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Abstract: Multiple reflection is a common interference wave in offshore petroleum and gas explo-
ration, and the Radon-based filtering method is a frequently used approach for multiple removal.
However, the filtering parameter setting is crucial in multiple suppression and relies heavily on
the experience of processors. To reduce the dependence on human intervention, we introduce the
geometric mode decomposition (GMD) and develop a novel processing flow that can automatically
separate primaries and multiples, and then accomplish the suppression of multiples. GMD leverages
the principle of the Wiener filtering to iteratively decompose the data into modes with varying
curvature and intercept. By exploiting the differences in curvature, GMD can separate primary
modes and multiple modes. Then, we propose a novel sparse Radon transform (RT) constrained
with the elastic half (EH) norm. The EH norm contains a l1/2 norm and a scaled l2 norm, which
is added to overcome the numerical oscillation problem of the l1/2 norm. With the help of the EH
norm, the estimated Radon model can reach a remarkable level of sparsity. To solve the optimiza-
tion problem of the proposed sparse RT, an efficient alternating multiplier iteration algorithm is
employed. Leveraging the high sparsity of the Radon model obtained from the proposed transform,
we improve the GMD-based multiple removal framework. The high-sparsity Radon model obtained
from the proposed Radon transform can not only simplify the separation of primary and multiple
modes but also accelerate the convergence of GMD, thus improving the processing efficiency of the
GMD method. The performance of the proposed GMD-based framework in multiple elimination is
validated through synthetic and field data tests.

Keywords: multiple removal; sparse radon transform; mode decomposition; sparse inversion

1. Introduction

The ocean holds substantial reserves of petroleum and gas resources. Seismic explo-
ration serves as the initial step in offshore petroleum and gas exploration and development,
and the quality of seismic data directly impacts the subsequent petroleum and gas hy-
drate exploration [1–4]. When conducting offshore seismic acquisition, due to the strong
wave impedance difference between seawater and air, seismic acquisition data contain
multiples in addition to primaries. Multiples can cover the effective signals and hinder the
imaging and identification of subsurface geological structures. To enhance data quality
and achieve a more precise identification of subsurface targets, it becomes imperative to
suppress multiples. One commonly employed technique for multiple suppression is the
Radon transform-based filtering method. The Radon transform (RT) is a classical trans-
formation [5] and has been extensively used in seismic exploration for various purposes
such as multiple elimination, denoising, deblending, and interpolation [6–11]. Primaries
and multiples exhibit different move-out characteristics in a Common Midpoint (CMP)
gather. After applying the normal move-out (NMO) correction, primaries are corrected
from hyperbolic to linear, whereas multiples are corrected from hyperbolic to parabolic,
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exhibiting a residual move-out. Using the parabolic RT, multiples and primaries are located
in variant regions in the Radon domain due to their variation in curvature. Subsequently, a
filter is utilized to mute the multiple coefficients, and the final demultiple result is obtained
by performing the inverse RT to the filtered Radon model [12,13]. This is the fundamental
theory of why and how the Radon filter method can be used for multiple suppression.
However, when using the filter method for multiple elimination, it is crucial to set appro-
priate filtering parameters. These parameters are heavily dependent on the experience of
geophysicists. If the filtering parameters are set improperly, the filtered result will either
contain multiple residuals or hurt primaries [6]. Complicating matters further, the optimal
filtering parameters for one area may not be suitable for another due to the inherent differ-
ences in seismic data. It requires processors to pay sufficient attention to ensure whether
the processing parameters are appropriate for the input data. Therefore, developing a
demultiple method that does not rely on manual parameters setting is currently an urgent
need in the petroleum industry.

Empirical mode decomposition (EMD) [14–17] and variational mode decomposition
(VMD) [18–20] are two signal-processing methods that can automatically decompose
signals into several intrinsic mode functions based on a predefined number of modes.
Geometric mode decomposition (GMD) [21], inspired by VMD, is an innovative approach
in signal analysis that enables the decomposition of a 2D seismic data into several modes
with various geometric characteristics. These geometric features include principal slopes
and curvatures. GMD designs a new objective function and adaptively obtains geometric
parameters by minimizing the variational energy along different directions. Using the
alternating direction method of multipliers (ADMM) algorithm [22,23], the optimization
problem of GMD can be solved, and the mode decomposition can be achieved. GMD
contains two components: GMD-F, which performs decomposition in the frequency domain,
and GMD-R, which performs decomposition in the Radon domain. The GMD-F algorithm
can be utilized to separate diffractions based on the kinematic and dynamic disparities
between reflections and diffractions in the f-k domain [24]. GMD-R leverages the principle
of the Wiener filter to iteratively decompose the input data into modes with varying
curvatures and intercept times. After NMO correction, there are curvature differences
between multiples and primaries. As a result, the separation of primary and multiple
modes can be achieved using GMD-R. Based on GMD-R, we have developed a framework
for automatically separating primary and multiple modes in the Radon domain. Compared
to the Radon filter method, the developed GMD-based multiple suppression method
significantly reduces the need for human intervention, as GMD-R automatically performs
computational decomposition based on the predefined number of modes. However, the
result of GMD-R is dependent on the resolution and sparsity of the Radon model, which is
affected by the limited sampling and finite aperture in offset [25].

