models could not learn appropriately since the posts
and comments were not diverse and varied in content enough.

Santosh and Aravind [8] proposed DL-based classification algorithms to detect hate
speech in code-mixed (Hindi–English) tweets on Twitter. SVM and RF classifiers were
built using the same methodology from Bohra et al. [12] as their baseline. Moreover,
the “sub-word level LSTM model and Hierarchical LSTM model with attention based on
phonemic sub-words” were built for comparison. SVM achieved the highest accuracy of
70.7%, whereas Hierarchical LSTM achieved the highest recall (45.1%) and F1-score (48.7%).
A simple architecture of DL was used due to the limited size of the data.

In the study by Sreelakshmi et al. [30], Facebook’s pre-trained embedding, fasttext,
was used as a feature matrix for classifying tweets using SVM-Linear, SVM-Radial Basis
Function (RBF), and RF algorithms. Performances were then evaluated and compared
using word2vec and doc2vec features. The fasttext feature gave the highest accuracy of
85.81%, and the word2vec feature gave 75.11% accuracy, both using the SVM-RBF classifier,
while the doc2vec feature gave 64.15% accuracy using RF. This study has outperformed all
the previous studies using fasttext with character-level features for classification, which
achieved better results than document-level and word-level features.

Studies in this category present different and compelling solutions for detecting toxic
speech in Hindi–English code-mixed text. However, the investigation of hate speech
detection in multiple languages (mix of Hindi–English code-mixed and any other language)
has not been thoroughly explored in the literature.

2.3. Toxic Speech Detection in Multilingual Text

Kumari et al. [33] presented a method for detecting aggression in bilingual text,
specifically in English and Hindi, but not in code-mixed text.

A hate tweet dataset from Twitter was used by Elouali et al. [7] to detect toxic content
in multilingual text using a DL-based classification algorithm. Elouali et al. [7] proposed
a DL-based classification algorithm that utilized neural networks to detect hate speech
in tweets written in seven different languages. They created their multilingual dataset
by combining existing monolingual datasets of different languages. Two versions of the
dataset were prepared as follows: the first version contained a total of 33,727 tweets in
Arabic, Italian, Portuguese, Indonesian, and English languages, and the second version con-
tained, in addition to the tweets in the first version, 12,446 tweets written in Hindi–English
and German languages. A CNN model with character-level embedding was built, and
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several experiments were carried out by modifying the parameters to determine the best
architecture. The best accuracies achieved for the first and second versions of the datasets,
respectively, were 88.93% and 83%. A single CNN model could detect hate speech in multi-
ple languages and perform better compared to the previous studies on individual datasets.
To the best of our knowledge, the study by Elouali et al. [7] is the only study that considers
several languages for detecting hate speech, whereas, in the other studies mentioned above,
the number of languages considered is only one. Elouali et al. [7] proposed a solution for a
problem that is closely related to ours; however, the time of execution of their method was
very long. This point is further elaborated on and demonstrated in Section 5.

This work tackles a mix of English and Hindi–English (code-mixed) tweets represented,
generally, in short text, to detect hate speech using neural network architectures. Our
proposed method efficiently detects hate speech in a mix of multiple languages. We
experimentally evaluate our method in Section 5. Table 1 summarizes the studies presented
in this section.

Table 1. Summary of comparison of related work.

Study By Model Used English Hindi–English Multilingual

Kwok and Wang [10] Naïve Bayes X
Waseem and Hovy [20] Logistic regression X
Magu et al. [16] SVM X
Davidson et al. [23] Logistic regression X
Watanabe et al. [24] Decision Tree X
Zampieri et al. [26] SVM, BiLSTM, CNN X
De Souza and Da Costa-Abreu [22] Linear SVM, naïve Bayes X

Bohra et al. [12] SVM, random forest X
Kamble and Joshi [29] SVM, random forest, LSTM, BiLSTM X

Singh et al. [13] Naïve Bayes, decision tree, SVM, multilayer
perceptron, LSTM, CNN

X

Santosh and Aravind [8] SVM, random forest, LSTM X

Kumari et al. [33] LSTM X

Elouali et al. [7] CNN X X X

Our proposed work CNN, LSTM X X X

3. Description of the Dataset

This study requires a dataset that consists of a mix of English tweets and Hindi–English
(code-mixed) tweets. Moreover, the tweets must be classified/labeled as hate or non-hate.
Unfortunately, we could not find a publicly available dataset with such specifications. To
ensure the repeatability of the experiments, we opted to employ widely used datasets
in the literature by combining existing datasets created and used by pertinent research
work [12,21,23]. Our dataset is formed by collecting tweets from three different sources,
as follows:

