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Abstract: The main purpose of this study is to investigate the thermal behavior of power law fluid
within a plus-shaped cavity under the influence of natural convection, also taking into account
the Darcy number and magnetohydrodynamics (MHD). The problem is formulated as a system of
partial differential equations considering the power law fluid’s rheological behavior. The left-side
walls are maintained at a specific low temperature while the lower and the right-side walls have
uniform maximum temperatures. The boundary condition is designed to enhance heat transfer
efficiency within the cavity, utilizing advanced thermal insulation methodologies. Finite element
method (FEM) simulations are conducted, and a grid independence test is performed to validate the
results. The impact of relevant parameters on the variation in momentum and thermal distributions is
investigated using streamline and isothermal contour plots. The results indicate that as the Rayleigh
number increases, the kinetic energy also increases, whereas the viscosity and circulation zones
expand with an increase in the power law index. The Nusselt number exhibits a higher value in
the shear-thinning case (n = 0.7) compared to the Newtonian (n = 1) and shear-thickening (n = 1.2)
cases. This empirical observation underscores the vital role that fluid rheology plays in molding
the overall heat transfer performance within the cavity. The study concludes that there is a distinct
correlation between the heat transfer rate and the Rayleigh number (Ra). As Ra increases, there is
a significant improvement in the heat transfer rate within the flow domain. Furthermore, the fluid
behavior and heat transfer performance within the cavity are significantly influenced by the presence
of magnetohydrodynamics (MHD) and the Darcy effect.

Keywords: natural convection; power law; finite element method; plus-shape enclosure; heat
transfer; MHD

1. Introduction

Over the past decade, the study of natural convection has garnered significant attention
from researchers across various disciplines. Its ability to transfer heat without external
energy sources makes natural convection a promising area of research for numerous
natural and industrial applications. From energy-efficient cooling systems to advanced heat
exchangers, the potential for natural convection to revolutionize engineering practices is
immense. Numerous investigations have explored the natural convection that arises when
a solitary heated object is positioned within an enclosure where the walls are maintained
at lower temperatures [1–6]. However, in practical engineering applications, it becomes
essential to gain insights into temperature gradients and fluid flow within enclosures that
consist of multiple objects arranged in diverse positions. Studying the convective transport
driven by buoyancy within enclosures holds significant importance due to its wide range
of applications, including energy storage, material processing, cooling systems, and human
comfort. Ostrach [7] conducted a comprehensive examination of heat transfer in natural
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convective flow, wherein the majority of recent research has concentrated on scenarios
featuring either horizontal or vertical temperature gradients. Natural convection through
enclosures with partially active walls, such as heated and cooled walls, can be used for
cooling electrical gadgets and buildings [8]. Using the asymptotic approach, Kwon et al. [9]
developed a new heat transfer coefficient correlation for radial plate-fin heat sinks and
thermal optimized horizontally oriented ones using natural convection. Schaub et al. [10]
developed an analytical method for predicting heat transmission via unsteady natural
convection. Using an analytical solution, Ahn et al. [11] determined the conditions under
which free convection occurs in vertically asymmetrically heated shafts at low Rayleigh
numbers. Malkeson et al. [12] and Aloui et al. [13] analyzed the onset of Rayleigh-Bernard
convection. The focus of the study is the investigation of power law fluid convection in
rectangular-shaped cavities. Specifically, the study examines the convection patterns in an
enclosure with differentially heated walls, where the lower wall is heated while the side
walls are adiabatic.

