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Abstract: Hand motion intentions can be detected by analyzing the surface electromyographic (sEMG)
signals obtained from the remaining forearm muscles of trans-radial amputees. This technology
sheds new light on myoelectric prosthesis control; however, fewer signals from amputees can be
collected in clinical practice. The collected signals can further suffer from quality deterioration
due to the muscular atrophy of amputees, which significantly decreases the accuracy of hand
motion intention recognition. To overcome these problems, this work proposed a transfer learning
strategy combined with a long-exposure-CNN (LECNN) model to improve the amputees’ hand
motion intention recognition accuracy. Transfer learning can leverage the knowledge acquired from
intact-limb subjects to amputees, and LECNN can effectively capture the information in the sEMG
signals. Two datasets with 20 intact-limb and 11 amputated-limb subjects from the Ninapro database
were used to develop and evaluate the proposed method. The experimental results demonstrated
that the proposed transfer learning strategy significantly improved the recognition performance
(78.1%± 19.9%, p-value < 0.005) compared with the non-transfer case (73.4%± 20.8%). When the
source and target data matched well, the after-transfer accuracy could be improved by up to 8.5%.
Compared with state-of-the-art methods in two previous studies, the average accuracy was improved
by 11.6% (from 67.5% to 78.1%, p-value < 0.005) and 12.1% (from 67.0% to 78.1%, p-value < 0.005).
This result is also among the best from the contrast methods.

Keywords: sEMG; transfer learning; motion intention recognition; trans-radial amputation

1. Introduction

Electromyography (EMG) is a biological current generated by the contraction of
muscles on the surface of the human body. The nervous system controls muscle activity
(contraction or relaxation), and different muscle fiber motor units on the surface of the skin
produce different signals at the same time. The electromyographic signals collected on
the skin surface are called surface electromyographic signals (sEMG) [1]. Measuring the
surface electromyographic signal has the advantage of being non-invasive [2] and it has
been a popular method used for testing in medicine [3–5]. Furthermore, the sEMG signal is
generally generated 30–150 ms ahead of the limb movement, and the movement can be
judged in advance; therefore, the next action can be predicted by sEMG, and consequently,
the sEMG prediction model has emerged. The surface electromyographic signal is one of
the most used biological signals for motion intention prediction [6].

Hand gesture recognition based on sEMG signals is one of the main paradigms for
prosthetic and rehabilitation device control [7]. Upper limb amputation brings a great
inconvenience to trans-radial amputees’ lives and myoelectric prostheses can help them to
improve their life quality. Several electrodes are used to record myoelectric signals. Then,
the motion intentions can be recognized by pattern recognition algorithms [8]. In the past
decades, sEMG-based hand motion intention recognition has primarily been researched
as a classification task [9–11]. Many limitations exist in real circumstances that hinder the
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classification algorithm research of myoelectric prostheses, for example, few amputated
volunteers can be recruited in the experiments resulting in limited data. In addition,
the collected signals can further suffer from signal quality deterioration due to muscular
atrophy and noise pollution, etc. These problems can lead to the inaccurate recognition of
motion intentions and, thus, result in the limited capabilities and adoption of myoelectric
prostheses [12].