1. The first portion of our dataset is collected from the dataset used by Davidson et al. [23].
Davidson et al.’s dataset contains tweets written in the English language and labels
tweets as “hate”, “offensive”, or “neither”. However, for the sake of integrating this
dataset into our work (i.e., keeping only two class labels), we relabeled the “offen-
sive” class as hate and “neither” as non-hate. As a result, we had a dataset con-
taining 24,783 tweets in English, where 4163 tweets were classified as non-hate and
20,620 as hate.

2. The second portion of our dataset is collected from the dataset used by Bohra et al. [12].
This dataset contains tweets written in Hindi–English code-mixed language and
tweets labeled as “hate” or “non-hate”. Overall, this dataset contains 4579 tweets,
where 2918 of them are classified as non-hate and 1661 as hate.
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3. The third portion of our dataset is collected from the dataset used by Mathur et al. [21].
Mathur et al.’s dataset contains tweets written in Hindi–English code-mixed language
tweets labeled as “hate-inducing”, “non-offensive”, or “abusive”. For the sake of
having two class labels, we relabeled “hate-inducing” and “abusive” as hate and
relabeled “non-offensive” as non-hate. In total, this dataset contains 3189 tweets
in code-mixed Hindi–English, where 1121 of them are classified as non-hate and
2068 as hate.

The final combined dataset has two columns: “Tweet” (text content) and “Label” (hate
or non-hate). This resulting dataset consists of a total of 32,551 tweets, where 8202 are
classified as non-hate and 24,349 as hate. Table 2 summarizes the final dataset and its
class labels.

Table 2. Dataset class label statistics.

Language Class Number of Tweets

English
Hate 20,620

Non-hate 4163

Hindi–English
Hate 4039

Non-hate 3729

Total 32,551

Formally, a tweet, t, is a combination of characters. The maximum size of t, denoted
by |t|, is 280 characters. A class label c ∈ {“hate”, “non-hate”}. A dataset record r = <t, c>
is an ordered set, where t is the tweet and c is t’s associated class label. The dataset, D, is a
set of records, i.e., D = {r1, r2, . . . , rn}, where n = |D| = the total number of records in the D.

4. Proposed Method

This section details our proposed method for detecting hate and non-hate tweets. We
first detail the data pre-processing steps carried out to prepare the data for the machine
learning model. After that, we describe the training and test splits of the used dataset,
followed by a description of data resampling for handling imbalances. Finally, we detail
the proposed neural network architectures. Figure 1 provides an overview of all the steps
and components involved in our method.

Figure 1. Flowchart of the proposed method.

4.1. Data Cleaning (Pre-Processing)

We target classifying short text on social media platforms, and in particular, tweets.
Due to the informal nature of such short text messages, they are bound to contain characters
and words that may not be essential for hate speech detection, such as mentions/usernames
(e.g., @shivang), emoticons (e.g., ,, /), special characters (e.g., @, +), punctuation marks
(e.g., ?, !), and URLs (e.g., http://t.co/hH50P5pytX). Indeed, the experiments in Section 5

http://t.co/hH50P5pytX
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further corroborate this assumption. Therefore, the following pre-processing steps are
carried out on all input tweets:

1. Decoding HTML: The encoded HTML parts are decoded by replacing the HTML
entity names or numbers with their original text representation. Some encoded HTML
parts, such as “&amp”, are not correctly decoded and, thus, are removed.

2. Removal of emoticons: All the emoticons encoded with UTF-8 BOM (Byte Order
Marks) in the original text are first decoded and then removed.

3. Removal of mentions (usernames): Since mentions are just other individuals’ user-
names tagged in the tweets, they do not contribute to any kind of sentiment in the
tweet. Hence, they are removed.

4. Removal of URL links: All the URLs (http/https/www) and other links (including
links of pictures/videos) in the tweets are removed, since they do not contribute to
any kind of sentiment in the tweet.

5. Conversion to lower case: All the tweets are converted to lower case in order to have
only lower-case letters for character-level representation/embedding.