Polymeric fluids with shear-thinning and -thickening properties have practical ap-
plications. Their viscosity changes with shear rate, making coupling momentum and
thermal fields crucial in measuring heat transfer. These fluids significantly minimize heat
loss in various applications, including storage tanks, crude oil production, food reheating,
electronic component cooling, and polymeric pallet melting or heating. A mathematical
model called the power law model provides a comprehensive approach to understanding
these materials. The power law model is a significant tool for predicting the behavior
of polymeric materials under both minimum and maximum stresses and accurately de-
scribing the deformation rate response. Various studies have extensively investigated
the behavior of power law materials within confined geometries accompanied by natural
convection. Khezzar et al. [14] utilized the Boussinesq approximation to demonstrate
the characteristics of a power law fluid with variable density in a 2D enclosure subject
to different Rayleigh numbers. Sairamu and Chhabra [15] investigated the behavior of
thermal-dependent density and quiescent power law fluid enclosed in an inclined cavity
subjected to laminar flow for different kinematic conditions. In their study, Mishra and
Chhabra [16] investigated the laminar convective motion of a power law fluid through a
series of horizontally aligned tandem cylinders with differential heating. In their study,
Hamza et al. [17] discussed entropy generation analysis using a hybrid nanofluid model
in a convectively heated moving wedge. References [18–24] provide a comprehensive of
recent advancements concerning power law non-Newtonian fluids, encompassing diverse
physical aspects and various flow-generating domains.

Several investigations have concentrated on the heat transfer performance of New-
tonian fluids in trapezoidal cavities, where mixed convection and natural have been in-
vestigated for magnetohydrodynamic (MHD) flows. Pirmohammandi and Ghassemi [25]
examined the impact of a magnetic field on the heat transfer of laminar natural convective
in a titled cavity and maximum temperature at the lower side. They found that a higher
Hartmann number reduces convective heat transfer for a given inclination. In recent years,
various research has examined natural convection under inclined magnetic fields [26–28].
Sheremet et al. [29] thoroughly investigated the MHD heat convection in a wavy enclosure
with a porous medium, and the lower wall has a maximum temperature. Numerous re-
searchers have examined the impact of incorporating porous media within an enclosure for
various purposes, as porous materials can enhance or reduce heat transfer [30–32]. The flow
within a vertical cavity with a wavy shape that was permeated by a porous medium was
examined by Aydin et al. [33]. They obtained a numerical solution using the finite element
method. Rizwan et al. [34] established a complete structure for the heat transfer effects of
free convection in a porous corrugated cavity under MHD flow and a uniform magnetic
field, utilizing a properly non-dimensional system that was solved through FEM with high
resolution near the surface of corrugation, and presented visualizations of flow patterns and
temperature distribution for various parameters. This includes the process of discretizing
the governing partial differential equations through a weak formulation. The weak form
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permits the utilization of lower-degree polynomials for approximating field variables. The
weak form for non-Newtonian fluids was introduced by [35,36]. Subsequently, Baranovskii
et al. [37] discussed the optimal control problem associated with a mathematical model that
describes the steady flow of a nonlinear-viscous, incompressible fluid within a bounded
two-dimensional domain. Weak solutions are constructed to minimize a specified cost
functional, subject to a given bounded set of permissible controls.

This article investigates the heat transfer effects in a porous cross-shaped cavity under
MHD flow and a uniform magnetic field. The research will be conducted through a
comprehensive literature review on the subject. Subsequently, a mathematical model has
been developed to capture and describe the occurrence of free convection within the cavity.
This article explores the non-Newtonian model characterizing shear-thinning and shear-
thickening fluid behaviors within a plus-shaped enclosure. The study seeks to elucidate the
influence of various factors, encompassing the Reynolds number, magnetic field inclination,
the Hartmann number, and power law index. Numerical simulations were then performed
to solve the governing partial differential equations using the finite element method, which
provides detailed insights into the flow patterns and thermal distribution within the cavity.
Graphical results such as streamlines and isotherms were presented to aid in visualizing
the simulation outcomes. Finally, based on the results obtained, a conclusion was drawn,
which summarized the findings and implications of the study.