In the recent years, transfer learning technology has evolved as a novel learning
framework for transferring information from one interest domain to another [13], and
there have been several applications of transfer learning in myoelectric control. Most of
these applications focus on solving cross-subject problems and numerous researchers have
been dedicated to constructing more robust recognition algorithms by utilizing historical
data from source subjects. Castellini, Fiorilla et al. [14] observed that sEMG signals varied
greatly between individuals and that models trained on diverse people are mainly subject
specified; however, they demonstrated that a pre-trained model was effective in reducing
the amount of time needed for an individual to become proficient with a prosthesis. Mat-
subara, Hyon et al. [15] split myoelectric signals into two independent parts named the
motion-dependent part and the user-dependent part, such that models could be reused by
rapidly learning only the user-dependent part for a new user. Sensinger, Lock et al. [16]
proposed to concatenate the source and target data and showed various classification
algorithms on it. Park, Lee et al. [17] proposed a user-adaptive model based on CNN.
They used deep learning to resolve a sEMG-based gesture recognition task for the first
time. This model outperformed the support vector machine (SVM) in terms of its classifica-
tion accuracy and robustness. Cote-Allard, Fall et al. [18] presented an inter-participant
transfer learning framework based on a progressive neural network (PNN) to improve
cross-subject recognition accuracy, in which each subject was considered as a source task.
Fan, Jiang et al. [19] proposed a modified Lenet combined with a pretrain mechanism to
improve the recognition performance on amputees. These studies proved the possibility of
using transfer learning in the field of myoelectric control, especially on the problem of low
recognition accuracy when a model was applied across subjects.

However, the earlier studies were limited in only considering the intact-limb subjects
in experiments [20–23], i.e., the data of the source and target domain were both from
intact subjects. Signals from intact people can be ensured in terms of accessibility and
quality and may lead to an overoptimistic recognition performance. Inspired by the
previous studies on cross-subject problems, namely, that there should be some shared
motion-related information between different subjects, the basic hypothesis of this work
is that the performance of amputees’ hand motion intention recognition can be improved
with the help of information from intact subjects. In this study, a CNN-based transfer
learning strategy was proposed to improve the recognition accuracy of amputees, whose
signals are weaker, and that have higher noise and are less available in the databases.
Additionally, to better exploit the time and space information of the sEMG signal, a long-
exposure segmentation was proposed for the data augmentation. The proposed method
was developed and evaluated on the Ninapro (Non Invasive Adaptive Prosthetics) DB2
and DB3.

2. Materials and Methods

The general steps of a conventional sEMG-based motion intention recognition task are
the preprocessing, windowing, feature extraction, and classification. Figure 1 depicts the
whole workflow of the proposed motion intention recognition system. Compared with the
general steps, there is an additional step named long-exposure segmentation following the
feature extraction, which will be explained in Section 2.3.1.
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Each participant was instructed to perform 49 motions (divided into 3 exercises named 
Exercise A, B, and C) six times following the computer screen during the acquisition 
process. Each repetition lasted five seconds and was followed by a three-second rest 
gesture. In this work, 17 movements in Exercise B (Figure 2) were classified. These 
movements included 8 isometric and isotonic hand configurations and 9 basic movements 
of the wrist, which are common in daily life and are frequently investigated in similar 
studies. The sEMG signals were recorded using 12 Delsys double-differential sEMG 
electrodes fixed on the subjects forearms with a sampling rate of 2 kHz. Eight electrodes 
were equally spaced around the forearm at the height of the radio-humeral joint; two 
electrodes were placed on the main activity spots of the flexor digitorum superficialis and 
of the extensor digitorum superficialis; two electrodes were also placed on the main 
activity spots of the biceps brachii and of the triceps brachii. Before making the datasets 
public, several signal processes were completed. The 50 Hz power-line interference (and 
harmonics) were removed from the sEMG using a Hampel filter (which is a filter used for 
removing outliers) first. Then, the signal data streams were synchronized with high-
resolution timestamps and re-labelled to eliminate the mismatch between the performed 
movements and the stimuli from the computer screen. 

Table 1. Amputation information of 11 amputees in DB3. 
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3 Right Right 30 5 Myoelectric 
4 Right Right and Left 40 1 No 
5 Left Left 90 1 Kinematic 
6 Right Left 40 13 Kinematic 
7 Right Right 0 7 No 
8 Right Right 50 5 Myoelectric 
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Figure 1. The whole workflow of the motion intention recognition system. Raw signals were first
separated using a 200 ms sliding window with a 10 ms increment to extract the mDWT features.
The mDWT features were then divided into samples in size of 200× 48 (where the sample size is
explained in Section 2.3.1) with a 20 overlap for classification.