6. Expansion of negations: As a special character, all apostrophes are removed. How-
ever, in doing so, the negative contractions lose their meaning. For example, words
like “can’t” end up as “can t”, which is not an English word. Therefore, to avoid this
situation, all negative contractions are appropriately expanded. Thus, a contraction
such as “can’t” is converted to “cannot”.

7. Removal of hashtags, punctuation marks, numbers, and special characters: There
are cases where the words/phrases used with the hashtag symbol (#) provide useful
information about the tweets and their sentiment. Hence, only the “#” symbols are
removed, in addition to other special characters, punctuation marks, and numbers.

8. Removal of extra white spaces: Any extra white space in the tweets is removed.
9. Removal of duplicates: A dataset may contain duplicate tweets (same tweet repeated

multiple times). All such instances of duplications are removed, keeping only unique
tweets to avoid these duplicates from falling in both the training and test set during
the train–test split step and hence avoid overfitting. However, some duplicate tweets
are mistakenly labeled as both hate and non-hate. With careful examination, all
erroneously labeled duplicates are removed.

10. Removal of null values: Some tweets may be composed of entirely removable parts,
such as mentions, links, and emoticons. Consequently, pre-processing such tweets
renders them empty strings (null). Such tweets are removed entirely.

After pre-processing our employed dataset, the final clean version consists of a total
of 31,456 tweets with target class labels, where 7903 are classified as non-hate and 23,553 as
hate. As a result, the dataset is imbalanced due to the unequal distribution of class labels.

4.2. Training and Test Sets Split

The dataset is split into mutually exclusive training and test sets using holdout strat-
ified sampling by reserving 80% of the total number of the dataset records for training
(model construction) and 20% for testing (prediction and accuracy estimation). Eventually,
the training set contains 25,164 records and the test set contains 6292 records.

4.3. Handling Data Imbalance

Since we have an imbalanced dataset, standard classification algorithms tend toward
the majority class and ignore the minority class when making decisions. Hence, most
predictions will correspond to the majority class and treat the minority class features
as noise, resulting in a highly biased model [34]. Resampling techniques, such as under-
sampling and over-sampling, are widely used to address highly imbalanced datasets [35,36].
Random over-sampling is applied to our training set by replicating random records with
replacements from the minority class (“non-hate”) [34]. Only the training set is over-
sampled (as opposed to over-sampling the entire dataset) to avoid the problem of overfitting
and poor generalization to the test set. This problem occurs if identical records are present
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in both the training and test set. After applying random over-sampling on the training set,
the training set contains an equal distribution of class labels, specifically 37,684 records;
18,842 records for each class label.

4.4. Proposed Model Architecture

Following the state-of-the-art practices in implementing an effective classification
method for hate speech detection (please see Section 2), we propose a method that utilizes
two neural network architectures: CNN and CNN-LSTM.

Character-level CNN. Typically, convolutional neural networks (CNNs) are used to
extract information from raw signals in applications such as speech recognition, image
classification, and computer vision. However, a one-dimensional CNN can also be applied
to textual data, considering it as another type of raw signal at the character level [37]. The
study by Zhang et al. [37] demonstrated that a CNN could be applied only on characters
to understand text data without requiring the knowledge of words used in the text and
the syntactic/semantic structure of the text language. Character-level representation of
the tweets overcomes the problem of misspellings, out-of-vocabulary words in the test
set that are not in the training set, and syntactically identical words/homographs with
different meanings in the same or different languages that are faced while using word-
level representation [7]. Character-level representation increases the chance of having the
same characters in the training and test set. Due to the above reasons, character-level
representation of tweets is appropriate for our multilingual dataset.

Using the Keras tokenizer class, we parse tweets (text) into characters and create an
index for each unique tokenized character. The dataset alphabet consists of 28 characters,
including 26 English letters, space, and an unknown character (“UNK”) used to replace
out-of-vocabulary characters. Then, tweets are represented using their pertinent sequence
of indices. Since tweets have varying numbers of characters, and since the CNN accepts
input data points of fixed size, all tweets are zero-padded to fix the length to exactly
280 characters, which is the maximum allowed tweet length on Twitter. Each tweet is now
represented as a vector of 280 characters. Each tokenized character is represented by a
28-dimension vector that contains the value 1 in the character’s position (one-hot encoding)
and the value 0 elsewhere.

