
Citation: Stavros, E.N.; Gezon, C.; St.

Denis, L.; Iglesias, V.; Zapata, C.;

Byrne, M.; Cooper, L.; Cook, M.; Doyle,

E.; Stephens, J.; et al. Environmental

Resilience Technology: Sustainable

Solutions Using Value-Added Analytics

in a Changing World. Appl. Sci. 2023,

13, 11034. https://doi.org/10.3390/

app131911034

Academic Editor: Dibyendu Sarkar

Received: 23 July 2023

Revised: 12 September 2023

Accepted: 15 September 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Environmental Resilience Technology: Sustainable Solutions
Using Value-Added Analytics in a Changing World
E. Natasha Stavros 1,* , Caroline Gezon 2, Lise St. Denis 1, Virginia Iglesias 1 , Christina Zapata 2,
Michael Byrne 2, Laurel Cooper 2, Maxwell Cook 3 , Ethan Doyle 2, Jilmarie Stephens 1, Mario Tapia 2, Ty Tuff 1,
Evan Thomas 4 , S. J. Maxted 2, Rana Sen 2 and Jennifer K. Balch 1,5

1 Earth Lab, Cooperative Institute for Research in Environmental Studies (CIRES), University of Colorado
Boulder, Boulder, CO 80309, USA; lise.st.denis@colorado.edu (L.S.D.); virginia.iglesias@colorado.edu (V.I.);
jilmarie.stephens@colorado.edu (J.S.); ty.tuff@colorado.edu (T.T.); jennifer.balch@colorado.edu (J.K.B.)

2 Deloitte Consulting, LLC, New York, NY 10112, USA; cgezon@deloitte.com (C.G.);
chzapata@deloitte.com (C.Z.); michbyrne@deloitte.com (M.B.); lacooper@deloitte.com (L.C.);
martapia@deloitte.com (M.T.); smaxted@deloitte.com (S.J.M.); rsen@deloitte.com (R.S.)

3 Department of Geography, University of Colorado Boulder, Boulder, CO 80309, USA;
maxwell.cook@colorado.edu

4 Mortenson Center in Global Engineering and Resilience, University of Colorado Boulder,
Boulder, CO 80309, USA; ethomas@colorado.edu

5 The Environmental Data Science Innovation & Inclusion Lab (ESIIL), University of Colorado Boulder,
Boulder, CO 80309, USA

* Correspondence: natasha.stavros@colorado.edu; Tel.: +1-(858)-254-5939

Featured Application: We provide a case study for the Wildfire Response, Risk Mitigation and
Recovery and a methodology for research-to-commercialization (R2C) for analytics of value using
solutions-oriented science.

Abstract: Global climate change and associated environmental extremes present a pressing need
to understand and predict social–environmental impacts while identifying opportunities for mit-
igation and adaptation. In support of informing a more resilient future, emerging data analytics
technologies can leverage the growing availability of Earth observations from diverse data sources
ranging from satellites to sensors to social media. Yet, there remains a need to transition from research
for knowledge gain to sustained operational deployment. In this paper, we present a research-to-
commercialization (R2C) model and conduct a case study using it to address the wicked wildfire
problem through an industry–university partnership. We systematically evaluated 39 different user
stories across eight user personas and identified information gaps in public perception and dy-
namic risk. We discuss utility and challenges in deploying such a model as well as the relevance
of the findings from this use case. We find that research-to-commercialization is non-trivial and
that academic–industry partnerships can facilitate this process provided there is a clear delineation
of (i) intellectual property rights; (ii) technical deliverables that help overcome cultural differences
in working styles and reward systems; and (iii) a method to both satisfy open science and pro-
tect proprietary information and strategy. The R2C model presented provides a basis for directing
solutions-oriented science in support of value-added analytics that can inform a more resilient future.

Keywords: innovation; commercialization; decision making; human-centered design; information
technology; data analytics; resilience; environment

1. Introduction

We are now in the Anthropocene—an unprecedented time of global environmental
change caused by urbanization [1], desertification [2], biodiversity loss [3], and more
frequent extreme events [4]. The drivers for this change include global warming [4] and
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rapid population growth [5]. These environmental changes are likely to threaten people’s
lives, livelihoods and assets in years to come [2], motivating a need to think about the
mitigation of impact.

The mitigation of impact is broadly referred to as environmental resilience—the
prevention, ability to withstand, respond and recover from environmental perturbations
and shocks [6]. Some leading questions in disturbance and resilience ecology include the
following: (1) How and why does life organize across scales? [7]; (2) How will disturbance
impact how life organizes across scales? [8]; and (3) How do we mitigate our climate risk
to ecosystems and communities as a function of vulnerability, exposure and hazard? [9].
Researchers are now well-positioned to examine these questions and inform a more resilient
future as we navigate the information age with cutting-edge analytics and big data on Earth
observations from diverse data sources such as remote sensing [10] and social media [11].

It is increasingly evident that new technologies informed by climate and environmen-
tal research, as well as new applications of existing technologies, are necessary to support
resilient community mitigation and adaptation from environmental change (Figure 1). Such
technologies may include remote sensing, machine learning, artificial intelligence, geospa-
tial analytics, sensors, and social media data that can be synthesized and used to support de-
cisions in the natural, built and social environment; it may also include technologies that can
directly increase resilience, such as improved built infrastructure, water management, and
renewable energy generation. We define environmental resilience technologies as data-driven,
value-added analytics informed by solutions-oriented science that enable society to become more
resilient to changing environmental futures. Within this definition of environmental resilience
technology, we further define value-added analytics and solutions-oriented science as follows.

At present, there are dozens of solutions for different applications, yet one of the
biggest limitations is sustaining the applications for use through time [12]. As such, innova-
tion requires not merely creating a piece of technology but also developing the business
model for sustained use. Because value inherently has cost [13], in the context of solutions
using analytics, value-added analytics are worth paying for and have the ability to go from
research to commercialization.