2.1. Dataset

The Ninapro (Non Invasive Adaptive Prosthetics) database is one of the most extensive
public databases for prosthesis movement categorization. In this study, the DB2 and DB3
were used to develop and evaluate the proposed method. Atzori, Gijsberts et al. [24]
describes these two datasets in detail. A brief introduction is provided here for clarity.
There are 40 intact subjects in DB2 and 11 trans-radial amputation subjects (11 males; age
42.36 ± 11.96 years) in DB3. Table 1 shows the specifics of the amputation information.
Each participant was instructed to perform 49 motions (divided into 3 exercises named
Exercise A, B, and C) six times following the computer screen during the acquisition process.
Each repetition lasted five seconds and was followed by a three-second rest gesture. In this
work, 17 movements in Exercise B (Figure 2) were classified. These movements included
8 isometric and isotonic hand configurations and 9 basic movements of the wrist, which
are common in daily life and are frequently investigated in similar studies. The sEMG
signals were recorded using 12 Delsys double-differential sEMG electrodes fixed on the
subjects forearms with a sampling rate of 2 kHz. Eight electrodes were equally spaced
around the forearm at the height of the radio-humeral joint; two electrodes were placed on
the main activity spots of the flexor digitorum superficialis and of the extensor digitorum
superficialis; two electrodes were also placed on the main activity spots of the biceps brachii
and of the triceps brachii. Before making the datasets public, several signal processes were
completed. The 50 Hz power-line interference (and harmonics) were removed from the
sEMG using a Hampel filter (which is a filter used for removing outliers) first. Then, the
signal data streams were synchronized with high-resolution timestamps and re-labelled
to eliminate the mismatch between the performed movements and the stimuli from the
computer screen.
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Table 1. Amputation information of 11 amputees in DB3.

Subject Handedness Amputated
Hand(s)

Remaining
Forearm (%)

Year Since
Amputation

Prosthesis
Use

1 Right Right 50 13 Myoelectric
2 Right Left 70 6 Cosmetic
3 Right Right 30 5 Myoelectric
4 Right Right and Left 40 1 No
5 Left Left 90 1 Kinematic
6 Right Left 40 13 Kinematic
7 Right Right 0 7 No
8 Right Right 50 5 Myoelectric
9 Right Right 90 14 Myoelectric
10 Right Right 50 2 Myoelectric
11 Right Right 90 5 Myoelectric

2.2. Feature Extraction

The raw sEMG signals were first transformed into low-dimensional feature vectors
with increased information density, i.e., one feature point was calculated from a sliding
window of 100 ms (with 200 sampling points) and the information of the whole window was
compressed into one feature point. Generally, the features extracted from a time-frequency
domain (TFD features) contain more information from both the temporal and frequency
domains [25]. In this study, marginal discrete wavelet transform (mDWT) was used to
extract the TFD features, for they performed better in the prior study [26]. The mDWT
features were calculated as Equation (1), where S represents the deepest decomposition
level (S = log2N; N represents the wavelet order) and was set at 3 in this study; and
dx(s, u) = x(t). In this work, a Daubechies 7 wavelet (N = 7) served as the mother wavelet.
The sliding window was 200 ms in length with a 10 ms increment. The comparison of the
raw signals and the corresponding mDWT features is presented in Figure 3.

mDWT, mx(s) =

N
2S − 1

∑
u=0

|dx(s, u)|, s = 1, . . . , S (1)
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2.3. Gesture Recognition Using LECNN

Convolutional neural networks (CNNs) perform excellently in classification tasks
across a wide range of disciplines for their unparalleled ability to exploit spatial features.
CNNs also have been proved successful in sEMG pattern recognition, with better classifi-
cation accuracies compared to some traditional machine learning methods, namely, LDA,
SVM, KNN, MLP, and RF [27]. Specifically, Geng et al. [28] employed CNN for hand motion
recognition on three public databases, and the classification accuracies of the CNN achieved
the highest in all the datasets compared with traditional methods. Du et al. [29] employed
a similar approach with adaptation to achieve better performances for inter-session and
inter-subject scenarios. The experimental results showed that the CNN outperformed
traditional methods in a Ninapro dataset with 12 hand gestures; therefore, we proposed a
CNN-based model in this study.