Example 4.1 (one-hot encoding). Given the tweet “you are bad”, let us assume the
following indexing for some of the characters:

{‘ ’: 1, ‘a’: 2, ‘b’: 3, ‘d’: 4, ‘e’: 5, ‘r’: 6, ‘o’: 7, ‘u’: 8 ‘y’: 9}.
Then, the above tweet is represented as follows:
{9 7 8 1 2 6 5 1 3 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}.

Each character is represented as a 28-dimensional vector. For example, “a” is represented as
{0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0}.
Figure 2 illustrates our initial CNN architecture that contains the following layers

in sequence:

a. One input layer, where the shape of the layer is 280 (maximum length of a tweet).
b. One embedding layer, with an embedding size of 28 (dimension of each character).
c. Three convolution layers, each with 100 filters, a window size of 3, stride 1, padding

as “valid”, and “relu” activation function. Two of the convolution layers are followed
by a max-pooling layer with a window size of 3.

d. One flatten layer.
e. Two fully/densely connected layers, with dense size of 1024 neurons and “relu”

activation function. Each layer is followed by a dropout layer with a dropout rate of
0.5 to regularize.
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f. One output layer, with two neurons and “sigmoid” activation function (where the
number of neurons is the number of target class labels).

Figure 2. Character-level CNN architecture.

Character-level CNN-LSTM. A combination of two deep neural networks (CNN and
LSTM) with character-level embedding is prepared by modifying the character-level CNN
architecture by adding an LSTM layer. We leverage the benefits of both CNN and LSTM
in a single architecture and use a unified model called CNN-LSTM for the detection of
hate speech [38]. A CNN is commonly known to act as a good feature extractor using
convolving filters, whereas LSTM is a special type of recurrent neural network (RNN) that
has proven to learn and capture long-term dependencies in sequential data by considering
the previous context/data. In the area of hate speech detection, the CNN can be used to
extract character combinations and LSTM to learn long-term character dependencies [38].

Figure 3 illustrates our initial CNN-LSTM architecture with character-level representa-
tion. The CNN-LSTM architecture contains the following layers in sequence:

a. One input layer, where the shape of the layer is 280 (maximum length of a tweet).
b. One embedding layer, with an embedding size of 28 (dimension of each character).
c. Three convolution layers, each with 100 filters, a window size of 3, stride 1, padding

as “valid”, and “relu” activation function. Two of the convolution layers are followed
by a max-pooling layer with a window size of 3.

d. One LSTM layer, with a size of 60 neurons, a dropout rate of 0.5, and a recurrent
dropout rate of 0.5.

e. One max-pooling layer, with a window size of 3.
f. One flatten layer.
g. One output layer, with two neurons and “sigmoid” activation function (where the

number of neurons is the number of target class labels).

Figure 3. Character-level CNN-LSTM architecture.

Character-level embeddings are given as an input to the CNN model that has different
layers, which generates/extracts character-level features. These features are provided as an
input to the LSTM network to measure and learn the long-term character dependencies [39].
The output of LSTM is further fed to the max-pooling layer, and the sigmoid output
generates the classification result as hate or non-hate. Hence, both CNN and LSTM are
exploited and paired for feature extraction and classification.
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5. Performance Evaluation

This section details an experimental analysis of the proposed model architectures. The
experimental analysis is conducted by evaluating the performance of the model architec-
tures in terms of accuracy, efficiency (runtime), and scalability. Accuracy is measured as
the percentage of correct predictions, since the actual class values are known in advance.
Runtime is calculated as the time taken to fit the model with the training set and validate
the model using the test set. Scalability is the ability of the model to handle large amounts
of data; that is, a model is considered as scalable if its runtime increases proportionately
with the increase in input data records (tweets).

Several experiments are carried out for both character-level CNN and character-
level CNN-LSTM architectures by tuning the hyperparameters, such as the number of
filters of the convolution layer, dropout rate, and the number of neurons of the fully
connected/LSTM layer, in order to define the best-performing architectures for the detection
of hate speech in a mix of English and Hindi–English (code-mixed) text. The performance
of our models is further compared to that of Elouali et al.’s [7] model, which does not
employ the pre-processing steps described in Section 4.1; however, it targets hate speech
detection in a mix of pure and code-mixed languages, making it a closely related study to
ours (please see Section 2.3).