To address the challenges associated with achieving a high-resolution Radon model,
RT is regarded as an inversion problem, and various inversion methods are employed to
solve this problem [6]. In 1995, Sacchi et al. [26] presented a new approach to achieve sparse
Radon transform, implementing it in the frequency domain (FSRT) through a Bayesian
framework. While this algorithm proved to be highly efficient, its limitation lies in the
fact that RT in the frequency domain assigns equal weight to all events, constraining its
ability to enhance temporal resolution. In response to this constraint, the time domain
sparse RT (TSRT) was introduced [27], offering a higher level of sparsity in the time domain
and thereby achieving enhanced resolution. However, it is worth noting that TSRT comes
with a substantial computational cost [28]. Combining the advantages of TSRT and FSRT,
a novel RT was developed by Trad et al. [6]. The approach performs RT and its inverse
in the frequency domain, formulates a new equation with the l1 norm constraint, and
solves it iteratively using the re-weighted least-squares algorithm. However, the large
dimension of the inverse matrix in the time domain leads to a high computational cost. To
overcome this disadvantage, an iterative 2D model shrinkage algorithm was introduced by
Lu to accelerate the RT [29]. Gholami et al. employed an iterative algorithm that combines
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the Radon transform with a l1 norm regularization term for denoising and spares the
representation of seismic data [30]. A new sparse RT was proposed by Wang et al. to
attenuate the outlier effects in the Radon domain [31]. Kazemi and Sacchi developed a
new RT along the offset direction and modified the basic Radon function to alleviate the
ill-posed problem [32]. Furthermore, Geng et al. developed a novel sparse RT with the
l1−2 norm constraint (SRTL1−2) and extended the method to three dimensions for multiple
attenuation [33,34]. The lp norm is added to promote sparsity of RT [35,36]. However, the
method is computationally complex and requires a large number of iterative operations.

To enhance the sparsity of the Radon model while concurrently reducing computa-
tional complexity, this paper introduces the elastic half (EH) norm [37,38] as a constraint
on the RT and proposes a sparse Radon transform. The EH norm contains a l1/2 norm
and a scaled l2 norm, which is added to overcome the numerical oscillation problem of
the l1/2 norm. To solve the optimization problem of the developed sparse RT, an efficient
alternating multiplier iteration algorithm is employed. Then, we improve the GMD-based
demultiple framework by applying GMD-R to the sparse Radon model of the proposed
RT. The high-sparsity Radon model can not only simplify the separation of primary and
multiple modes but also improves the computational efficiency of GMD-R. In addition,
we conduct an analysis of the impact of the number of mode decompositions and provide
recommendations for selecting an appropriate number. Finally, synthetic and field dataset
tests are given to verify the favorable performance of the proposed GMD-based approach
in multiple elimination.

2. Methods
2.1. Sparse Radon Transform with the Elastic Half-Norm Constraint

In seismic exploration, the 2D forward RT [6,39] and its inverse are given by

m(τ, q) =
x=xmax

∑
x=xmin

d
(
t = τ + qxNs, x

)
,

d(t, x) ≈
q=qmax

∑
q=qmin

m
(
τ = t− qxNs, q

)
,

(1)

where d(t, x) denotes the input seismic data and m(τ, q) represents the estimated Radon
model. The variables τ, q, Ns in Equation (1) represent the intercept time, slowness, and
integration stack path [39,40]. We can perform the transform in the frequency domain, and
the above equation can be represented by [6]

M(ω, q) =
x=xmax

∑
x=xmin

D(ω, x)eiωqxNs
,

D(ω, x) =
q=qmax

∑
q=qmin

M(ω, q)e−iωqxNs
,

(2)

where D(ω, x) and M(ω, q) represents the frequency components of d(t, x), and m(τ, q),
respectively. To simplify the derivation, Equation (2) can be represented by

M=LHD,
D=LM,

(3)
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in which L denotes the operator of the adjoint RT and LH is the conjugate transpose operator.
The specific expression of L is expressed as [31]

L =



e−iωq1xNs
1 e−iωq2xNs

1 · · · e−iωqnq−1xNs
1 e−iωqnqxNs

1

e−iωq1xNs
2 e−iωq2xNs

2 · · · e−iωqnq−1xNs
2 e−iωqnqxNs

2

...
...

. . .
...

...
e−iωq1xNs

nx−1 e−iωq2xNs
nx−1 · · · e−iωqnq−1xNs

nx−1 e−iωqnqxNs
nx−1

e−iωq1xNs
nx e−iωq2xNs

nx · · · e−iωqnq−1xNs
nx e−iωqnqxNs

nx


. (4)

The number of rows and columns in the matrix L is nx and nq, with nx being the trace
number of input data and nq being the sampling number of slowness in the Radon domain,
respectively. Using the 1D forward Fourier transform f [·] and the inverse transform f−1[·],
Equation (3) can be written as [41]

d = f−1(L f (m)). (5)