2.3.1. Long-Exposure Segmentation

Instead of the traditional segmentation of sEMG signals, which treats an entire an-
alyzing window as a single sample, a long-exposure strategy akin to [30] was used for
the sample segmentation. To be more precise, a long-exposure sEMG sample set was
created from the raw sEMG that contained 200 subframes of mDWT features (where each
subframe mDWT feature was calculated from a 100 ms raw sEMG with a 0.5 ms increment).
As Figure 4 shows, the traditional way extracts mDWT features from a whole analyzing
window; however, the proposed way splits one analyzing window into several minor
processing windows (where each minor processing window contains a 100 ms raw sEMG
with a 0.5 ms increment) to calculate the subframes of mDWT features. The final input
would be built with 200 subframes, and the final sample size was 200× 48 (i.e., numbers
of sEMG channels × (S + 1) = 48, where S represents the deepest decomposition level
mentioned in Section 2.2). Obviously, the long-exposure structure includes more sEMG
information in time and space dimensions than traditional segmentation.
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Figure 4. Long-exposure segmentation to build inputs which contain more detailed information
on time and space. One minor processing window contains 12 channels of 100 ms sEMG with an
increment of 0.5 ms. Each minor processing window is used to calculate one subframe of the mDWT
features. The final input contains 200 subframes of mDWT features.

2.3.2. Long-Exposure Convolutional Neural Network (LECNN)

The same CNN architecture for both the source and target models is presented in
Figure 5. Three convolutional blocks after the input layer served as a feature extractor. The
Block1 and Block3 each had a convolutional layer and a batch normalization (BN) layer
to eliminate gradient vanishing. The Block2 had an additional pooling layer to augment
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the features and reduce the computation cost. The convolutional layer in each block had
32 filters of 1 × 3 × 3, 64 filters of 32 × 3 × 3 and 32 filters of 64 × 1 × 1, respectively.
After each BN layer, a ReLU layer was adopted as an activation function. After Block3, a
fully connected (FC) layer was employed with 17 hidden units as a classifier. Finally, a
softmax layer was applied after the FC layer to calculate the probabilities that a sample was
classified into each gesture.
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adopted as an activation function after each BN layer. The sizes of filters in the three convolutional
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2.4. Transfer Learning

Deep transfer learning investigates how to transfer information from one deep neural
network to another. The network-based deep transfer learning is one of the most prevalent
forms. It seeks to reuse the entire or a portion of the network of the source domain to the
target domain. It has been demonstrated that the shallow layers of a deep neural network
typically capture more general features [31]; hence, it is reasonable to transfer them to a
target model.

In our study, the proposed model was first pretrained on the source subjects. We
supposed that general knowledge of the gesture recognition could be learned from a vast
amount of data. The source model was then partially transferred to the target model.
Specifically, the parameters of the convolutional blocks were transferred from the source
model to the target model, while the parameters of the FC layer were initialized randomly.
Then, the parameters of Block1 were frozen during the following training to extract the
general features. The parameters of Block2 and Block3 were finetuned to eliminate the
difference between the two domains. The whole transfer learning framework is depicted in
Figure 6.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 12 
 

features and reduce the computation cost. The convolutional layer in each block had 32 
filters of 1 × 3 × 3, 64 filters of 32 × 3 × 3 and 32 filters of 64 × 1 × 1, respectively. After each 
BN layer, a ReLU layer was adopted as an activation function. After Block3, a fully con-
nected (FC) layer was employed with 17 hidden units as a classifier. Finally, a softmax 
layer was applied after the FC layer to calculate the probabilities that a sample was classi-
fied into each gesture. 