The proposed method was implemented using Python and its necessary associated
tools (such as Natural Language Toolkit) and libraries (such as Numpy, Pandas, Scikit-
Learn, Matplotlib, and Keras) on the Jupyter notebook in the Anaconda environment. The
specifications of the machine used to run the experiments are Windows 10 OS, Intel Core
i7, 8 GB of RAM, 1TB HDD + 128 GB SSD, and 2GB NVIDIA Graphic. Additionally, a
virtual machine was used to run scalability experiments with the specifications of Windows
10 OS, 6-core, 64 GB of RAM, and 1 TB HDD. We would like to thank TDRA-ICT Fund for
providing high-end computing machines to conduct our experiments, through the Digital
Transformation Lab at Rochester Institute of Technology, Dubai (RIT-Dubai).

5.1. Character-Level CNN

In experiments 1 to 9, described in Table 3, we used the imbalanced version of the
training dataset to train the character-level CNN architectures of different hyperparameters,
and evaluated the performance of these architectures on the test dataset. The number of
epochs is set to 50 for all the experiments.

Table 3. Experiments and results of character-level CNN (using imbalanced training dataset).

Exp
No. Model Test

Accuracy
Test
Loss

No. of
Epochs Runtime Best

Accuracy
Worst
Loss

1
3 conv. layers of 100 filters,
2 dense layers of 1024
neurons, dropout 0.5

0.8558 0.2846 50 18 min 4 s 0.8558 at 50th epoch 0.2846 at 50th epoch

2
3 conv. layers of 100 filters,
2 dense layers of 1024
neurons, dropout 0.2

0.8422 0.3076 50 21 min 54 s 0.8527 at 48th epoch 0.2853 at 48th epoch

3
3 conv. layers of 100 filters,
2 dense layers of 1024
neurons, dropout 0.4

0.8551 0.2970 50 19 min 23 s 0.8603 at 49th epoch 0.2795 at 49th epoch

4
3 conv. layers of 256 filters,
2 dense layers of 1024
neurons, dropout 0.2

0.8498 0.2970 50 53 min 28 s 0.8628 at 48th epoch 0.2780 at 48th epoch

5
3 conv. layers of 256 filters,
2 dense layers of 1024
neurons, dropout 0.5

0.8568 0.2833 50 64 min 29 s 0.8593 at 48th epoch 0.2804 at 48th epoch
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Table 3. Cont.

Exp
No. Model Test

Accuracy
Test
Loss

No. of
Epochs Runtime Best

Accuracy
Worst
Loss

6
3 conv. layers of 100 filters,
2 dense layers of 512
neurons, dropout 0.2

0.8636 0.2816 50 17 min 2 s 0.8636 at 50th epoch 0.2816 at 50th epoch

7
3 conv. layers of 100 filters,
2 dense layers of 512
neurons, dropout 0.5

0.8552 0.2967 50 16 min 30 s 0.8554 at 49th epoch 0.2866 at 49th epoch

8
3 conv. layers of 256 filters,
2 dense layers of 512
neurons, dropout 0.2

0.8536 0.2926 50 47 min 16 s 0.8627 at 50th epoch 0.2777 at 50th epoch

9
3 conv. layers of 256 filters,
2 dense layers of 512
neurons, dropout 0.5

0.8652 0.2723 50 48 min 51 s 0.8652 at 50th epoch 0.2723 at 50th epoch

For the hyperparameters of the CNN in experiment 1, we fixed the number of filters
of each convolution layer to 100, the number of neurons of each fully/densely connected
layer to 1024, and the dropout rate of the dropout layer to 0.5. This is the initial version
of the architecture (Figure 2). The best performance of experiment 1 on the test set was a
85.58% accuracy and a 28.46% loss in the 50th epoch with a runtime of 18 min 4 s. Loss is
measured as the distance/difference between the current outcome of the model and the
desired outcome, representing the summation of errors in the model.