A methodology for commercializing a product or service is human-centered design
(HCD) [14,15]. HCD is a bottom–up approach to understand people, their actions, decisions,
and feelings. It is rooted in anthropology and engineering [16–18]. HCD starts from
the study of people in a problem or opportunity space and leads to the generation of
solutions from what is learned. HCD focuses on human desirability and includes the
human perspective in all steps of problem solving. Some limitations of HCD include
incremental design changes based on the human-centric perspective, typically within a
single application rather than broader examination of related systems and the decision
space [19]. This often occurs when designers focus on what people directly ask for rather
than the root causes behind those desires [20,21]; this is especially true in data science
applications [22].

Alternatively, the WKID (pronounced wicked) Innovation framework focuses on
transparent and systematic traceability across the decision space to identify information
technology requirements and inform data science in support of closing information gaps.
WKID Innovation tackles wicked problems [23], which are known to have no single cause
or best solution. In modern society, multiple organizations often tackle wicked problems,
presenting differences in values across entities that complicate decision making. Decision
making uses two elements [24]: (1) data, which can be quantitative or qualitative, and
(2) values, which are represented as the subjective weighting of costs and benefits of the
outcome of that decision. While data may provide guidance for potential outcomes, of-
ten, the solution depends on different users’ values, which often results in disagreement
about the cause of and solution to the problem. WKID Innovation [25] uses the Knowl-
edge Hierarchy [26], the PEST (Policy, Economics, Sociocultural Factors, and Technology)
model [27], NASA system engineering [28], Theory of Change [29], and to direct scientific
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discovery that informs how people and communities act, which is henceforth defined as
solutions-oriented science.
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Figure 1. Environmental Resilience Technology addresses societal challenges through solution
development that involves cross-sector collaborations for scaling and adoptions. Specific to this
manuscript, we develop a model for solutions-oriented science that provides value-added analytics.

Transitioning research to commercialization can be achieved through academic–private
partnerships. Establishing effective academic–private partnerships, however, is challenging.
In this paper, we provide a research-to-commercialization (R2C) model to support academic–
private partnerships that develop environmental resilience technology. The R2C model
aims to achieve the following: (1) systematically identify information gaps in the decision
space, (2) define algorithm requirements, and (3) develop sustainable solutions for resilience
to global environmental change through market viability. The model is based on a pilot
project of the Deloitte Consulting and the University of Colorado Boulder (CU Boulder)
Climate Innovation Collaboratory (CIC). This paper describes the outcomes achieved from
the wildfire analytics project to support community wildfire preparedness, resilience, and
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response. In the following sections, we apply our R2C model to a case study to address the
wicked wildfire problem in the United States.

Case Study Background: The Wicked Wildfire Problem in the United States

For the scope of this work, we explored how data analytics could support megafire
mitigation, resilience, and response. The wicked wildfire problem refers to the fires that
matter or the fires that have negative social impact [30]; these are commonly referred to by
the public as “megafires”. Megafire is a sociopolitical term and therefore has no standard
unit, but in the western United States, a megafire generally refers to fires that meet some or
all of the following criteria: (1) they burn more than 50,000 acres or ~20,234 hectares [26],
(2) they produce smoke affecting millions of people over regional scales [31], (3) they
threaten residential homes or community structures [32,33], and (4) they may be fast
moving, creating entrapment scenarios for local residence and making suppression efforts
even more difficult.

Megafires result from the interactions between flammable fuels, climate, and at least
one source of ignition [34]. These interactions do not share a common mechanism, so
managing for megafires requires a complex understanding of multiple systems and the
ability to execute complex decision making across those systems. Climate change from
greenhouse gasses emitted from the burning of fossil fuels [4] results in warmer, dryer, and
windier conditions that are ripe for increased fire danger [35] and the likelihood of large
fires in the continental United States [36–38]. Despite fuel constraints from increased fire in
the future, the fire area is expected to increase [39]. Ignition rates for fires, including from
lightning and people (e.g., prescribed fire, arson, overheated cars, power lines, bonfires,
fireworks, etc.), are variable. Humans change the fire season, extending it throughout the
year and sometimes peaking outside when lightning ignitions are possible [32]. Further-
more, humans change where fires occur and how proximal they are to settlements [33]
through urban expansion into wildlands. Finally, the United States has experienced nearly
a century of fire exclusion (putting out all fires) and limited prescribed burning that has led
to extreme fuel accumulation [40], affecting fire behavior substantially in some regions [41].
Fuel accumulation not only affects fire behavior, it can also affect the condition of the fuels
as vegetation competes for resources and becomes stressed, worsening burn severity [42].
Land use and management has also contributed to fire frequency and severity as well
as the type of fuels available to burn. For example, land use influences the presence of
human development and its influence on homes as fuel [33,43,44] as well as the presence
of invasive species [45,46] that affect fire occurrence and frequency [47]. Putting all these
ingredients together, megafires have the highest risk to society [30], and many actors play
an important role in mitigating their impact.

Because different actors are responsible for different contributors to the wicked wildfire
problem, there are no single solutions. Furthermore, there are a plethora of technologies
aimed and designed for different actors across the disaster lifecycle from pre-fire resilience,
preparedness, and hazard mitigation to active fire detection, tracking, and response to
post-fire recovery [12]; Supplemental Material S1. In fact, a lack of technology is not the
biggest challenge facing the wicked wildfire community; instead, the following challenges
apply: (1) a need for strategic and coordinated efforts, (2) access to data and standardization,
(3) research and development that thinks holistically about the problem across the disaster
life-cycle in the context of resilience; and (4) considerations of financing solutions for long-
term sustainability [12,48]. Specific to point four, the wicked wildfire problem provides a
strong use case for testing the R2C model.

2. Methods
2.1. Research-to-Commercialization (R2C) Model

We developed a research-to-commercialization (R2C) model (Figure 2) that integrates
the WKID Innovation and HCD methodologies. The HCD approach engages a variety
of tools and frameworks to assess user needs and market conditions. Leveraging the
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outcomes of interviews, we developed user stories, use cases and an ecosystem map to
define the current market landscape. To find the intersection of innovation potential, we
estimated the user desirability, business viability, and technical feasibility of a development
based on qualitative and market research. Our HCD process brought potential end users
into the design process through interviews and focus groups to define the problem set,
narrow potential solution sets, and test initial solution prototypes and wireframes. The
HCD process also aims to ensure end user needs are met and aligned to organizational
requirements by reviewing enterprise architectures for industry-provided technologies
capable of scaling to support big organizations.
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identify solutions-oriented science for value-added analytics that leverage global change research to
inform decisions around a more resilient future.