 
Figure 5. The proposed LECNN structure. All three convolutional layers contained a convolutional 
layer and a BN layer, while an additional pooling layer was added in Block2. A ReLU layer was 
adopted as an activation function after each BN layer. The sizes of filters in the three convolutional 
layers were 3 × 3, 3 × 3, and 1 × 1, respectively. The pooling operation was completed using 2 × 2 
filters. 

2.4. Transfer Learning 
Deep transfer learning investigates how to transfer information from one deep neural 

network to another. The network-based deep transfer learning is one of the most prevalent 
forms. It seeks to reuse the entire or a portion of the network of the source domain to the 
target domain. It has been demonstrated that the shallow layers of a deep neural network 
typically capture more general features [31]; hence, it is reasonable to transfer them to a 
target model. 

In our study, the proposed model was first pretrained on the source subjects. We 
supposed that general knowledge of the gesture recognition could be learned from a vast 
amount of data. The source model was then partially transferred to the target model. Spe-
cifically, the parameters of the convolutional blocks were transferred from the source 
model to the target model, while the parameters of the FC layer were initialized randomly. 
Then, the parameters of Block1 were frozen during the following training to extract the 
general features. The parameters of Block2 and Block3 were finetuned to eliminate the 
difference between the two domains. The whole transfer learning framework is depicted 
in Figure 6. 

 
Figure 6. The process of transfer learning. Parameters of three convolutional blocks in the pretrained 
source model were first transferred to the target model, serving as the initial value of the parameters. 
The parameters of Block1 were then fixed without updating, while Block2, Block3, and the fully 
connected layer were finetuned using the target data. 
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source model were first transferred to the target model, serving as the initial value of the parameters.
The parameters of Block1 were then fixed without updating, while Block2, Block3, and the fully
connected layer were finetuned using the target data.
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2.5. Experiments and Data Analysis

In this work, sEMG signals recorded from 20 intact-limb subjects with high SNR made
up the source domain, as the source model performance may influence the transfer learning.
The target model was established for each amputated subject independently to explore the
transfer learning efficacy. All the sEMG signals were segmented into samples of 200× 12,
as described in Section 2.3.1. Samples from repetitions 2 and 5 were used for testing, while
repetitions 1, 3, 4, and 6 were used for training.

The source LECNN model was first trained on 20 intact subjects to learn general
knowledge of the gesture recognition. Then, eleven models (for there were eleven amputees)
were trained using the target training data (i.e., repetitions 1, 3, 4, and 6 of each amputee)
without transfer learning, which were then used as the referential models. Finally, the
eleven models with the proposed transfer learning strategy were trained using the same
target data to improve the recognition performance. Consequently, there were 23 models
established in our work: (i) a source model, (ii) eleven subject-specific models without
transfer learning (named LECNN-Onlys), and (iii) eleven target CNN models combined
with transfer learning (named LECNN-TLs).

The model performance was evaluated based on the classification accuracy and
weighted F1-score (Equation (2). A one-tailed Wilcoxon signed rank test was used to
compare the recognition performance of the LECNN-Onlys and LECNN-TLs. Considering
that higher average accuracies after transfer could be the result if the strategy worked
well on some gestures but not others, the accuracies of each gesture were analyzed. Addi-
tionally, since clinical amputation parameters could significantly impact the recognition
performance, the correlations of the classification accuracy and two clinical parameters (i.e.,
the remaining limb percentage and the years since amputation) were investigated using a
Pearson’s correlation analysis:
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1
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are the Precision and Recall defined as Equations (4) and (5):
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where L is the set of labels, yl is the true label and ŷl is the predicted label.