2. Mathematical Model

Consider a 2D steady-state free convective power law fluid flow with constant density
in a plus-shaped cavity. The enclosure is enclosed by vertical walls maintained at constant
temperatures, with the right-side lower wall uniformly heated while the left-side upper wall
has low temperature. The enclosure is assumed to be impermeable, with no movement of
the walls. Therefore, this paper introduces originality in investigating the non-Newtonian
model that characterizes the behaviors of shear-thinning and shear-thickening fluids. The
Boussinesq assumption has been implemented, and the influence of Rayleigh dissipation is
considered negligible. The illustration in Figure 1 depicts the physical layout of the problem.
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Considering the above assumptions, we utilize the following governing equations to
represent the flow phenomenon [38–41]

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+
1
ρ

(
∂τxx

∂x
+

∂τxy

∂y

)
+ ξx (2)
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u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+
1
ρ

(
∂τxy

∂x
+

∂τyy

∂y

)
+ ξy (3)

where
(
ρ, µ, ξx, ξy

)
are fluid density, kinematic viscosity, and force terms (magnetic field

and Boussinesq approximation). The force includes thermal diffusivity $ and solutal
expansions (βT , βc).(

ξx, ξy
)
=
(

$B2
0

(
v.sinγcosγ− u.sin2γ

)
− µ

K u, $B2
0
(
u.cosγsinγ− v.cos2γ

)
− µ

K v + ρg[βc(c− cl) + βT(T − Tl)]
)

u
∂T
∂x

+ v
∂T
∂y

= ς

(
∂2T
∂x2 +

∂2T
∂y2

)
(4)

u
∂c
∂x

+ v
∂c
∂y

= D

(
∂2c
∂x2 +

∂2c
∂y2

)
(5)

τij = 2µaDij = µa

(
∂ui
∂xj

+
∂uj
∂xi

)
µa = K

{
2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
]
+
(

∂v
∂x + ∂u

∂y

)2
} n−1

2

D is magnetic diffusivity and ς is the diffusion coefficient.
The non-dimensional forms of Equations (1)–(5) are obtained by using dimensionless

parameters as

X = x
L , Y = y

L , U = uL
α , V = vL

α , (Th − Tl)θ = (T − Tl), P.ρα2 = p.L2, Da = K
L2

Pr =
K L2−2n

ρ α2−n , (ch − cl).C = (c− cl), Ra = ρ βT gL2n+1∆T
K αn , Le = ς

D , Ha = BH
√

$
µ

(6)

The boundary conditions are created by inserting Equation (6) into (1)–(5), as follows.

∂U
∂X

+
∂V
∂Y

= 0 (7)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr

[
2

∂

∂X

(
µa

∂U
∂X

)
+

∂

∂Y

(
µa

(
∂U
∂Y

+
∂V
∂X

))]
+ ξX , (8)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr

[
2

∂

∂Y

(
µa

∂V
∂Y

)
+

∂

∂X

(
µa

(
∂U
∂Y

+
∂V
∂X

))]
+ ξX , (9)

(ξX , ξY) =
(

Ha2Pr

(
sinγcosγ V − sin2γU

)
− Pr

Da U, Ha2Pr
(
sinγcosγ U − cos2γ V

)
− Pr

Da V
+PrRa(NC + θ))

U
∂θ

∂X
+ V

∂θ

∂Y
=

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
(10)

Le
(

U
∂C
∂X

+ V
∂C
∂Y

)
=

(
∂2C
∂X2 +

∂2C
∂Y2

)
(11)

µa =

{
2

[(
∂U
∂X

)2
+

(
∂V
∂Y

)2
]
+

(
∂V
∂X

+
∂U
∂Y

)2
} n−1

2

The dimensionless boundary conditions are

1. The conditions at the cold wall are

At C = 0, θ = 0 and U = V = 0
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2. The conditions at the hot wall are

At C = 1, θ = 1 and U = V = 0

3. The conditions at the adiabat walls are

At Cn = 0. θn = 0, U = V = 0
The mean Nusselt number is computed thus

Nuav =
∫ 1

0
Nu dY (12)

The mean Sherwood Number is computed thus

Shav =
∫ 1

0
Sh dY (13)

The Nusselt number Nulo and Sherwood Number (local) Shlo are computed through
the equations.