In experiments 2 and 3, we reduced the dropout rate to 0.2 and 0.4, respectively, from
the initial version of the architecture. The model in experiment 3 performed better in terms
of accuracy (86.03%) compared to experiments 1 and 2. For experiment 4, we modified
the hyperparameters with the number of filters as 256, the number of neurons as 1024,
and the dropout rate as 0.2. The model in experiment 4 performed better in terms of
accuracy (86.28%) compared to the previous three experiments, but its runtime was higher
(53 min 28 s). In experiment 5, we increased the dropout rate to 0.5 from the architecture
in experiment 4, but did not notice any improvement in the results. For experiment 6, we
modified the hyperparameters with the number of filters as 100, the number of neurons
as 512, and the dropout rate as 0.2. The model in experiment 6 performed better in
terms of accuracy (86.36%) as well as runtime (17 min 2 s) compared to the previous five
experiments. In experiment 7, we increased the dropout rate to 0.5 from the architecture
in experiment 6, but did not see any improvement in the results. For experiment 8, we
modified the hyperparameters with the number of filters as 256, the number of neurons as
512, and the dropout rate as 0.2, but also did not notice any improvement. In experiment 9,
we increased the dropout rate to 0.5 from the architecture in experiment 8. The model in
experiment 9 performed the best in terms of accuracy (86.52%) compared to all the previous
experiments, with a runtime of 48 min 51 s. The graphs of accuracy and loss for 50 epochs
of training and testing from experiment 9 are shown in Figure 4.

The model in experiment 9 has a precision of 69%, recall of 82% and F1-score of 75%.
Although we trained the model using an imbalanced dataset, the model did favor the
majority class (hate). However, in order to improve our results, we created another model
with the same hyperparameters as in experiment 9 and trained it with the over-sampled
version of the training dataset. The best performance of this model on the test set was a
88.84% accuracy and 26.61% loss in the 48th epoch with a runtime of 78 min 57 s, which is
shown in Table 4. Hence, the accuracy of the model improved by 2.32% when training it
with a balanced dataset. The model has a precision of 73%, recall of 88%, and an F1-score
of 80%. The graphs of accuracy and loss for 50 epochs of training and testing of the model
are shown in Figure 5.
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(a) (b)
Figure 4. Evaluation metrics for 50 epochs of training and testing with 3 convolutional layers of
256 filters, 2 dense layers of 512 neurons, and dropout rate of 0.5 using imbalanced training dataset:
(a) Accuracy and (b) Loss.

(a) (b)
Figure 5. Evaluation metric for 50 epochs of training and testing with 3 convolutional layers of
256 filters, 2 dense layers of 512 neurons, and dropout rate of 0.5 using over-sampled training dataset:
(a) Accuracy and (b) Loss.

Table 4. Experiments and results of character-level CNN (using over-sampled training dataset).

Model Test
Accuracy

Test
Loss

No. of
Epochs Runtime Best

Accuracy
Worst
Loss

3 conv. layers of 256 filters, 2 dense
layers of 512 neurons, dropout 0.5 0.8878 0.2582 50 78 min 57 s 0.8884 at 47th epoch 0.2661 at 47th epoch

5.2. Character-Level CNN-LSTM

In experiments 1 to 9, described in Table 5, we trained the architectures of character-
level CNN-LSTM of different hyperparameters with the cleaned and imbalanced version
of the training dataset and evaluated their performance on the test dataset. The number of
epochs was set to 50 for all the experiments.

For the hyperparameters of CNN and LSTM in experiment 1, we set the number of
filters of each CNN convolution layer to 100, the number of neurons to 60, and the dropout
rate to 0.5 for LSTM. This is the initial version of the architecture (Figure 3). The best
performance of experiment 1 on the test set was a 85.84% accuracy and 28.08% loss in the
49th epoch with a runtime of 24 min 40 s.
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Table 5. Experiments and results of character-level CNN-LSTM (using imbalanced training dataset).