3. Results
3.1. Classification Accuracy on Intact-Limb Subjects

As described above, the source model was trained using signals from 20 intact-limb
subjects. We obtained a 91.6%± 3.4% classification accuracy and 93.4%± 3.2% weighted
F1-score. The classification accuracy was improved by 6.1% (91.6% vs. 85.5%) compared to
a similar experiment [19] with the same features, gestures, and subjects.
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3.2. Classification Accuracy on Intact-Limb Subjects

The average classification accuracy and weighted F1-score of the LECNN-TLs were
significantly higher than LECNN-Onlys (78.1± 5.6% and 79.6%± 7.2% vs. 73.5%± 5.2%
and 76.2%± 6.7%, respectively, p-value = 0.0005 < 0.05, and Cohen’s d = 0.24 > 0.2). Figure 7
shows the comparison of each LECNN-Only and LECNN-TL model pair of the classification
accuracy and weighted F1-score. As shown in Figure 7, the classification accuracies after
transfer were all higher than their non-transfer counterparts, and the improvement on s3,
s7, and s9 exceeded 5%.
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3.3. Classification Accuracies on Different Gestures

In Figure 7, the classification accuracies of the different subjects were covered up;
however, the improvement in the averaged classification accuracy did not equal the im-
provement on each gesture. To investigate the effectiveness of transfer learning for each
gesture, the average classification accuracy of each gesture across the 11 amputees was
calculated. As Figure 8 shows, the blue line (LECNN-TLs) showed higher accuracies than
the orange line (LECNN-Onlys) across all 17 gestures. In other words, no negative transfer
(i.e., the performance of the models declined after applying the transfer learning) occurred
during the process of the transfer learning, which also proved the effectiveness of our
proposed transfer learning strategy.
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4. Discussion
4.1. The Classification Accuracy Comparison with Other Typical Methods

The average classification accuracy of the amputees after transfer learning achieved
78.1% on the 17-class motion intention recognition task. Compared with the other two
similar studies in Table 2, both of which tended to transfer knowledge from intact-limb to
amputated-limb subjects, the proposed method had a better recognition performance.

Table 3 compares the recognition performance of our method with the state-of-the art
methods assessed on amputees (DB3). Atzori, Cognolato et al. [32] classified 50 movements
on 11 amputees to establish a baseline. In their study, the CNN’s average classification
accuracy was under 40%, and the SVM classifier had the best accuracy at 42.7%. Arunraj,
Srinivasan et al. [26] employed different features (e.g., WL, MAV, auto-regressive co-efficient
(ARC), and logarithmic variance (LV)) in a REM (random Fourier mapping) classifier and
obtained an average accuracy of 53.3% for 50 movements on 11 amputees. These two
studies both classified 50 movements, which is more than twice the number of classes
considered in our study (i.e., 17 movements); thus, the accuracy gap between theirs and
ours may not be so large, and we have listed them only to present a baseline. Cene and
Balbinot [33] enhanced their categorization accuracy further. Using the extreme learning
machines (ELM) technique, their study achieved a mean accuracy of 67.0% for 17 move-
ments. Inspired by [32], Fan, Jiang et al. [19] utilized a deep learning model similar to Le-net
and demonstrated a greater average accuracy of 67.5%. In our experiments, the results
showed a superior performance with an average accuracy of 78.1%. Note that Cene and
Balbinot [34], Fan, Jiang et al. [19], Tosin, Cene et al. [35], and Zhai, Jelfs et al. [36] removed
Subject 7 from their work, as his forearm was entirely lost, as is shown in Table 1. This
severe condition can result in an exceptionally low rate of correct recognition. Consequently,
a new set of models were trained which excluded Subject 7, as the above references did,
for comparison. The proposed method then attained an average accuracy of 83.5%, which
surpasses the state-of-the-art methods.

Table 2. Recognition performance with the other two transfer strategies.