Nulo = −
(

∂θ

∂n

)
s

(14)

Shlo = −
(

∂C
∂n

)
s

(15)

In addition, the kinetic energy (total) is

K.E. =
1
2

∫
Ω
‖U‖2dΩ (16)

Various computational methods have been developed to analyze fluid flow and heat
transfer rates within the cavity. This study employs the Finite Element Method (FEM) to
discretize and solve Equations (7)–(11) along with their respective boundary conditions.
To enhance the precision of the solution, a hybrid mesh combining both triangular and
rectangular elements is employed, as illustrated in Figure 2. The simulation is conducted
using COMSOL 6.1, a finite element-based software. Table 1 represents the grid convergence
study of the simulation, where the number of elements is denoted as NELs, the degrees
of freedom are DOFs, and the averaged Nusselt number is denoted as Nuavg. Values are
reported for different grid levels. The simulation is conducted using a power law fluid with
a shear-thinning behavior, measured by the power law index n = 0.7, γ = 0o, Da = 0.001,
the Hartmann number Ha = 40, and the Rayleigh number Ra = 104. The table shows that
as the grid is refined from the extremely coarse level to the extremely fine level, the Nusselt
number average value increases gradually. It can be noted that the increase in the Nusselt
number average value is relatively small for the finer grid levels, which indicates that the
values at the finer level match those at the extra fine level.
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Table 1. Grid independence test for n = 0.7, Ra = 104, Ha = 20, Da = 0.001, and γ = 0o.

Level NELs DOFs Nuavg

Extremely coarse 414 3296 0.991965238

Extra coarse 540 4259 1.003046476

Coarser 872 6705 1.007611373

Coarse 1500 11,219 1.013042834

Normal 1558 11,596 1.013021766

Fine 2158 15,784 1.014833783

Finer 4986 35,750 1.020302651

Extra fine 13,800 96,065 1.025686961

Extremely fine 17,104 117,541 1.025693644

The numerical methods used in this study were validated by comparing the results
with Khezzar [14] and Bilal [38], who investigated the natural convection of non-Newtonian
fluids. The comparison was based on the Nuavg values for various Pr = 100, Ra = 103, and
Ha = 10. The findings presented in Table 2 demonstrate excellent concurrence between the
current results and the available literature data, with a maximum deviation of less than
2.5%. This serves as proof of the exceptional accuracy achieved by the numerical methods
employed in this study.

Table 2. Analysis of grid convergence at various refinement levels.

n Nuavg in [14] Nuavg in [38] Present

0.6 6.9345 6.9872 6.9136

0.8 5.5127 5.6200 5.5056

1.0 4.6993 4.6990 4.6810

1.2 3.1709 3.1705 3.1704

1.4 3.7869 3.7870 3.7812

3. Weak Formulation

This section is focused on fundamental aspects of the finite element procedure, encom-
passing the process of discretizing the governing partial differential equations through a
weak formulation. The weak form permits the utilization of lower-degree polynomials for
approximating field variables. Fundamentally, the concept of finite element analysis starts
by partitioning the bounded domain A into a finite number of smaller, non-overlapping
subdomains. Each of these subdomains represents a portion of the primary problem do-
main. FEM systematically models function spaces within subdomains and approximates
functions within each subdomain using piecewise techniques rather than seeking a single
function to represent the entire domain. This method generates a series of functions within
subdomains intended for approximation within Sobolev test spaces, providing a measure
of function smoothness and suitability for solving partial differential equation (PDE) prob-
lems. The weak formulation of flows of Bingham-type fluids is discussed in [42], while [43]
focuses on laminar, uniform, and incompressible flow, and [40] addresses the power law
fluid model. The given expression represents the weak form of Equations (7)–(11), as
described in [38,40]. ∫

A

(
∂U
∂X

+
∂V
∂Y

)
wdA = 0 (17)

∫
A

(
U ∂U

∂X + V ∂U
∂Y

)
wdA +

∫
A

∂P
∂X wdA − Pr

∫
A

[
2 ∂

∂X

(
µa

(
∂U
∂X

)
+ ∂

∂Y

(
µa

(
∂U
∂X + ∂V

∂X

)))]
wdA

−
∫

AξXwdA = 0
(18)
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∫
A

(
U ∂V

∂X + V ∂V
∂Y

)
wdA +

∫
A

∂P
∂Y wdA − Pr

∫
A

[
2 ∂

∂Y

(
µa

(
∂V
∂Y

)
+ ∂

∂X

(
µa

(
∂U
∂Y + ∂V

∂X

)))]
wdA

−
∫

AξYwdA = 0
(19)