WKID Innovation uses two core tools: the Change Traceability Matrix (CTM) and
a Product Traceability Matrix (PTM) [25]. The CTM organizes information to provide a
comprehensive look across the decision space to identify common information needs and
specifications to change the way decisions are made. It documents everything from key
performance indicators (KPIs, e.g., “# lives saved” or ”$ saved”), the decisions being made,
by whom and for what purpose, how decisions are funded, what motivates the decision,
the tools currently in use, the information needs, gaps and limitations, as well as key parties
engaged and affected by the problem. The PTM provides high-level “requirements” on
product definition. WKID Innovation does not assess market viability explicitly but rather
assumes that if there is a need and it fits the decision space, it has value, which may not
always be the case.

2.2. Case Study: Dataset Curation

In the R2C model, the WKID Innovation framework provided the basis to structure
the initial interviews rather than the more emergent probing used in HCD for initial user
interviews. We conducted 26 interviews across four gradients of representative decision
makers, creating user archetypes (Figure 3: Resilience, Public Information Officer, Land
Planning, Recovery, Land Managers, Policy Implementation/Enforcement, and Emergency
Management). The first gradient spanned decision makers in pre-fire, active fire, and
post-fire situations such as emergency responders at local, state, and federal levels; public
information officers (e.g., communications manager); land use and asset planners (e.g.,
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developers, real estate, (re-)insurance companies, city planners, and utility companies);
recovery (e.g., public assistance, emergency management organizations, and (re-)insurance
companies); resilience and preparedness planning (e.g., local, state, and federal offices),
land managers (i.e., private, state, federal, and tribal partners), and policy implementation
and enforcement agents. The second gradient included people working in public, private,
and non-profit sectors. The third gradient spanned decision makers from rural to urban
environments. Finally, we interviewed across the gradient of decision maker budgets
from low to high. User personas were created based on the sector (public, private, non-
profit, academic), the domain of jurisdiction (local, state, regional, national), and the user
archetypes.
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Figure 3. Number of interviewees by user persona. Note that here, we show five personas when the analysis
determined 8 personas because Emergency Responders, Land Management/Preparedness/Resilience
Planning, and Public Information Officers were further partitioned into local and state/regional
personas.

2.3. Case Study: Information Gap Analysis

For the interviews, we standardized questions (Supplementary Materials S2) and used
a standardized online data collection form to take notes as a precaution against subjective
interviewer bias. For each interview, there was a lead interviewer and two note takers, one
taking verbatim notes and the other synthesizing key points emphasized by the interviewee.
The questions (Supplementary Materials S2) paralleled the structure to populate a Change
Traceability Matrix (Supplemental Material S1). The online data collection form generated a
shared spreadsheet with 36 columns: A through AJ. These columns were then cross-walked
to the CTM to show where key information from explicit questions likely populate into the
CTM (Figure 4).

To populate the CTM, we then pulled key information from responses into synthesized
statements relevant to each column of the CTM. We created a separate CTM per User
Archetype. Each interview response was parsed into the appropriate User Archetype by
creating a new row for each KPI starting left to right. Sometimes, one decision would have
multiple KPIs as goals or objectives; in these cases, the decision descriptor was a merged
cell spanning all associated KPIs. Similarly, any one KPI may rely on multiple types of
information. A new row was added for each piece of needed information, and the KPI cell
related to that decision was merged to span all needed information. While every effort was
made to ask all questions, sometimes, interviewees answered questions not yet asked in
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response to earlier questions, and sometimes, interviewees simply did not understand or
could not answer a question. In these cases, any questions for which participants did not
provide details were left blank in the final CTM and may represent gaps in information
from the interviews or and gaps in the system. Bolded text in the CTM represents key
quotes from interviews that capture a recurring sentiment by interviewees within that
persona. Both the verbatim and synthesis notes (each taken by a different note taker)
were treated independently (as different data points) and analyzed through a double-blind
process whereby the interviewee and the analyzer were not identified to either party. As
information from the interview overlapped with existing synthesized information in the
CTM, no new rows were created, but existing rows were edited to provide more clarity. All
details specific to a company, agency, or organization were removed for anonymity. The
CTM provides a synthesis capturing general methods, mechanisms, and patterns for a user
persona and each key decision they make.
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Prior to interview synthesis, the CU Boulder researchers presented nine data analytics
capabilities in development, which were used as potential solutions for further refinement.
As part of the HCD process, the joint Deloitte–CU Boulder team spent several days qual-
itatively synthesizing the interviews, documenting individual pain-points and solution
areas with sticky notes, and aggregating information into cross-cutting insights and themes.
These insights were later validated through the CTM analysis.

We then used HCD to gauge human desirability, business viability, and technical
feasibility. We applied a desirability–viability–feasibility, or “DVF” framework [49], to the
nine CU Boulder researcher data analytic capabilities, and we down-selected three that
scored the highest. To assign scores, the integrated CU Boulder–Deloitte team discussed
research insights to collaboratively arrive at desirability scores. The Deloitte team led the
scoring for business viability, using market research and subject matter expertise from
project advisors working in the field. The CU Boulder team led the scoring for technical
feasibility, using domain expertise for feasibility to develop. The initial areas selected for
further research and development included several data analytics for “dynamic risk”,
“evacuations” and “public perception”.

Using the identified value-added analytics, a PTM (Supplemental Material S1) was
created. We used the CTM and looked across all user personas, identifying any time that
“risk” (and “hazard”, “exposure”, or “vulnerability” as these are inclusive of the definition
of risk [30]), “evacuation”, and “public perception” (or “social media” or “# likes and
retweets”) were identified as needed information (Figure 4, “Limitation or Opportunity
column). Each information need was imported as a row into the PTM and categorized:
Product Definition; User Experience (“UX”)/Training & Personnel; Accessibility; Business
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Model; Trustworthy AI [50], Product Requirements; Other Tech & Culture Needs; Informa-
tion Gaps. PTM rows were grouped based on similarity, and a requirement was written.
Each requirement was cross-referenced with the number of rows and unique personas they
represented. The number of user personas was recorded.