Gregori, Gijsberts et al. [37] Fan, Jiang et al. [19] Proposed

Motions 17 17 17
Int./Amp. 20/9 20/11 20/11
Features Avg. MAV/VAR/WL mDWT mDWT
Classifier SVM CNN LECNN

Non-transfer 52.1% 62.0% 73.4%
Transfer 51.9% 67.5% 78.1%

Improvement −0.02% 5.5% 4.7%

Table 3. Comparison of classification performance to the state-of-the-art methods on amputees.

Gestures Amputees Features Model Accuracy

Atzori, Cognolato et al. [32] 50 11 RMS SVM 42.7%
Arunraj, Srinivasan et al. [26] 50 11 LV/ARC/WL/MAV RFM 53.3%
Cene and Balbinot [33] 17 10 RMS CNN 56.9%
Cene and Balbinot [34] 17 11 Avg. RMS/MAV/SD ELM 67.0%
Tosin, Cene et al. [35] 17 10 Feature Selection SVM-REF 74.8%
Zhai, Jelfs et al. [36] 10 10 Spectrogram CNN 73.3%
Fan, Jiang et al. [19] 17 11 mDWT CNN 67.5%
Fan, Jiang et al. [19] 17 10 mDWT CNN 82.3%
Proposed 17 11 mDWT LECNN 78.1%
Proposed 17 10 mDWT LECNN 83.5%
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4.2. Correlation Analysis of Recognition Performance and Amputation Factors

Many previous studies have proved that sEMG signals vary between different subjects,
and this can be more obviously observed across amputees. Consequently, motivated by the
distribution of the classification accuracies shown in Figure 7, we explored the correlations
between classification accuracy and two amputation factors (i.e., the remaining forearm
percentage (RFP) and years since amputation (YSA)) using a Pearson correlation analysis.
As shown in Figure 9, there was a positive linear correlation between the classification accu-
racy and the RFP with the Pearson correlation coefficient r = 0.63. Atzori, Gijsberts et al. [8]
found a similar result in their study as well. This result reveals the challenge of motion
intention recognition for a highly-amputated group. The classification accuracy (only
17.9%) was particularly poor when the entire forearm was lost. Although it was improved
to 24.9% after transfer learning, it was still too low for accurate recognition. Due to nerve
injury, the residual muscles of amputees may generate weaker sEMG signals than those of
intact people [38]. Therefore, when the entire forearm was absent, the information from
the subjects with intact forearms may have been meaningless; however, no significant
linear correlation was found between the classification accuracy and the YSA. This result
is inconsistent with the results from [8]. One probable explanation is that they classified
a larger number of motions (i.e., 50 classes), which reduced the classification accuracy of
the freshly-amputated subjects. In our study, the proposed method showed a more stable
recognition performance. Furthermore, considering that s7 is a strong outlier, this would
affect the analysis result; thus, we performed the correlation analysis excluding s7. The
results showed no significant linear correlation between the classification accuracy and
the YSA, which is consistent with the original result. While the original linear correlation
between the classification accuracy and RFP did not exist after excluding s7; this was an
expected result for us since it showed a more stable recognition performance of our method
when studying amputees with different RFPs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 12 
 

classification accuracy and the RFP with the Pearson correlation coefficient r = 0.63. Atzori, 
Gijsberts et al. [8] found a similar result in their study as well. This result reveals the chal-
lenge of motion intention recognition for a highly-amputated group. The classification 
accuracy (only 17.9%) was particularly poor when the entire forearm was lost. Although 
it was improved to 24.9% after transfer learning, it was still too low for accurate recogni-
tion. Due to nerve injury, the residual muscles of amputees may generate weaker sEMG 
signals than those of intact people [38]. Therefore, when the entire forearm was absent, 
the information from the subjects with intact forearms may have been meaningless; how-
ever, no significant linear correlation was found between the classification accuracy and 
the YSA. This result is inconsistent with the results from [8]. One probable explanation is 
that they classified a larger number of motions (i.e., 50 classes), which reduced the classi-
fication accuracy of the freshly-amputated subjects. In our study, the proposed method 
showed a more stable recognition performance. Furthermore, considering that s7 is a 
strong outlier, this would affect the analysis result; thus, we performed the correlation 
analysis excluding s7. The results showed no significant linear correlation between 
the classification accuracy and the YSA, which is consistent with the original result. 
While the original linear correlation between the classification accuracy and RFP did 
not exist after excluding s7; this was an expected result for us since it showed a more 
stable recognition performance of our method when studying amputees with differ-
ent RFPs. 