However, the RT encounters challenges in cases when the input data have limited
offsets and samplings [25]. These limitations lead to issues such as low resolution, aliasing,
and overlapping events in Radon space. The low-resolution Radon model poses difficulties
in accurately separating primaries from the input data. To address the problem of low
resolution, the RT is always treated as a sparse inverse problem, and the sparse Radon
model can be obtained by solving the equation as follows [6,33]

argmin
m
‖d− f−1(L f (m))‖2

2 + λU(m), (6)

where U(m) denotes the constraint term, which plays a role in ensuring the solution is
stable and unique. In general, U(m) has different types, such as l0, l1/2 and l1 norm. The
l0 norm provides the sparsest metric, but its solution is computationally challenging due
to the nondeterministic polynomial time complexity. The l1 norm is relatively easier to
solve, but it does not yield a sparse enough solution [33]. In recent years, the l1/2 norm
regularization has received increasing attention and has been applied to solving inverse
problems in various categories, as the l1/2 norm has a stronger sparsity and robustness than
the l1 norm. However, the l1/2 norm is nonconvex and may cause the solution unstable.
To address the issue, Lan et al. [37] proposed an elastic half (EH) norm regularization to
improve the l1/2 norm constraint. Containing both Tikhonov and sparse regularization in
the equation, the elastic half norm effectively mitigates numerical oscillation when dealing
with ill-conditioned inverse problems. This leads to an optimal solution that exhibits
improved sparsity and stability. Based on this, we propose a novel sparse Radon transform
with the EH norm constraint and denote the method as EH-SRT. The method formulates
the optimization problem as follows:

m∗ = argmin
m

1
2
‖d− f−1(L f (m))‖2

2 + λ‖m‖1/2
1/2 + σ‖m‖2

2, (7)

where ‖·‖1/2
1/2 represents the l1/2 norm, λ denotes the regularization parameter, and σ is the

scaling parameter. Comparing Equation (7) with the normal l1/2 norm, one can find that
there is an additional σ‖m‖2

2 term, which is used to guarantee a stable and unique solution,
because it solves the problem of numerical oscillations induced by the non-conductivity of
the conventional l1/2 norm at zero. If σ = 0, the EH norm regularization will convert to a
typical l1/2 regularization. Equation (7) is a nonconvex optimization problem as it contains
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both the l2 and l1/2 norm. To solve the optimization problem, an auxiliary variable T needs
to be introduced and Equation (7) is expressed by

(m∗, T∗) = argmin
m,T

1
2
‖d− f−1(L f (m))‖2

2 + σ‖m‖2
2 + λ‖T‖1/2

1/2 s.t.T = m, (8)

The minimization problem can be solved by converting it as an augmented Lagrangian
function, which is represented by

L(m, T, c) = min
m,T,c

1
2
‖d− f−1(L f (m))‖2

2 + σ‖m‖2
2 + λ‖T‖1/2

1/2 + 〈m− T, c〉+ ξ

2
‖m− T‖2

2, (9)

where is a balanced term, which is used to dominate the convergent rate, c denotes the
Lagrangian multiplier, and cT represents its transpose. Following the alternating direction
method of multipliers (ADMM) algorithm [22], Equation (9) can be solved by updating one
variable while fixing the other two variables, and the iteration equation is given by

mk+1 = argmin
m

L(m, Tk, zk) = argmin
m

1
2
‖d− f−1(L f (m))‖2

2 + σ‖m‖2
2 +

ξ

2
‖m− Tk + zk‖2

2, (10)

Tk+1 = argmin
T

L(mk+1, T, zk) = argmin
T

γ‖T‖1/2
1/2 +

ξ

2
‖mk+1 − T + zk‖2

2 (11)

zk+1 = zk + mk+1 − Tk+1 (12)

where z = c/ξ denotes the scaling Lagrangian multiplier and k represents the k-th iteration.
Equation (10) is a quadratic equation, which can be solved by setting its derivation of
variable m be zero and the update equation of m is given by

mk+1 = f−1
{[

LTL + (2σ + ξ)I
]−1[

LT f (d) + ξ
(

f
(

Tk
)
− f

(
zk
))]}

, (13)

The optimization problem in Equation (11) follows a typical l1−2 norm formulation,
and its solution can be achieved by employing the half-threshold function [37]:

Tk+1 = Hη

(
mk+1 + zk

)
, (14)

where

Hη(x) =

{
gη(xi), |xi| > 3 3√2

4 η
2
3

0, otherwise
, (15)

gη(xi) =
2xi
3

(
1 + cos

(
2π

3
−

2ψη(xi)

3

))
, (16)

ψη(xi) = arccos

(
η

8

(
|xi|
3

)−3/2
)

, (17)

where η = λ/ξ. Finally, the optimization problem of Equation (7) can be solved through
several iterations and a sparse Radon model m can be obtained using Equation (13). It is
important to note that only a single pseudoinverse matrix

[
LTL + (2β + ξ)I

]−1 needs to be
calculated in the procedure. And the inverse matrix is irrelevant with input data values,
but only with the dimension of input data. Once the matrix is calculated, it can be used to
all seismic data that have the same size. The two three-dimensional matrixes L(ω, x, q) and[
LTL + (2σ + ξ)I

]−1 do not need repeat calculation in every iteration, therefore it may take
a certain amount of memory to store them. In each iteration, the forward Fourier transform
of Tk and zk needs to be calculated and the inverse Fourier transform is performed to
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derive the final sparse Radon model mk+1. The pseudocode for performing the EH-SRT is
summarized in Algorithm 1.