Two analyses were performed on the PTM recording: (1) the number of user personas,
and (2) the number of decisions relying on the highest priority, market-viable information:
“dynamic risk” and “public perception”. The number of user personas and user stories were
determined based on information needs specifically using the following terms: “public
perception”, “dynamic risk”, “vulnerability”, “hazard”, “exposure”, “filtered communi-
cations”, “evacuation”, “misinformation”, “# of likes and retweets”. One user persona
may make many different decisions for different reasons. Decisions were recorded as
user stories. User stories followed this format: To make a [decision] for [purpose], a [user
persona possibly including generalized job descriptor, e.g., “local emergency response
firefighter”] relies on [information]. Because each interviewee provided a job descriptor
and was assigned a persona, stories could be verified with interviewees while maintaining
the anonymity of respondents. In total, there were 39 user stories from 8 user personas.

2.4. Case Study: Proof-of-Concept Demonstrations

Following the HCD process and using the PTM analysis of user stories to further
define each information variable, we developed three proof-of-concept analyses on a single
megafire event, the 2021 Colorado Marshall Fire. Here, we describe the methods used to
create proof-of-concept analyses, which were used in continued iterations of qualitative
research to gather feedback from potential users.

The Colorado Marshall Fire occurred on New Year’s Eve (30 December 2021 to
3 January 2022) in a suburban neighborhood in the central United States with a tradi-
tionally low fire hazard. Tens of thousands of people were evacuated and over a thousand
homes burned. The Marshall fire occurred in the wildland urban interface (WUI) with
human development adjacent to a large expanse of naturally preserved open space. The
transport network is dominated by slow speed, curved residential streets. As the fire trav-
eled through the WUI with gusts greater than 100 miles per hour [51], evacuees flooded
onto small, circuitous streets and sat in traffic trying to get away from the fire blowing
overhead.

Because of recent investments in climate resilient infrastructure and the need for peo-
ple to evacuate away from fire hazard, we applied analytics for the following: (1) social
media filtering, (2) evacuation rate predictions, and (3) predicting the annual fire hazard
from present to 2070. Social media filtering provides context for the chronological order
of events and public perception of the fire as it was happening. We use social media data
collected using the Twitter API version 2 [52] to extract all original tweets (no retweets)
and containing the hashtags marshallfire or the words “Marshall Fire”. Tweets were collected
from 30 December 2021 through the end of January. We collected beyond the containment
date to capture the post-fire discussion related to the evacuation and returns. We pulled
26,788 tweets, 1756 of which related in some way to the evacuation. These 1756 tweets were
further stratified using a neural net classifier to identify the tweet contributor role [11,53,54].
The content of these 1756 tweets was examined manually, including the related conversa-
tional threads and linked sources, to build a timeline of events We filtered media sources
and focused on official messaging and contributions from people directly impacted by
the event. We identified the key issues and communication disconnects related to the
evacuation as it evolved and the socio-technical innovations supporting decision making
and communication. Based on our initial analysis, we expanded the data collection to
include the names of the towns under evacuation orders (Louisville, Superior, Boulder,
and Lafayette) and tweets related to evacuation or traffic. For example, we searched for
original tweets for the town of Louisville using terms Louisville plus either the word traffic or
evacuation during the evacuation timeframe. After eliminating noise (e.g., tweets reporting
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traffic in Louisville, KY or marketing tweets promoting superior internet traffic), this resulted
in the addition of 232 tweets.

Simulations of evacuation traffic [55] away from the Marshall fire used three inputs: a
network representation of the roads provided by Open Street Map, a fire perimeter from
the National Interagency Fire Center [56] showing the extent of the burned area, and a list
of origins and destinations for travelers evacuating the fire. We made a naive estimation of
origins to be one vehicle leaving each destroyed structure. Structure locations came from
the Boulder County Sheriff’s office and were geocoded to match building records from the
Zillow ZTRAX dataset [57]. We estimated isoclines within different amounts of travel time.

We used existing research to predict future fires from 2020 to 2060 in the contiguous
U.S. [58]. We overlaid major road networks to better see where infrastructure exists, and
hazards were changing.

Deloitte led the agile HCD process refining enterprise technologies for usability, and
the CU Boulder team adapted algorithms to provide value-added analytics in the spatial
and temporal resolutions relevant for decision making.

3. Results
3.1. Case Study: Information Gap Analysis Results

Our analysis of the CTM (Supplemental Material S1) showed that the most highly
needed information across user personas was related to Public Perception and Dynamic
Risk (Figure 5a). The most needed information across user stories, however, was Public
Perception, as it relates to how the public perceives fire risk (Figure 5b) as fire hazard
(i.e., the potential of fire to occur). Information on fire hazard was equally as important
(Figure 5b) as information on exposure (Figure 5b), while information on how vulnerable a
community is, was more needed across the decision space (Figure 5b).
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(out of 8) needing information directly related to or relying on filtered social media or evacuations
from high fire risk areas defined as a function of hazard, exposure, and vulnerability; and (b) percent
of user stories (out of 39) relying on this information to make a decision.

Our analysis showed that solely relying on HCD would have excluded the develop-
ment of social media filtering, despite being the most needed piece of information across
user personas and stories (Figure 5). While HCD identified some of the root problems,
information needs for megafire mitigation and the creation of more effective solutions, it
did not capture the unimagined solution of social media filtering. Specifically, because few
technologies exist (if any at all) to filter social media data and there is often a widespread
mistrust of information shared on social media, it was hard for interviewees to imagine



Appl. Sci. 2023, 13, 11034 10 of 26

a solution for using social media as a basis to inform public perception. By questioning
interviewees about what drives decisions and the missing information, the systematic
analysis from WKID Innovation highlighted the overarching need for information on
public perception.