∫
A

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
wdA −

∫
A

(
∂2 θ

∂X2 +
∂2 θ

∂Y2

)
wdA = 0 (20)

∫
A

(
U

∂C
∂X

+ V
∂C
∂Y

)
wdA − 1

Le

∫
A

(
∂2 C
∂X2 +

∂2 C
∂Y2

)
wdA = 0 (21)

µa =
∫

A

[
2

{(
∂U
∂X

)2
+

(
∂V
∂X

)2
}
+

(
∂V
∂X

+
∂U
∂Y

)2
] n−1

2

wdA

To achieve a numerical approximation, we evaluate the solutions obtained using both
continuous and discrete methods within finite-dimensional subspaces.

U ≈ Uk
V ≈ Vk
θ ≈ θk

∈ wk

,
C ≈ Ck ∈ qk
P ≈ Pk ∈ Qk

}
(22)

By substituting Equation (22) into the aforementioned equation, we obtain the discrete
version as follows. ∫

A

(
∂Uk
∂X

+
∂Vk
∂Y

)
wkdA = 0 (23)

∫
A

(
Uk

∂Uk
∂X + Vk

∂Uk
∂Y

)
wkdA +

∫
A

∂Pk
∂X wkdA − Pr

∫
A

[
2 ∂µa

∂X
∂Uk
∂X + ∂µa

∂Y

(
∂2Uk
∂Y2 + ∂2Vk

∂Y∂X

)]
wkdA

−
∫

AξXwkdA = 0
(24)

∫
A

(
Uk

∂Vk
∂X + Vk

∂Vk
∂Y

)
wkdA +

∫
A

∂Pk
∂Y wkdA − Pr

∫
A

[
2 ∂µa

∂Y
∂2Vk
∂Y2 + ∂µa

∂X

(
∂2Vk
∂X2 + ∂2Uk

∂X∂Y

)]
wkdA

−
∫

AξYwkdA = 0
(25)

∫
A

(
Uk

∂θk
∂X

+ Vk
∂θk
∂Y

)
wkdA −

∫
A

(
∂2 θk
∂X2 +

∂2 θk
∂Y2

)
wkdA = 0 (26)

∫
A

(
Uk

∂Ck
∂X

+ Vk
∂Ck
∂Y

)
wkdA − 1

Le

∫
A

(
∂2 Ck
∂X2 +

∂2 Ck
∂Y2

)
wkdA = 0 (27)

The viscosity relationship for each element in the power law fluid is as defined below.

µa =
∫

A

[
2

{(
∂Uk
∂X

)2
+

(
∂Vk
∂X

)2
}
+

(
∂Vk
∂X

+
∂Uk
∂Y

)2
] n−1

2

wdA

The discrete solution, in the form of basis functions combined with linear functionals,
is as follows.

Uk ≈
N
∑

h=1
Uhφh(x, y)

Vk ≈
N
∑

h=1
Vhφh(x, y)

Pk ≈
N
∑

h=1
PhΨh(x, y)

θk ≈
N
∑

h=1
θhθh(x, y)

Ck ≈
N
∑

h=1
ChCh(x, y)


(28)

The continuity equation, momentum, energy, and concentration at the element level
for n degrees of freedom is ∫

A

(
∂Uk
∂X

+
∂Vk
∂Y

)
wkdA = 0 (29)
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∫
A

(
Uk

∂Uk
∂X + Vk

∂Uk
∂Y

)
wkdA +

∫
A

∂Pk
∂X wkdA

−Pr
∫

A

[
2 ∂µa

∂X
∂Uk
∂X

∂wk
∂X + ∂µa

∂Y

(
∂2Uk
∂Y2

∂2wk
∂Y2 + ∂2Vk

∂Y∂X
∂2wk
∂Y∂X

)]
dA −

∫
AξXwkdA = 0

(30)