Algorithm 1 The pseudocode for the proposed EH-SRT

Input: L, d, λ, σ, ξ, Niter.
Output: m = mk.
Initialize: m0 is the estimated Radon model of LSRT, T0 = m0, c = 0 and k = 0
1: for k = 0 to Niter do

2: update the sparse Radon model mk+1 with

mk+1 = f−1
{[

LTL + (2σ + ξ)I
]−1
[
LT f (d) + ξ

(
f
(

Tk
)
− f

(
zk
))]}

3: update Tk+1 with Equations (14)–(17)
4: update zk+1 with zk+1 = zk + mk+1 − Tk+1

If
(

mk+1 −mk
)
< tol Exit

5: end for

2.2. Geometric Mode Decomposition

Taking inspiration from VMD [18], Yu et al. proposed the geometric mode decom-
position (GMD) [21]. GMD considers two-dimensional seismic data as a combination of
band-limited modes with line or parabolic geometric features. By iteratively calculating the
weighted center of the energy spectrum, GMD can extract modes with different geometric
characteristics, such as slopes or curvatures. GMD contains two variants: GMD-F, which
performs decomposition in the frequency domain, and GMD-R, which performs decom-
position in the Radon domain. In this study, our focus lies on GMD-R as it allows for the
suppression of multiples by exploiting the separability of primaries and multiples in the
Radon domain. Consequently, the optimization problem is formulated as follows:

min
uk ,βk

Km

∑
k=1
‖∂xNMO(uk, βk)‖2

2 s.t.
Km

∑
k=1

uk =
^
d, (18)

where βk = (τk, qk) represents the Radon parameter including intercept time τk and slow-

ness parameters qk, uk denotes the k-th decomposed mode,
^
d is the input data, and Km

represents the predefined number of decomposed modes. NMO(uk, βk) denotes that the
NMO correction is implemented to mode uk and the corrected mode has a Radon parameter
βk. The optimization problem of Equation (18) can be understood in three parts: (1) decom-
posing the input data into a combination of modes uk with different Radon parameters βk;
(2) performing NMO correction to the decomposed mode uk; and (3) after NMO correction,
minimize the l2 norm of the derivation to ensure the smoothness of uk along x-axis.

The augmented Lagrangian of Equation (18) is expressed as

L(uk, βk) := γ
Km

∑
k=1
‖∂xNMO(uk, βk)‖2

2 + ‖
^
d−

Km

∑
k=1

uk(βk)‖
2

2

, (19)

where γ represents the balance parameter. The optimization problem of GMD-R is ad-
dressed using the ADMM algorithm. The algorithm updates the decomposed modes and
Radon parameters through several iterations. The calculation procedure and solution of
GMD-R is given and summarized in Algorithm 2 [21].

GMD-R plays a role in clustering signals in the Radon domain. Firstly, we define
the number of decomposed modes Km and randomly initialize several Radon parameters
βk in the Radon domain according to Km. Then, the updated modes are calculated using
Equation (20), which has the form of a Wiener filter function. The shape of Wiener filter is
shown in Figure 1, from which we can see that the Wiener filter plays the role of convergence
and allows signals to converge more closely to the center Radon coefficients βk. Therefore,
we can achieve the mode decomposition with different Radon coefficients using the Wiener
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filter. The new Radon parameters βk are determined using Equation (21). The iteration will
continue computing until the convergence standard is satisfied and the convergent modes
^
Rk are finally obtained [21]. By applying the inverse RT to these modes, the corresponding
decomposed modes in the time–space domain are obtained. Note that the summation of

the decomposed modes is equivalent to the input Radon model
^
m(β).

Algorithm 2 The ADMM algorithm for the GMD-R problem

Input :
^
d, m̂(β), γ, ε, Km, Niter

Output : ûk(β).

Initialize β1
k = (τ1

k , p1
k), n = 0, m̂(β) is the Radon model of input data

^
d,

^
Rk denotes

the decomposed modes in the Radon domain, and Niter is the maximum iteration times.

1 : for n = 0 : Niter do

2 : for k = 1 : Km do

3 : update
^
Rk:

^
R

n+1

k (β) =

^
m(β)− ∑

i 6=k

^
Ri(β)

1 + 2γ(β− βk)
2 , (20)

4 : end for

5 : for k = 1 : Km do

6 : update βk:

βn+1
k =

∫
βk

β

∣∣∣∣^
Rk(β)

∣∣∣∣2dβ

∫
βk

∣∣∣∣^
Rk(β)

∣∣∣∣2dβ

, (21)

7 : end for

8 : If∑
k

‖^
R

n+1

k −
^
R

n

k ‖
2

2

 < tol Exit (22)

9 : end for

After NMO correction, multiples and primaries exhibit different curvatures and are
distributed in the different areas in the Radon domain, which has a certain separability and
distinct geometric features. GMD-R uses the Wiener filter to make the primary and multiple
modes converge to their center Radon coefficients gradually, and can decompose them
from the original Radon model, thus finally achieving the decomposition of the primary
and multiple modes. Starting from this perspective, we developed a novel GMD-based
processing flow that can automatically achieve the separation of primaries and multiples.
Here, we will provide a detailed explanation of how to apply the GMD-R algorithm for
multiple suppression. The procedure of the proposed framework can be divided into
three steps:

(1) Apply NMO correction to the input CMP gather data d and then calculate the Radon
model m using the LSRT;

(2) By setting the number of decomposition modes to 2, perform GMD-R to the Radon
model m following Algorithm 2 and obtain the separated primary and multiple modes
in the Radon domain;

(3) Perform inverse RT to the separated primary modes and the demultiple result is
finally obtained.
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The main advantage of the GMD-based demultiple method over the Radon filter
method is that it does not require too many parameters to be set artificially. In the GMD
procedure, the decomposition of modes is achieved following the algorithm in Algorithm 2,
which is an automatic calculation process. From this point, we can separate primary modes
and multiple modes because they have different curvatures. Compared with the traditional
Radon filter method, there will be no need to set the filtering parameters artificially, which
means that it is less affected by human intervention. The only parameter that needs to be set
is the number of decomposition modes and we usually set it to 2 for multiple suppression
in the second step. The reason will be given in the discussion part, where we will analyze
the effect of decomposition number in GMD-R.