Despite hazard information being most valuable across decisions, the most common
information gaps across personas (Table 1) are in social media filtering and risk futures.
Recognizing the need for not merely filtering by hashtag, it is critical to use of artificial
intelligence for identifying deep fakes, misinformation, bots, verified accounts or unique
contributions to the conversation during natural disasters. Risk futures include consid-
eration for how we message risk and not just how we have historically calculated it as
acres burned.

Table 1. Information gaps identified across user personas and a summary definition listed as a
requirement for providing that information.

Type of Limitation
or Opportunity # of User Personas Requirement Consolidated Across Personas

Social Media 5 Social media information shall include filters by: “deep fakes”,
misinformation, bots, verified accounts, etc.

Risk Futures 5
Risk futures that project risk, as defined by how it is messaged rather than just
acres burned, under different management scenarios to link cost of
management to risk mitigation benefit.

Risk General 3

Risk information shall provide uncertainty by each layer: hazard,
exposure, vulnerability.

Risk information should consider scalability beyond data limitations of the
United States.

Risk information shall include more than simple maps of the Wildland
Urban Interface.

Hazard 2 Hazard information shall provide fuel maps that are updated frequently as
fuels change.

Vulnerability 2 Vulnerability information shall include building ignition potential today and
into the future.

Incident Reporting 2 Incident information shall automatically populate based on curated data from
different data sources.

Exposure 1 Exposure information shall include building locations today and likely
locations into the future.

General

1 Information technologies shall focus on proactive solutions rather than only
reactive solutions (i.e., suppression).

1 Information of value shall include metadata.

1 Impact information shall link building damage to insurance policies.

1 Information of value shall be verified with local knowledge.

1 Information of value shall provide the granularity needed to inform decisions.

1 Information technologies shall enable analytics (e.g., trend analyses).

The PTM showed that the most valuable requirement for any information technology
across user personas (Table 2) was the need for interoperable “plug-in” technologies that
work with decision makers’ existing tools. Next was the need for information technologies
to be accessible via limited connectivity and with limited compute resources. Finally, all
information should be intuitive to interpret, and information should be consistent when
scaled between federal reporting to local decision support for implementation.
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Table 2. This is the Product Traceability Matrix that provides requirements for providing information
and information technologies of value.

Type of Limitation
or Opportunity # of User Personas Requirement Consolidated Across Personas

Product Definition

7
Information technology shall be interoperable to “plug in” to existing data
portals used by User Personas to reduce the number of sources/screens that
they must visit and enable them to use existing data layers.

1 Data platforms should plug into a single existing government data portal
when one becomes available by the federal government.

User Experience (UX) 5 Information layers shall be intuitive to interpret to reduce training for use.

Accessibility

6 Information technologies shall be accessible via a cell phone or government
laptop with limited connectivity.

1 Information layers shall be accessible via both information technologies and
print outs.

1 Information layers shall be archivable with provenance to be public record.

Business Model 5 Information technologies shall meet the objectives of federal funding sources
while also servicing local and state decision needs.

Trustworthy AI 4

Information for value-added analytics shall have transparent documentation
of algorithms.

Information for value-added analytics shall be open source.

Information for value-added analytics shall include uncertainty and error
propagation.

Product Requirements 5

Information for value-added analytics shall be archived for long-term access.

Information for value-added analytics shall be pre-processed and ready to use.

Information for value-added analytics shall incentivize more resilient behavior
and penalize less resilient behavior.

Information technologies shall integrate cybersecurity.

Information technologies should be marketed to the relevant agencies for
using the available information.

Other Technology and
Cultural Needs 1 Information technologies should include a business model to better serve less

advantaged communities without exploiting them.

3.2. Case Study: Proof-of-Concept Demonstration

As part of the HCD process, we provided some analytics of value for determining
evacuations from a fire (Figure 6) and how public perception influences our ability to
communicate and keep communities safe (Figure 7). The first evacuation notice appeared
on Twitter at 12:57 pm but does not include specifics about which areas were affected by the
evacuation order. Official guidelines specified that if you see flames, evacuate. Shortly after,
individual replies provided details about which areas were under evacuation including
the entire town of Superior. Over the next hour, video was shared by those returning to
grab their belongings and pets that documented traffic flow into the cities of Superior
and Boulder, the first areas under mandatory evacuation. Within an hour, traffic was at a
standstill for both Superior and Boulder. Shortly after 2 pm, the town of Louisville was
ordered to evacuate. There was a steady stream of communications as residents evacuated
and shared updates from their mobile phones while stuck in traffic. Information was shared
about unforeseen events such as traffic light outages and freight trains, also disrupted by
the fire, that were blocking surface streets. By analyzing evacuation potential (Figure 6) at
walking speed, we see that it can take hours to escape the fire perimeter and surrounding
areas. Pedestrians or disabled travelers without access to motorized transport may not be
able to cover enough ground to find a safe destination. These would not be concerns if
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traffic were traveling at normal speeds because residents would have the entire Denver
Metro Area to find friends, family, hotels, or shelters.
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Figure 6. Better understanding evacuations: Utilizing data analytics to advance understanding of
bottlenecks during natural disasters such as during the Marshall fire in Boulder County in December
of 2021. The blue polygon is the Marshall fire perimeter. White lines are municipal boundaries within
the evacuation zone. Gray lines represent the transport network. The first panel shows the normal
traffic conditions where a driver can easily escape the fire perimeter within 20 min. The second panel
shows moderate traffic conditions where the average travel speed is 8 miles per hour. The third panel
shows heavy traffic conditions moving at an average of 4 miles per hour. Four miles per hour is
approximately walking speed, showing that there are locations where it would be difficult to escape
the fire.