∫
A

(
Uk

∂Vk
∂X + Vk

∂Vk
∂Y

)
wkdA +

∫
A

∂Pk
∂y wkdA

−Pr
∫

A

[
2 ∂µa

∂Y
∂2Vk
∂Y2

∂2wk
∂Y2 + ∂µa

∂X

(
∂2Uk
∂X∂Y

∂2wk
∂X∂Y + ∂2Vk

∂X2
∂2wk
∂X2

)]
dA −

∫
AξXwkdA = 0

(31)

∫
A

(
Uk

∂θk
∂X

+ Vk
∂θk
∂Y

)
wkdA +

∫
A

(
∂θk
∂X

∂wk
∂X

+
∂θk
∂Y

∂wk
∂Y

)
dA = 0 (32)

∫
A

(
Uk

∂Ck
∂X

+ Vk
∂Ck
∂Y

)
wkdA − 1

Le

∫
A

(
∂Ck
∂X

∂wk
∂X

+
∂Ck
∂Y

∂wk
∂Y

)
dA = 0 (33)

The parameters maintain their standard definitions, and the solution is obtained by
iteratively processing the non-linear system until a specific value is achieved.

4. Results and Discussions

The study utilized the finite element method to investigate the heat transfer properties
of a power law fluid contained within a plus-shaped enclosure. The analysis meticulously
examined variations in velocity and temperature distribution in relation to distinct magni-
tudes of crucial parameters, such as the Prandtl number Pr, the power law index n, and
the Rayleigh number Ra. This method facilitated a comprehensive understanding of the
complex interplay between different factors and their impact on the fluid’s behavior. More-
over, the study also calculated local and mean heat transfer rates and K.E. measurements
related to various variables. The fluctuations in Nu concerning the power law fluid n
are presented in Table 2 for a comprehensive understanding of their relationship. The
analysis demonstrates that when the power law index n increases, a simultaneous decline
is observed in heat transfer. This is attributed to the fluid’s behavior transitioning from
pseudoplastic to dilatant as the power law index increases. Hence, the increase in fluid
viscosity as an effect contributes to reducing the motion and heat transfer processes within
the flow domain.

In Figure 3 with Ha = 0, it has been found that the enclosure is primarily occupied
by a single convective cell, which is aligned diagonally within the enclosure. The fluid
moves near the walls, while the temperature moves closer to the central point. The diagonal
walls are considered to be adiabatic. This leads to the formation of a counterclockwise
flow pattern within the cavity. When Darcy’s number rises 10−4 ≤ Da ≤ 10−2, the main
convective cell expands horizontally, and secondary cells emerge in opposite corners,
reflecting a stronger convective process within the enclosure. Moreover, an increase in the
Da leads to higher stream function values, signifying a notable impact on fluid movement
within the cavity. The results show that as Da increases, there is a decrease in fluid resistance
inside the cavity, which, in turn, leads to a considerable enhancement in convective fluid
intensity. As a result, the fluid flow properties are positively influenced by the Da number,
improving the overall behavior of the fluid within the cavity.

Figure 4 illustrates the changes in temperature distribution as the Darcy number
increases, which is associated with the consistent heating applied to the side walls. When
Ha = 0 and all evaluated power law indices and isotherm lines parallel to vertical walls
are noticeable at a low Darcy number Da = 10−4, this indicates that conduction is the
dominant mode of heat transfer in this case. As the Darcy number increases, heat transfer
diagonally from right to left walls occurs more rapidly, owing to the enhanced convective
flow within the enclosure. The thermal gradients surrounding the vertical side walls
are considerably steeper than those observed at the lower Darcy number. As the Ha
number increases, its impact on isotherms indicates a substantial reduction in the thermal
convection effect. At low Ha numbers, conduction is the main mode of heat transfer,
causing the temperature distribution to be less influenced by the applied magnetic field.
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Moreover, when Da (ranging from low to high) and the Ha number increase, the isotherms
are adversely affected, resulting in the restraint of convective flow within the enclosure.