2.3. Improve GMD-R with the EH Norm Constraint Sparse Radon Transform

GMD-R enables the decomposition of modes with distinct geometric characteristics.
However, when the resolution of the input Radon model is insufficient, it can result in an
overlap between multiples and primaries in the Radon domain, which reduces the effec-
tiveness of mode decomposition. Moreover, the Radon model with low sparsity requires a
substantial number of iterative calculations by GMD-R to ensure that the separated mode
reaches convergence. To overcome these issues, the EH-SRT is introduced to improve the
GMD-based multiple removal framework. The processing flow of the improved GMD-
based demultiple framework is shown in Figure 2. Here, the yellow box represents the data
in the time-offset domain, while the blue box represents the data in the Radon domain. The
green box denotes the calculation procedures, including the EH-SRT, GMD and the inverse
RT. Here, we replace the LSRT with the EH-SRT to perform the RT. The use of EH-SRT
yields a Radon model with higher sparsity and stronger separability between primaries
and multiples. This enhancement aids the GMD-R method in effectively separating mul-
tiple and primary modes. Moreover, the Radon model with high sparsity simplifies the
convergence process during the GMD-R decomposition. Based on this, the combination of
EH-SRT and GMD-R can not only achieve better separation of primary and multiple modes
but also improve the computational efficiency of GMD-R.
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3. Numerical Examples
3.1. Synthetic Data 1 Test

In this section, we design a Radon model consisting of five primaries and several
multiples as shown in Figure 3a, and its synthetic data are displayed in Figure 3b. The
size of the synthetic data is set as 1001 × 60, with a sampling interval of 2 ms and a trace
interval of 20 m. The Radon coefficients of primaries in the true Radon model are located in
the line where its horizontal ordinate is q = 0, and the multiple coefficients are distributed
in the area where 0.04 ≤ q ≤ 0.1. Figure 3b displays the fact that multiples and primaries
exhibit superposition at near offset and cross-over at far offset in the synthetic data. To
demonstrate the effectiveness of our proposed EH-SRT, we perform LSRT and EH-SRT
to the synthetic data, and the estimated Radon models are displayed in Figure 3c,d. It is
apparent that the Radon model of LSRT is not sparse, causing primaries and multiples
to overlap with each other. While the Radon model of EH-SRT is very sparse and is very
similar to the true Radon model.
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Subsequently, GMD-R is applied to the two Radon models to decompose modes,
which are displayed in Figure 4a,b. The four columns in Figure 4 represent the decomposed
primary modes, the decomposed multiple modes, the recovered primaries, and the recov-



Appl. Sci. 2023, 13, 11041 10 of 22

ered multiples, respectively. One can find from Figure 4a that the decomposition results of
the LSRT model are unsatisfactory due to limited sparsity of the LSRT model. There are
multiple coefficients in the separated primary modes, resulting in multiple residuals in
the recovered primaries. While these issues are fixed in the decomposition results of the
EH-SRT model, multiples and primaries are separated not only in the Radon domain but
also in the time domain. And there are no residual multiples in the recovered primaries.
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To more clearly verify the effectiveness of the proposed approach in multiple removal,
we select a near-offset trace at x = 420 m and a far-offset trace at x = 1020 m to conduct
the amplitude comparison before and after multiple elimination. It is crucial to note
that only the demultiple result based on the EH-SRT model is employed in this test.
In Figure 5a, the amplitude comparison of the near-offset trace is presented, where the
blue line represents the amplitude of the synthetic data, and the red line represents the
amplitude of the recovered primaries. It is apparent that there are obvious multiples at 0.6 s,
1.05 s, and 1.25 s, while the multiples at 0.8 s and 1.5 s are not easily discovered. This is
because multiples overlap with primaries, leading to waveform variations in both types of
reflections. Through comparison, it can be observed that GMD-R can not only suppress the
obvious multiples but also recover primaries affected by multiples at 0.8 s and 1.5 s. This
achievement can be attributed to the precise separation of primary and multiple coefficients
achieved in the Radon domain. The far-offset trace comparison is displayed in Figure 5b,
where multiples exhibit a certain time shift compared with Figure 5a. The waveform
variations in Figure 5b reaffirm the conclusion drawn from Figure 5a, highlighting the
ability of GMD-R to effectively suppress multiples and recover primary signals.
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Figure 5. The amplitude comparison before and after multiple suppression. (a) the near-offset trace
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3.2. Synthetic Data 2 Test