  
(a) (b) 

Figure 9. Correlations of classification accuracy and two clinical amputation parameters. (a) is the 
correlation between classification accuracy and Remaining forearm percentage. (b) is the correla-
tion between classification accuracy and Years since amputation. 

4.3. Computational Cost 
Although online performance is more important, many studies have used offline ex-

periments at their beginnings to show the effectiveness of their methods. Thus, we per-
formed off-line experiments in this work at first as well; however, considering the im-
portance of online performance, we further evaluated the computational cost of our 
method as an extension of this study. The computational cost was evaluated on a server 
with 40-thread Intel(R) Xeon(R) Silver 4316 CPU and NVIDIA Geforce RTX 3090GPU, and 
a Raspberry Pi 4B with 4G of storage. The inference time of one sample was 570 µs on the 
sever and 49 ms on the Raspberry Pi, which were all less than 200 ms (which is an accepta-
ble time delay in real use). This indicated the proposed method had the potential to be 
used in the real world. 

5. Conclusions 
In this study, a deep transfer learning strategy based on a LECNN model was pro-

posed to improve the recognition accuracy of hand motion intention for trans-radial am-
putees. The performance of target models was improved after applying the proposed 
transfer learning strategy. This result demonstrates an encouraging way to enhance the 
motion intention recognition abilities of amputees by utilizing information from intact 

Figure 9. Correlations of classification accuracy and two clinical amputation parameters. (a) is the
correlation between classification accuracy and Remaining forearm percentage. (b) is the correlation
between classification accuracy and Years since amputation.

4.3. Computational Cost

Although online performance is more important, many studies have used offline
experiments at their beginnings to show the effectiveness of their methods. Thus, we
performed off-line experiments in this work at first as well; however, considering the
importance of online performance, we further evaluated the computational cost of our
method as an extension of this study. The computational cost was evaluated on a server
with 40-thread Intel(R) Xeon(R) Silver 4316 CPU and NVIDIA Geforce RTX 3090GPU, and
a Raspberry Pi 4B with 4G of storage. The inference time of one sample was 570 µs on
the sever and 49 ms on the Raspberry Pi, which were all less than 200 ms (which is an
acceptable time delay in real use). This indicated the proposed method had the potential to
be used in the real world.



Appl. Sci. 2023, 13, 11071 11 of 12

5. Conclusions

In this study, a deep transfer learning strategy based on a LECNN model was proposed
to improve the recognition accuracy of hand motion intention for trans-radial amputees.
The performance of target models was improved after applying the proposed transfer
learning strategy. This result demonstrates an encouraging way to enhance the motion
intention recognition abilities of amputees by utilizing information from intact people.
Additionally, by creating models specifically for each amputee and examining the relation-
ship between two amputation factors and the classification accuracy, we confirmed that
a low RFP brings a challenge to the motion intention recognition task of amputees. This
inspires us to develop more robust algorithms for use with a high amputation level when
recognizing the motion intention for amputees.

In this study, only the same hand gestures were considered in both the intact and
amputated subjects, and when a new gesture appeared, the performance of our system
could not be guaranteed; therefore, in the following work, we could focus on improving
the robustness of our system when new gestures appear. This can be accomplished by
examining which non-stationary characteristic of a sEMG signal is changing between the
present and new gestures to develop a system with a high robustness.
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