Figure 5 demonstrates the impact of different Rayleigh numbers 104 ≤ Ra ≤ 106

and Hartmann numbers Ha = 0, 40 on the streamlines within the cavity for two different
rheological behaviors of the fluid, n = 0.7 (shear-thinning behavior) and n = 1.2 (shear-
thickening behavior). When Ha = 0, the discussion primarily centered around the influence
of Ra and fluid rheology on the streamlines inside the cavity. The results showed that for
both the pseudoplastic behavior n = 0.7 and dilatant behavior n = 1.2 fluids, as the Ra
increased from 104 to 106 the fluid motion became more ordered and stable. The streamlines
became more twisted on the vertical side, and the convective cells in the bottom right and
upper left corners became more noticeable. For the pseudoplastic behavior of the fluid,
the fluid velocity increased significantly, and the fluid moved in a more circular motion,
while for the shear-thickening fluid, the velocity decreased slightly, and the fluid moved in
a more linear motion.

The behavior of the fluid is significantly influenced by the presence of a magnetic field,
particularly for the maximum value of the Hartmann number. The fluid’s flow became
more regular and steadier in the presence of the magnetic field, resulting in weaker and
less intense convective cells within the enclosure. In the case of the shear-thinning fluid,
the impact of the Rayleigh number Ra and the rheological attributes on the streamlines
was insignificant. A rise in Rayleigh number for shear-thickening fluid resulted in more
vertically elongated streamlines. The convective cells in the lower and upper corners
became more pronounced and distinct.
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The impact of kinetic energy at power law indices n and various Rayleigh numbers
Ra is presented in Table 3. The kinetic energy is calculated based on the FEM simulations
conducted in the study. The results show that the kinetic energy escalates with an increase
in the Ra. Moreover, n = 0.7 (shear-thinning fluid) exhibits higher kinetic energy values as
compared to the shear-thickening fluid n = 1.2 and Newtonian fluid n = 1 for all evaluated
Ra values, indicating better fluid motion and convective heat transfer.

Table 3. Comparison of kinetic Energy for different n and Ra.

Rayleigh Number
Ra

Shear-Thinning
n = 0.7

Newtonian
n = 1

Shear-Thickening
n = 1.2

1000 0.000604989 0.000506759 0.000457145
10,000 0.088720673 0.054054614 0.035492132

100,000 20.27295603 8.693457243 3.339311009
1,000,000 763.1102155 485.2226004 155.4152072

Figure 6 represents the influence of Ra on the isotherms within the cavity for two
different rheological behaviors of the fluid, shear-thickening and shear-thinning while
keeping the Hartmann number Ha = 0. For the shear-thinning fluid n = 0.7, at low
Rayleigh number Ra = 104, the temperature distribution is dominated by conduction,
and the isotherms are along the vertical walls. With an increase in the Ra, the isotherms
become more prolonged, indicating the onset of convection. At higher Rayleigh numbers
Ra = 106, the isotherms become more irregular, indicating strong convection within the
enclosure. For the shear-thickening fluid n = 1.2, the impact of the Rayleigh number on
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the isotherms is similar, but the overall temperature distribution is less affected compared
to the shear-thinning fluid.

For a fixed Hartmann number of 40 and a varying Rayleigh number ranging from
104 to 106, significant changes in the cavity’s isotherms are observed for pseudoplastic
behavior n = 0.7 and dilatant behavior n = 1.2 fluids. With an increase in the Rayleigh
number, the isotherms for n = 0.7 exhibit slight distortion, resulting in a more pronounced
temperature gradient along the side walls of the enclosure. When n = 1.2, the Rayleigh
number increases because of thermal distribution, resulting in an overall decrease in the
temperature gradient. When Ra increases, several changes occur in the isotherms within the
cavity. Specifically, the thermal gradient is more prominent in the case of the pseudoplastic
behavior as compared to the dilatant behavior fluid.