In this section, a complex synthetic data with several multiples are generated to further
verify the method’s efficiency. Figure 6a,b show the designed synthetic CMP data before
and after the NMO correction. It is apparent that multiples have a parabolic shape and
are more easily to detect after the NMO correction. The size of the synthetic data is set as
1001 × 100, with a sampling interval of 2 ms and a trace interval of 20 m.
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We perform the LSRT and EH-SRT to the NMO-corrected data and the estimated
Radon model is shown in Figure 7a,b, respectively. The Radon model has the same time
sampling and interval with seismic gather, with 101 slowness sampling points ranging
from −0.2 to 0.8. It is apparent in Figure 7a that the Radon model of the LSRT is divergent
in shallow layers, which is caused by the stack of limited traces after muting the NMO
stretching [25], while the Radon model of EH-SRT is sparser than the LSRT result not only
in the low layers but also in the deep region. The velocity for NMO correction is known
to be absolutely accurate, resulting in the correction of primaries from parabolic to flat.
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Consequently, the Radon coefficients of the primary are aligned along a line where its
horizontal ordinate is q = 0. However, the Radon coefficients of multiple vary with depth
and slowness, and the deeper the layer is, the closer the Radon coefficients of multiples are
to primaries.
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To verify the help of the EH-SRT to GMD-R, we apply GMD-R to the Radon model of
LSRT and EH-SRT, and the result is shown in Figure 8a,c, respectively. The four columns
in Figure 8 represent the separated primary modes, the separated multiple modes, the
recovered primaries by performing the inverse RT to the decomposed primary modes,
and the suppressed multiples. It is important to note that the fourth column does not
represent the recovered multiples achieved by performing the inverse Radon transform
on the separated multiple modes. Instead, it is the suppressed multiples obtained by
subtracting the recovered primaries from the synthetic data. Comparing Figure 8a,c, we
can observe that GMD-R achieves the separation of multiple and primary modes for both
the LSRT and EH-SRT models. The decomposed primary modes entirely keep the linear
features of primary coefficients in the Radon domain. However, due to the sparsity of the
Radon model, the primary modes separated from the LSRT model contain many multiple
Radon coefficients. As a result, some residual multiples are present in the recovered
primaries. Meanwhile, in the shallow region, due to the lack of convergence of the LSRT
model, there are many primary Radon coefficients decomposed in the multiple modes,
leading to amplitude attenuation of the recovered primaries. The leakage of primaries in
the difference profile indicates the issues. In contrast, these problems are greatly reduced in
the EH-SRT processing result. It can be seen from the residual profile in Figure 8c that the
recovered primary amplitudes in the shallow layers are less damaged.

To further demonstrate the superiority of the GMD-based method over the filter
method, we also applied the filter method to the EH-SRT model to suppress multiples.
After several filtering parameter adjustments, the best multiple suppression results are
obtained when the Radon coefficients with q > 0.05 are taken as multiples and muted,
and the result is shown in Figure 8b. The four columns in Figure 8b represent the retained
primary Radon coefficients, the muted multiple Radon coefficients, the recovered primaries,
and the differences between the recovered primaries and the synthetic data. From the
difference profile, it is evident that the filter method effectively suppresses multiples.
However, as a drawback, some of the primary coefficients are unintentionally suppressed
as well. This excessive suppression of multiples leads to damage to primaries. There are
fewer primary residuals in the difference panel in Figure 8c, which shows the advantage of
GMD-R in preserving primaries. Instead of directly cutting off to separate primaries and
multiples in the filter method, GMD-R uses a Wiener filter to cluster and separate modes.
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By gradually decaying the modes within the Radon domain at the boundary, GMD-R
avoids the truncation effect, allowing for better recovery of the primaries while maintaining
their amplitude.
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Figure 8. (a) The process results by performing GMD-R to the LSRT model, (b) the process results
with the Radon filter method to the EH-SRT model, and (c) the process results by performing GMD-R
to the EH-SRT model. The four columns represent the decomposed or retained primary modes,
the decomposed or muted multiple modes, the recovered primaries using the inverse RT, and the
differences profile between the recovered primaries and the synthetic data.

In this synthetic dataset, it would not be scientifically rigorous to compare amplitude
variation before and after multiple suppression with only one trace. Therefore, a single
trace, which is generated by superimposing 20 traces in the range from 0 to 500 m, is used
to showcase the amplitude variation. Figure 9 displays the stacked trace, in which the black
line represents the amplitude of synthetic data, and the red line and blue line indicate the
recovered primaries with the Radon filter method and the GMD-R method, respectively. To
provide a reference for comparison, the green line represents the stacked trace obtained
by integrating synthetic data without multiples. This serves as a means to demonstrate
the abilities of the two methods in preserving amplitude and suppressing multiples. It is
evident that after multiple suppression, the amplitude at 1.12 s, 1.22 s, and 1.38 s decreased,
but the amplitude of the GMD-R result is closer to the multiple-free data, validating the
superior multiple suppression capability of GMD-R. Additionally, the demultiple result
obtained with GMD-R showcases similar amplitudes as the multiple-free data at other
times, further supporting the claim that GMD-R effectively preserves the amplitude of the
primary signals. A conclusion can be drawn from the test that the proposed GMD-R can
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not only achieve a better multiple removal than the filtering method but also preserve the
amplitude of primaries.
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Figure 9. Traces ranging from 20 to 500 m are integrated to generate one trace to demonstrate
amplitude variation before and after multiple suppression.