Results from the social media filter juxtaposed with the evacuation maps highlight
the role the public plays in bridging information gaps between official reporting and
Geographic Information System (GIS). Tweets from evacuees provide destinations and
public perceptions about evacuation messaging that can be used in modeling. Furthermore,
more efficient evacuation routes can be found using machine learning of observed traffic
patterns from cameras, real-time navigational tools, and personal tweets. Furthermore,
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tweets from official sources can highlight key breakdowns in communication and the lack
of cross-entity coordination during the evacuation.
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The results of our analysis that overlaid major road networks with increased fire hazard,
characterized by larger and more frequent fires in the future as a result of climate change [36],
shows that more places in the southeastern, midwestern and northeastern United States are
likely to experience increased burden on infrastructure for evacuations (Figure 8).
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4. Discussion
4.1. R2C Model for Co-Production of Sustainable Solutions in Environmental
Resilience Technology

Environmental resilience technology offers great promise for shifting science from
observing environmental change toward providing solutions that serve society. An im-
portant step is creating analytics of value using, for example, machine learning and artificial
intelligence [59]. Moreover, cutting-edge artificial intelligence and data fusion can lead to
important and robust predictions about our possible environmental future [60,61]. There is
a growing call to leverage science to better inform market solutions [10,62].

The R2C model, demonstrated in this paper, reflects the integration of public–private
capabilities [48,63]. The R2C model integrates the WKID Innovation framework [25] with
HCD, maps the information gaps across multiple user types and identifies the greatest
gain while developing market-driven solutions. WKID Innovation provides an in-depth
systematic analysis of the decision space to inform solutions-oriented science. Research on its
own, however, does not precipitate sustainable solutions. Sustainable solutions consider a
funding model beyond preliminary research or development [12]. Designing and clearly
stating the requirements for how research fits into the decision space at the outset ensures
an off-ramp from research to application [64] but does not mitigate risks for sustaining
operations [65]. By integrating WKID Innovation with HCD and market research, we lever-
age the strengths of each framework to mitigate risks to technology adoption. Arguably,
R2C offers a model to scale use-inspired translational research by environmental science
domain experts [66] and drive tomorrow’s technologies and solutions.

R2C sits in the research-to-commercialization taxonomy of “contract research and con-
sultancy”. R2C integrates traditional agency knowledge of translational research and devel-
opment (e.g., WKID Innovation) with resource-based methods motivated by understanding
organizational needs (e.g., HCD) [67,68]. By leveraging HCD, R2C is similar to other mod-
els proposed for co-production [69] that rely on iterative feedback from users, but it does
provide more top–down complex systems analysis to overcome HCD limitations [19–21].
While translational ecology [70] links ecological knowledge to decision making for use-
inspired research [66] and real world outcomes [71], R2C uses solutions-oriented science to
co-develop technologies providing analytics of value. While co-production models [72,73]
and translational ecology [70,71,74] offer mechanisms to build cross-sector partnerships
with technology users, they focus on an end-user uptake of information rather than the
potential markets to sustain solutions. Translational ecology and co-production mod-
els do, however, acknowledge the importance of building workforce with skills beyond
academia [74].

While there is a long history of research-to-market pathways for engineering [75],
medicine and pharmaceuticals [76], computer science [77], and biology [78], there is a
gap for ecology and environmental sciences. The incredible wealth of environmental data
from satellite sensors, social media platforms, government records, and other data sources
offer remarkable opportunities for market-driven solutions to complex environmental
challenges. For example, carbon markets offer a means for offsetting fossil fuel emissions
by sequestering carbon [79] or reparative finance for water security [80]. Some companies
are starting to use data to verify and validate credits that support improved natural resource
management, but there is a need for such analytics to be trustworthy—i.e., transparent,
consistent, and secure (Table 2). Co-production between industry and scientific research in
academia offers a foundation for developing trustworthy information. Co-production that
merges academia with industry requires navigating differences in culture and institutional
practices. Through the development of this R2C model, we have learned three key lessons
and present some best practices.

First, thought needs to go into how to delineate intellectual property from the start [81]
and how a team can co-produce a project together while still maintaining each institutions’
rights. A key challenge arises when negotiating contracts and maintaining rights around
intellectual property. Legally, “co-production” muddies the water around who owns
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what based on contributions [82,83]. A best practice would be to clearly communicate this
between all participants and to use multiple modalities for communicating such as the use
of diagrams, legal contracts, Gantt charts, and documentation of roles and responsibilities
in advance.

Second, agreements on sharing knowledge and data are essential. Such agreements
help hold the tension between open science defined as “transparent and accessible knowl-
edge that is shared and developed through collaborative networks” [84] and proprietary
information sold as value-added analytics. This requires consideration for establishing
data sharing standards [85] accounting for FAIR (Findable, Accessible, Interoperable, and
Reproducible) and CARE (Collective Benefit, Authority to Control, Respectful, and Ethical)
data principles [86,87] as well as supporting trustworthy AI [50]. Trustworthy AI has 10 con-
siderations. One is the objectivity of data that promotes fairness and mitigates harmful
bias. Two is how AI is secured and protected against unauthorized access use, disclosure,
disruption, modification or destruction. Three is how AI protects safety and does not cause
unacceptable risk. Four is how AI protects privacy. Five is how explainable or transparent
an algorithm is. Six is how accurate AI emulates human intelligence. Seven is how reliably
AI performs as expected. Eight is how resilient AI is by its adaptive capability. Finally, nine
is how accountable AI is for tracing a record of events in the decision-making process.

Third, we recommend developing and implementing a communication plan between
institutions to overcome variations in meeting and work cultures. A communication
plan [85] that includes a management structure with roles and responsibilities as well as
reporting structure within teams [81] can alleviate confusion and enable work management
within teams relying on each other for fulfilling their responsibilities of the partnership.
Such a plan would alleviate tensions between the different incentive structures and deliver-
able timelines [88]. For example, a faster cadence of deliverables is required in industry,
while academia has a slower turn due to the exploratory nature of the work. Clear technical
deliverables, timelines, and inter-team meetings that create “tie-points” between industry
and academic workflows enable each team to manage as is culturally appropriate while
still collaborating toward the same end purpose [89].