Table 4 presents the variation of the Nusselt number across various Hartmann num-
bers, the power law index n, and the Darcy numbers. The outcomes indicate that the
heat transfer rate increases when the Hartmann number increases for all values of n and
the Darcy numbers. Similarly, when the Darcy number increases, the heat transfer rate
increases for all power law exponent n and Hartmann number values. The results also
indicate that the Nuavg has a maximum value for lower values of n (power law exponent).
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Table 4. Variation of Nusselt numbers for different Hartmann numbers, Darcy numbers and power
law index n.

Ha=0 Ha=20 Ha=40
Da 10−4 10−3 10−2 10−4 10−3 10−2 10−4 10−3 10−2

n

0.7 1.022770 1.025936 1.137129 1.02277 1.025153 1.052084 1.022768 1.024156 1.030507
1 1.022764 1.024352 1.033057 1.022763 1.024044 1.028685 1.022762 1.023584 1.025327

1.2 1.022758 1.023468 1.024544 1.022758 1.023375 1.024198 1.022756 1.023203 1.023664
1.6 1.022753 1.023081 1.023303 1.022753 1.023054 1.023249 1.022752 1.022994 1.023134

The line graph in Figure 7 illustrates the impact of the Hartmann number Ha, Kinetic
energy, and heat transfer rate for two different rheological behaviors of the fluid, shear-
thickening and shear-thinning, at different angles of inclination (0◦, 30◦, and 60◦). For
shear-thinning fluid n = 0.7, as the Hartmann number Ha increases from 0 to 40, the
averaged Nusselt number decreases for all angles of inclination (0◦, 30◦, and 60◦), with the
same behavior for kinetic energy. When Ha = 0, the averaged Nusselt number and kinetic
energy have maximum value. With the increase in Ha, the heat transfer rate and kinetic
energy decrease. Moreover, the influence of the degree of inclination can be noticed with
the 0o inclination having the greatest Nusselt number, followed by 30o and 60o. For shear-
thickening fluids n = 1.2, similar to shear-thinning fluids, the averaged Nusselt number
decreases as the Hartmann number Ha increases from 0 to 40, irrespective of the inclination
angle. The different angles of inclination, the 0◦ angle generally results in the highest
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Nusselt number. It can be concluded that shear-thinning and shear-thickening fluids are
consistent regarding the effect of Hartmann number Ha on the averaged Nusselt number.
As Ha increases, the Nusselt number decreases, indicating a reduction in convective
heat transfer. The results show that the magnetic field-induced flow suppression has a
substantial impact on the kinetic energy within the cavity, particularly for shear-thinning
behavior.
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Figure 7. Variation of averaged Nusselt number for different values of inclined angle γ at specified
parameters of Da = 0.001, Pr = 0.7, Ra = 104, and γ = 0◦.

5. Conclusions

The primary aim of this study is to conduct a thorough exploration of the thermal
characteristics of power law liquid flow within a plus-shaped enclosure under conditions
of natural convection. The analysis includes significant parameters and utilizes the finite
element method (FEM) to investigate the heat transfer characteristics of the fluid. Results
showed fluid behavior and the intricate interaction between important parameters like the
Rayleigh number (Ra), the power law index (n), and the Prandtl number (Pr), which affect
velocity and temperature distribution. Different variables were considered for measuring
kinetic energy and heat transfer rates. The results showed that both the kinetic energy
and the heat transfer rate increased when the Rayleigh number increased. The Nusselt
number is higher for the shear-thinning case (n = 0.7) compared to Newtonian (n = 1)
and shear-thickening cases (n = 1.2). When the Rayleigh number (Ra) increases, the
heat transfer rate in the flow domain also increases due to the temperature difference.
For a higher value of Darcy number, (Da) and (Ha) have a favorable impact on the fluid
behavior within the cavity, leading to a greater intensity of convective fluid. The results
of this investigation provide significant information for optimizing the design of a plus-
shaped cavity for power law fluids, which is essential for effective heat transfer systems,
contributing to the advancement of design strategies in this field.
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