Multiples in seismic data exhibit low velocities compared to primaries, and they
show different patterns in the velocity scanning spectrum. Therefore, we can evaluate the
effectiveness of the two demultiple methods through velocity scan analysis. We perform
velocity scanning to the synthetic data in Figure 6a and the velocity spectrum is shown
in Figure 10a. One can find from the velocity spectrum that in addition to the primary
energy clusters, which are linearly increasing with depths, that there are several low-
velocity multiple energy clusters. Then, we perform velocity scanning to the demultiple
result of the Radon filter method and GMD-R in Figure 8b,c, and the velocity spectrum is
displayed in Figure 10b,c, respectively. Note that before velocity scanning, the multiple
suppression result in Figure 8 is processed with the inverse NMO correction. It is evident
that the multiple energy clusters in the velocity spectrum of raw synthetic data are both
significantly reduced in Figure 10b,c. The reduced multiple energy clusters are primarily at
1.12 s, 1.22 s, and 1.38 s, which aligns with the findings presented in Figure 9. Moreover,
the primary energy clusters of the demultiple result from GMD-R are more converged
and focused, providing additional evidence for the efficacy of the proposed method in
suppressing multiples and preserving primary amplitude.
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3.3. Field Data Test

The practicality of the proposed approach is showcased in this section through the
utilization of field data obtained from the open-source Madagascar. A CMP gather from the
dataset is selected and shown in Figure 11a, and there are 751 time samplings and 60 traces,
with a sampling interval of 4 ms and a trace interval of 50 m. We perform the LSRT and
EH-SRT to the data and the estimated Radon model is shown in Figure 11b,c, respectively.
The Radon model has the same time sampling and interval as the field data and with 161
slowness sampling points ranging from −0.1 to 0.2. And there are numerous artifacts in
the LSRT model in Figure 11b, which are caused by the stack of limited traces after muting
the NMO stretching. It is apparent that the Radon model obtained by EH-SRT is sparser
and has fewer artifacts than the LSRT result.
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Next, we perform GMD-R on the Radon model of EH-SRT. Figure 12a,b shows the
decomposed primary modes and multiple modes, respectively. It is evident that the
separated primary modes are mainly focused around the vicinity of slowness q = 0, and
the multiple modes are out of the area, thus achieving the separation of primaries and
multiples. And then we perform the inverse RT to the primaries modes and the recovered
primaries are shown in Figure 13b. One can find that there are fewer multiples in the
multiple elimination result of the GMD-R method. And then, the filter method is applied
to the EH-SRT model to suppress multiples. After several tests, the optimal demultiple
result is obtained when the Radon coefficients in the region of horizontal coordinates
q > 0.015 and vertical coordinates t > 0.7 s are taken as multiple and muted. After that, by
performing the inverse RT to the filtered Radon model, the demultiple result is obtained
and shown in Figure 13a.

We then perform inverse NMO correction to the demultiple result of the two methods
in Figure 13. Subsequently, we conducted velocity scanning analysis to generate the velocity
spectrum, as shown in Figure 14b,c. In the velocity spectrum of the raw data, as shown in
Figure 14a, the velocity energy clusters mainly locate in the low-velocity region, which is
due to the presence of the relatively low-velocity multiples in the field data. After multiple
removal, these energy clusters in the low-velocity region significantly decrease, while the
energy clusters of primaries become clear and exhibit a characteristic increase with depth.
In comparison to the filter method, the primary energy clusters in Figure 14c are more
focused, and exhibit fewer low-velocity residuals, indicating the advantage of the GMD-R
method in multiple removal.
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Figure 15a–c shows the stack profile of the raw data, the demultiple result of the
filter method and GMD-R method, respectively. Compared with the stack profile before
multiple elimination, the filter method and GMD-R method both suppress several multiples.
However, there are still some multiple residuals in Figure 15b while these multiples are
absent in Figure 15c, especially in the areas pointed by the red arrows. From this point, we
can recognize that the proposed method obtains a better result in multiple suppression.
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4. Discussion
4.1. The Effect of the Number of Decomposed Modes

Similar to EMD and VMD, the number of decomposed modes is a crucial parameter in
GMD and must be accurately determined before processing. Setting the number of modes
too high can lead to unnecessary computational overhead or the destruction of effective
modes, while setting it too low can result in an incomplete decomposition of the modes.
In this section, we present a simple example to demonstrate how to select the appropriate
number of decomposed modes in GMD-R.

Figure 16a depicts a synthetic seismic dataset containing a horizontal event and
two parabolic events with similar curvature. We perform the LSRT and the EH-SRT to
the synthetic data and the two estimated Radon models are displayed in Figure 16b,c,
respectively. One can find that the Radon model of our proposed method exhibits a higher
sparsity and contains fewer Radon coefficients compared to the LSRT result.