4.2. Case Study: Information Gap Analysis and Demonstration Discussion

Recent developments in both research and industry support our findings that dy-
namic risk and public perception are among the most common information gaps in the
wicked wildfire use case. Risk assessments from commercial technologies such as Risk
Factor by First Street Foundation and public offerings such as the US Forest Service’s Wild-
fireRisk.org or Fuelcast.net are integrating new models for risk [30,90], hazard [37,42,58],
exposure [43,91], and vulnerability [92,93]. Combining risk data with evacuation simula-
tions (Figure 7) presents an opportunity for resilience planning with respect to infrastructure
planning. Our case study showed that traffic is a predictable consequence of fire evacua-
tions, and it could be mitigated with both planning and technology. Combining long-term
fire hazard data with evacuation simulations could inform new road configurations that
save lives by preventing entrapment as people move away from high hazard areas (e.g.,
Appendix A User Stories 3.6 and 3.7). Similarly, social media filtering has become more
common for providing information on public perception. Research advancements using
social media data show capabilities for geolocating [94–96] and identifying misinformation,
deep fakes [97] and unique contributions [11]. The use of these research advancements has
yet to be integrated into commercial or public technology offerings.

R2C shows that WKID Innovation and HCD show complementary but not duplicative
value for transitioning research to commercialization. WKID Innovation enabled the identi-
fication of unique information gaps spanning user types with refined requirements for how
to define that information in the context of decisions. WKID Innovation did not provide
iterative feedback for how someone might interact with that information in their day-to-day
life. HCD provided useful feedback on how users would interact with information in the
form of technology (dashboards, apps, etc.), but it neglected to capture the value of social
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media filtering to provide information on public perception. This is likely because users
do not know to ask for something that does not already exist [20–22]. Furthermore, the
feedback from users often resulted in comments that they did not need something that
was already similar to a technology they already had but only offered incremental design
improvements [19]. R2C demonstrates the need for both a systematic evaluation of infor-
mation gaps to inform solutions-oriented science and the need for HCD to place the context
of that information in a tool that can be commoditized to provide value-added analytics.

5. Conclusions

We studied a subset of environmental resilience technology focused on the synthesis
and interpretation of data for solutions-oriented science to create value-added analytics that
enable society to become more resilient to environmental change. This view of environmen-
tal resilience technology addresses the critical need for a more resilient future by shifting
away from observing environmental change to providing solutions that serve society.

There is a critical need to leverage domain expertise from research in solutions-oriented
science to create value-added analytics that provide sustainable solutions. The research-to-
commercialization (R2C) model combines methods for solutions-oriented science (WKID
Innovation) and value-added analytics (HCD) while taking advantage of the strengths
of academia and industry. R2C facilitates an efficient transfer of knowledge and practice
between industry and academic partners. It necessitates academic–industry partnerships
that consider how sectors operate with a clear delineation of: (i) intellectual property;
(ii) technical deliverables that overcome cultural differences and reward systems; and
(iii) a method to both satisfy open science and protect proprietary information and strategy.
While we present R2C in a case study for wildfire in the western United States, future work
should explore its utility on other environmental resilience topics.
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Appendix A. User Stories

1. Evacuation Route User Stories

1.1 For protecting lives, property, and the environment, a Local Emergency Respon-
der relies on information such as commute hours with respect to weather, time of
day, distance, and fire behavior.

1.2 For protecting lives, property, and the environment, a Local Emergency Re-
sponder relies on information such as Variable Sheriff/Emergency Management
response time to communities in need.

1.3 To effectively communicate with communities (access, e.g., 5G, language, messag-
ing, notifications/alerts, etc.), a Local/Regional Resilience Administrator relies on
information of transportation networks (who goes where and how—e.g., public
transit, on what ingress/egress routes).

2. Dynamic Risk as a function of hazard, exposure and vulnerability User Stories

2.1 For protecting lives, property, and the environment, a Local Emergency Respon-
der relies on information such as dynamic risk by parcel based on fuels, weather,
and home inspection information.

2.2 To determine where and when to strategically position resources on the ground
at the right location when needed and in response to mutual aid requisitions bro-
kered between the public and local, state, and federal agencies, a State/Regional
Emergency Responder relies on information such as dynamic current risk as it
relates to anticipated short-term impacts from fire.

2.3 For Disaster Declaration recommendations sent to the President that determine
how much grant dollars are needed for what kind of assistance and for how
long to which communities to build capability for state and local level response
based on a cost–benefit analysis, a Regional Recovery Administrator relies on
information of fire risk.

2.4 For developing a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
by city council/commissioner, a Local Land Use/Land Management/Resilience
Planner relies on information of dynamic fire risk as it relates to changing fire
hazard (as people cut trees, and structures are built/destroyed as combustible
fuels), structural exposure, and structural vulnerability.

2.5 To develop a wildfire strategy with priority high-risk areas and methods for reduc-
ing wildfire risk (fuels management—mechanical, prescribed fire, etc.) decided by
rangers in each forest park and local Resilience Offices/County Commissioners
and sometimes regionally (most contentious) often communicated and negoti-
ated with the local communities, State/Regional Resilience Administrators rely
on information of community Risk updated quarterly that scales from parcel to
regional context (e.g., identify highest risk communities locally and regionally).

2.6 To determine how many staff to hire in support of producing requested analytics
by policymakers to assess capacity for meeting legislation mandates, a Resilience
Planning Analytics Office relies on information of dynamic risk by parcel (60 m
pixel) of assets (structures, power lines, habitat, critical infrastructure, watersheds,
etc.) based on fuels, weather and home inspection information.

2.7 To manage risk/reward trade-offs in a natural perils insurance portfolio by
deciding whether or not to take on a risk (e.g., wildfire exposure) and what to
charge for that risk based on where it sits within company tolerance for loss as
it is written, the property, finance, insurance, reinsurance, and (re-)insurance
companies model assets that they want to insure and send it to the underwriter
who assesses the premium that can be charged for the risk, and an engineering
team may visit the site and assess while offering services like mitigation advice.
Underwriting then accepts/rejects risks and may initiate a process with the broker.
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Models are run daily on existing reinsured portfolios and monthly on the insured
portfolios. This relies on information of dynamic risk (to insured losses) as asset
(building) exposure and (building) vulnerability to hazard (not just today, but
how it is likely to change).

3. Hazard User Stories

3.1 To determine where and when to strategically position resources (contracted or
in-house) on the ground at the right location when needed and in response to
mutual aid requests brokered between the public and local, state and federal
agencies, a state/regional emergency responder relies on information of dynamic
“current” fire “risk” (i.e., hazard) as it relates to changes in fuels, topography
and weather.