Exp
No. Model Test

Accuracy
Test
Loss

No. of
Epochs Runtime Best

Accuracy
Worst
LOSS

1
3 conv. layers of 100 filters,
1 LSTM layer of 60 neurons
and dropout 0.5

0.8520 0.2963 50 24 min 40 s 0.8584 at 49th epoch 0.2808 at 49th epoch

2
3 conv. layers of 100 filters,
1 LSTM layer of 60 neurons
and dropout 0.2

0.8369 0.3049 50 26 min 44 s 0.8608 at 49th epoch 0.2800 at 49th epoch

3
3 conv. layers of 100 filters,
1 LSTM layer of 60 neurons
and dropout 0.4

0.8562 0.2808 50 20 min 51 s 0.8593 at 49th epoch 0.2885 at 49th epoch

4
3 conv. layers of 256 filters,
1 LSTM layer of 60 neurons
and dropout 0.2

0.8644 0.2705 50 54 min 18 s 0.8644 at 50th epoch 0.2705 at 50th epoch

5
3 conv. layers of 256 filters,
1 LSTM layer of 60 neurons
and dropout 0.5

0.8582 0.2952 50 60 min 52 s 0.8582 at 50th epoch 0.2952 at 50th epoch

6
3 conv. layers of 100 filters,
1 LSTM layer of 100 neurons
and dropout 0.2

0.8493 0.3091 50 26 min 11 s 0.8500 at 47th epoch 0.3002 at 47th epoch

7
3 conv. layers of 100 filters,
1 LSTM layer of 100 neurons
and dropout 0.5

0.8616 0.2781 50 25 min 17 s 0.8616 at 50th epoch 0.2781 at 50th epoch

8
3 conv. layers of 256 filters,
1 LSTM layer of 100 neurons
and dropout 0.5

0.8587 0.2948 50 60 min 24 s 0.8587 at 50th epoch 0.2948 at 50th epoch

9
3 conv. layers of 256 filters,
1 LSTM layer of 100
neurons and dropout 0.2

0.8657 0.2688 50 60 min 8 s 0.8657 at 50th epoch 0.2688 at 50th epoch

In experiments 2 and 3, we reduced the dropout rate to 0.2 and 0.4, respectively,
from the initial version of the architecture. The model in experiment 2 performed better
in terms of accuracy (86.08%) compared to experiments 1 and 3. For experiment 4, we
modified the hyperparameters with the number of filters as 256, the number of neurons as
60, and the dropout rate as 0.2. The model in experiment 4 performed better in terms of
accuracy (86.44%) compared to the three previous experiments, but its runtime was higher
(54 min 18 s). In experiment 5, we increased the dropout rate to 0.5 from the architecture in
experiment 4, but did not notice any improvement in the results. Moreover, we modified
the hyperparameters with the number of filters as 100, the number of neurons as 100, and
the dropout rate as 0.2 for experiment 6 and 0.5 for experiment 7, but also did not see
any improvement in both experiments. Furthermore, in experiment 8, we modified the
hyperparameters with the number of filters as 256, the number of neurons as 100, and the
dropout rate as 0.5, but still did not see any improvement in the results. In experiment 9,
we decreased the dropout rate to 0.2 from the architecture in experiment 8. The model in
experiment 9 performed the best in terms of accuracy (86.57%) compared to all the previous
experiments, with a runtime of 60 min 8 s. The graphs of accuracy and loss for 50 epochs of
training and testing from experiment 9 are shown in Figure 6.
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(a) (b)
Figure 6. Evaluation metrics for 50 epochs of training and testing with 3 convolution layers of
256 filters, 1 LSTM layer of 100 neurons, and dropout rate of 0.2 using imbalanced training dataset:
(a) Accuracy and (b) Loss.

The model in experiment 9 has a precision of 67%, recall of 91%, and F1-score of 77%.
Although we trained the model using an imbalanced dataset, the model did not favor the
majority class (hate). However, in order to improve our results, we created another model
with the same hyperparameters as in experiment 9 and trained it with the over-sampled
version of the training dataset and evaluated its performance on the test set. The best
performance of this model on the test set was an 88.97% accuracy and 23.85% loss in the
50th epoch with a runtime of 88 min 15 s, which is shown in Table 6. Hence, the accuracy
of the model improved by 2.4% when training it with a balanced dataset. The model has a
precision of 74%, recall of 88%, and an F1-score of 80%. Figure 7 shows the accuracy and
loss for 50 epochs of training and testing of the model.

(a) (b)
Figure 7. Evaluation metrics for 50 epochs of training and testing with 3 convolution layers of
256 filters, 1 LSTM layer of 100 neurons, and dropout rate of 0.2 using over-sampled training dataset:
(a) Accuracy and (b) Loss.

Table 6. Experiments and results of character-level CNN-LSTM (using over-sampled training dataset).

Model Test
Accuracy

Test
Loss

No. of
Epochs Runtime Best

Accuracy
Worst
Loss

3 conv. layers of 256 filters, 1 LSTM
layer of 100 neurons and dropout 0.2 0.8897 0.2385 50 88 min 15 s 0.8897 at 50th epoch 0.2385 at 50th epoch

Table 7 reports the results of running our models (Models b–e) and Elouali et al.’s [7]
model (Model a) on the same dataset. Both our neural network architectures (CNN and
CNN-LSTM) performed better (and similar at worse) compared to Elouali et al.’s [7] model
in terms of accuracy, and significantly better in terms of runtime.
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Table 7. Comparison of all the results.