Then, GMD-R with different decomposition numbers is applied to the EH-SRT Radon
model to show the effect of the decomposition number selection. First, we perform GMD-R
to the Radon model of EH-SRT with a decomposition number of three. Figure 17 showcases
these decomposed modes, with the top row presenting the modes in the Radon domain,
and the bottom row showing the three corresponding recovered events in the time domain.
It is evident from Figure 17 that the three events in Figure 16a are taken as three modes
and separated. Next, we repeat the same processing for Figure 16a, but this time with a
decomposition number of four. Figure 18 depicts the result, with the top row indicating
the four decomposed modes in the Radon domain and the bottom row displaying the
four recovered events corresponding to the top row data. It can be observed that the first
mode in Figure 17 is split into two modes in Figure 18 because the decomposition number
exceeds the actual number of modes. The effectively separated modes are corrupted by
the excessive decomposition number. In addition, we perform the same processing with a
decomposition number of two, and the result is shown in Figure 19. The two decomposed
Radon modes are displayed in Figure 19a,b, while Figure 19c,d present the recovered events
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corresponding to Figure 19a,b. Figure 19 illustrates that the flat event is treated as one
mode, whereas the other two parabolic events are considered as one mode due to their
similar curvature. Conclusions can be drawn from this test that what GMD-R focuses more
on is curvature, not intercept time.
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In seismic processing, if the velocity is corrected, primaries are horizontal while
multiples are not horizontal after NMO correction. The two types of reflection waves can
be represented as q = 0 and q > 0 in the Radon domain. Therefore, we can apply GMD-R
to the NMO-corrected gather to separate primary and multiple modes by selecting the
decomposition number of 2.

4.2. The Computational Efficiency of the ES-SRT and GMD

A processing method should not only consider the quality of its processing results
but also the calculation time and efficiency. We analyze the computational efficiency of
the EH-SRT and GMD-R here. Taking the synthetic data in Section 3.2 as an example, we
record the computation time of performing the LSRT and EH-SRT to the data and the time
of GMD-R decomposition on these two Radon models. Table 1 shows the statistical time.
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Table 1 shows that the proposed EH-SRT is a little slower than the LSRT because there are
several iterations required in the procedure. However, the method can obtain a higher
sparsity Radon model, which can be used not only for GMD-R decomposition but also
helpful for the filter method for multiple elimination. Therefore, we consider this increased
computational effort acceptable [40,41]. Then, we perform GMD-R to the Radon model
of LSRT and EH-SRT, respectively, and the decomposition on the EH-SRT model exhibits
a shorter computation time. This is because the increasing sparsity of the Radon model
makes the modes in GMD-R easier to reach convergence during the iteration process, and
hence accelerate the computation. Therefore, we suggest performing sparse RT first to
obtain the Radon model with high sparsity, which not only can achieve better separation of
primaries and multiples but can also improve the computational efficiency of GMD-R.

Table 1. Computation time comparison of the LSRT and EH-SRT, and performing GMD on the two
Radon models.

Test Data Method Computation
Time (s) Method Computation

Time (s)

Synthetic data 2 LSRT 1.08 GMD-R 2.17
EH-SRT 3.56 GMD-R 1.32

Another important point to note is that both the GMD-based method and the filtering
method are implemented in the Radon domain. The RT is the kernel of the proposed
method for multiple suppression. However, the RT depends on the quality of the original
seismic data. When the trace interval of the input data is large, the Radon model tends
to have aliasing issues, and the sparsity is low. Although the sparse Radon transform
proposed in this paper can improve its sparsity, it is difficult to solve the aliasing problem,
which affects the processing results of this method [25]. In addition, the reason why the RT
can be used for multiple removals is that multiples and primaries have a certain separability
in the Radon domain due to their differences in curvature. Short-period multiples do not
have obvious moveout differences with primaries due to their short propagation paths, so
it is difficult to suppress them with the Radon-based multiple suppression method. In the
field data test in Section 3.3, we do not suppress free-surface multiples in advance, and
the GMD-based method has limited ability to suppress them. Therefore, there are several
remaining free-surface multiples in the stack profile at 2.4 s. In the industry, it is customary
to employ techniques such as SRME and MWD [42–44] as an initial step to suppress free-
surface multiples, and then the remaining long-period multiples are suppressed using the
Radon-based methods. Multiple elimination cannot be completely solved by one method,
and a combination of methods is needed to achieve better suppression results. The method
proposed in this paper aims to simplify the processing flow by reducing the parameter
setting and complementing other methods for better elimination of multiples.

5. Conclusions

In this paper, to address the issue that the Radon filter method for multiple suppression
requires human setting of filtering parameters, a novel framework that can automatically
separate multiples and primaries using GMD-R in the sparse Radon domain is proposed.
First, GMD-R is introduced and applied to separate multiple and primary modes in the
Radon domain. The GMD-R leverages the principle of Wiener filtering to iteratively de-
compose the data into modes with varying curvature and intercept, thus achieving the
separation of primary modes and multiple modes according to their curvature differences.
Based on the GMD-R algorithm, we develop a new processing flow for suppressing multi-
ples. Then, we introduce the EH norm as a constraint and propose a novel sparse Radon
transform. The EH norm adds an additional scaled l2 norm to the l1/2 norm, which is
added to overcome the numerical oscillation problem. With the help of the EH norm, the
new proposed sparse RT has a higher sparsity and stable solution. Finally, by combining
the sparse Radon model, we improve the GMD-based multiple removal framework. Two
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synthetic data tests and a field data test are employed to illustrate the effectiveness of the
proposed framework. The results indicate that the GMD-based framework can achieve the
suppression of multiples with a high computational efficiency and can be applied in the
actual production. Moreover, it reduces the dependence on manual setting parameters and
simplifies the processing flow for multiple elimination.
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