Model
No. Model No. of

Epochs Runtime Accuracy Loss

a
Character-level CNN using imbalanced training dataset
(Elouali et al.’s [7] method) 50 156 min 18 s 0.8661 0.2704

b Character-level CNN using imbalanced training dataset (our work) 50 48 min 51 s 0.8652 0.2723

c Character-level CNN using over-sampled training dataset (our work) 50 78 min 57 s 0.8884 0.2661

d
Character-level CNN-LSTM using imbalanced training dataset
(our work) 50 60 min 8 s 0.8657 0.2688

e
Character-level CNN-LSTM using over-sampled training dataset
(our work) 50 88 min 15 s 0.8897 0.2385

Figure 8 reports the accuracy of prediction (hate/non-hate) of our models and com-
pares it with Elouali et al.’s [7] model. The corresponding model for each model number in
Figure 8 is listed in Table 7. CNN-LSTM performed slightly better than CNN, whether an
imbalanced or over-sampled dataset was used for training the model. Moreover, Figure 8
shows that we outperformed Elouali et al.’s [7] model’s accuracy by: (1) over-sampling
the dataset to avoid the inherent imbalanced class labels and, in turn, biased results, and
(2) adding an LSTM layer to the CNN architecture and pairing them for feature extraction
and classification. We further performed more experiments by changing hyperparameters
such as number of filters, number of neurons, and dropout rate, as reported in Table 5.
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Figure 8. Accuracy comparison of different models.

Figure 9 shows a comparison between the time of execution of our models and that of
Elouali et al.’s [7]. The corresponding model for each model number in Figure 9 is listed in
Table 7. Figure 9 reports a significant improvement in runtime in our models. This is mainly
due to removing emoticons encoded with UTF-8 BOM (Byte Order Marks) from the tweets.
The time of execution of Elouali et al.’s [7] model trained with an imbalanced dataset was
longer even when compared to our models trained with an over-sampled dataset, which is
comparatively larger.

Figure 10 shows a comparison between the scalability of our models (Models c and e)
and that of Elouali et al.’s [7] (Model a). In order to achieve the desired dataset size, we
duplicated randomly chosen tweets. The corresponding model for each model number
in Figure 10 is listed in Table 7. This experiment shows that all models are scalable
because runtime increases proportionately with respect to the number of input records.
However, the findings in Figure 10 further vindicate that our models successfully reduce
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runtime without compromising the accuracy of prediction, thanks to the pre-processing
step (Section 4.1).
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Figure 9. Runtime comparison of different models.
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Figure 10. Scalability comparison of different models.

In summary, the experimental results on accuracy, runtime, and scalability against a
closely related method from the literature indicate that data pre-processing plays a signifi-
cant role in reducing processing time without compromising the accuracy of prediction.

6. Conclusions

This paper presented a study on the impact of data pre-processing on hate speech
detection on social media platforms, in particular, Twitter. Data cleansing included 10 steps,
such as the removal of URLs and hashtags. An efficient method was developed to accurately
detect hate speech in text written in a mix of multiple languages including code-mixed, i.e.,
English and Hindi–English. The proposed method incorporates character-level embedding
representations of text and deep neural networks (DNNs). Particularly, two model architec-
tures were investigated, namely CNN and CNN-LSTM. A real-life dataset of published
tweets was used to evaluate the proposed method in terms of accuracy, runtime, and scala-
bility. The pre-processed dataset was split into training and test sets, where imbalanced and
over-sampled versions of the training set were used to train the model. The experimental
results suggest that data pre-processing significantly reduces runtime, without compromis-
ing the accuracy of prediction. Moreover, both the CNN and CNN-LSTM models trained
with the over-sampled version of the training dataset increased the accuracy of predic-
tion, outperforming a closely related method in the literature, i.e., Elouali et al.’s model [7].
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Among our best-performing models, CNN-LSTM performed slightly better than CNN with
an accuracy of 88.97%.

In the future, in addition to detecting hate speech in a mix of English and Hindi–
English code-mixed tweets, the proposed method can be extended to include various
other languages—pure and code-mixed. Moreover, a future research direction would be
to consider the psychological effect of emoticons on social media users and study the
significance of emoticons on hate speech. This can be achieved by: 1. Studying the impact
of various emoticons on human perception, and 2. Integrating emoticons into building
data models, which possess the ability to extract the emoticons’ contextual meaning within
the provided text.
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