3.2 To determine where and when to set fuel breaks (e.g., prescribe fire, hand crew,
dozer, etc.) during response to active wildfire or in the “shoulder” season, a
State/Regional Emergency Responder relies on information of dynamic “current”
fire risk as it relates to evolving hazard of fuel condition (stress/moisture, beetles,
etc.), type (veg and urban), and accumulation.

3.3 To decide to defend a home or not, a Local/State/Regional Firefighter on the
scene relies on information on home building materials.

3.4 To determine how many staff to hire in support of producing requested analytics
by policymakers to assess capacity for meeting legislation mandates, a Resilience
Planning Analytics Office relies on information of national scale, including rapid,
annual updates of vegetation and fuels (updated 3D layers).

3.5 To manage risk/reward trade-offs in a natural perils insurance portfolio by
deciding whether or not to take on a risk (e.g., wildfire exposure) and what to
charge for that risk based on where it sits within company tolerance for loss as it is
written, property, finance, insurance, reinsurance, and (re-)insurance companies
model assets that they want to insure and send it to the underwriter who assesses
the premium that can be charged for the risk, and an engineering team may visit
the site and assess while offering services like mitigation advice. Underwriting
then accepts/rejects risks and may initiate a process with the broker. Models are
run daily on existing reinsured portfolios and monthly on the insured portfolios.
This relies on information of dynamic hazards (not just today, but how it is likely
to change).

3.6 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
by city council/commissioner, a Local Land Manager/Land Use/Resilience
Planning Administrator relies on information of dynamic fire hazard (as people
cut trees, and structures are built/destroyed as combustible fuels).

3.4 To target communications and prepare communities about risk reduction needs
and measures (e.g., evacuation routes and planning as well as home hardening),
a Local/Regional/National Resilience Administrator relies on information of
building locations.

3.8 To develop a wildfire strategy with priority high-risk areas and methods for reduc-
ing wildfire risk (fuels management—mechanical, prescribed fire, etc.) decided by
rangers in each forest park and local Resilience Offices/County Commissioners
and sometimes regionally (most contentious) often communicated and negotiated
with the local communities, State/Regional Resilience Administrators rely on
information of fuel composition updated quarterly.

4. Vulnerability User Stories

4.1 For Disaster Declarations, Regional Administrators write a recommendation to
the President to determine how much grant dollars are needed for what kind
of assistance and for how long to which communities to build capability for
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state and local-level response based on a cost–benefit analysis. To do this, a
Regional Recovery Administrator relies on information of maps of the built
environment (structure).

4.2 To build capacity for mitigation through projects that reduce future costs (e.g., debris
removal, home hardening, defensible space), State/Regional Recovery Administra-
tors rely on information of projected maps of the built environment (structure).

4.3 To determine where to focus, sheltering resources for both displaced citizens
and responders, State/Regional Recovery Administrators rely on information of
social vulnerability.

4.4 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved by
the city council/commissioner, Local Land Use/Land Management/Resilient
Planners rely on information on building vulnerability (ignite-ability) based on
factors such as low-income housing, retrofitting, materials, etc.

4.5 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
by city council/commissioner, Local Land Use/Land Management/Resilient
Planners rely on information of social equity.

4.6 To manage risk/reward trade-offs in natural perils insurance portfolio by decid-
ing whether or not to take on a risk (e.g., wildfire exposure) and what to charge
for that risk based on where it sits within company tolerance for loss as it is
written, property, finance, insurance, reinsurance, and (re-)insurance companies
model assets that they want to insure and send it to the underwriter who assesses
the premium that can be charged for the risk, and an engineering team may visit
the site and assess while offering services like mitigation advice. Underwriting
then accepts/rejects risks and may initiate a process with the broker. Models are
run daily on existing reinsured portfolios and monthly on the insured portfolios.
This relies on information of (building) vulnerability.

4.7 To determine whether to defend a home or not, a local emergency response
firefighter relies on information such as the Urban Biomass “green biomass” as a
Wildland Urban Interface (WUI) layer.

4.8 To support evacuation planning, a Local Resilience Administrator relies on infor-
mation of social equity.

5. Exposure User Stories

5.1 To determine building capacity for mitigation through projects that reduce future
costs (e.g., debris removal, home hardening, defensible space), a State/Regional
Recovery Administrator relies on information of projections of built environment
(structure) maps.

5.2 To manage risk/reward trade-offs in a natural perils insurance portfolio by
deciding whether or not to take on a risk (e.g., wildfire exposure) and what to
charge for that risk based on where it sits within company tolerance for loss as it is
written, property, finance, insurance, reinsurance, and (re-)insurance companies
model assets that they want to insure and send it to the underwriter who assesses
the premium that can be charged for the risk, and an engineering team may visit
the site and assess while offering services like mitigation advice. Underwriting
then accepts/rejects risks and may initiate a process with the broker. Models are
run daily on existing reinsured portfolios and monthly on the insured portfolios.
This relies on information of dynamic asset (building) exposure.

5.3 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
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by city council/commissioner, a Local Land Manager/Land Use/Resilience
Planning Administrator relies on information of dynamic structural exposure.

5.4 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
by city council/commissioner, Local Land Use/Land Management/Resilient
Planners rely on information of social equity.

5.5 To manage risk/reward trade-offs in natural perils insurance portfolio by decid-
ing whether or not to take on a risk (e.g., wildfire exposure) and what to charge
for that risk based on where it sits within company tolerance for loss as it is
written, property, finance, insurance, reinsurance, and (re-)insurance companies
model assets that they want to insure and send it to the underwriter who assesses
the premium that can be charged for the risk, and an engineering team may visit
the site and assess while offering services like mitigation advice. Underwriting
then accepts/rejects risks and may initiate a process with the broker. Models are
run daily on existing reinsured portfolios and monthly on the insured portfolios.
This relies on information of asset locations now and in the future.

6. Social Media Influence User Stories

6.1 To influence communication strategy for effective communications with com-
munities (access, e.g., 5G, language, messaging, notifications/alerts, etc.), a Lo-
cal/State/Regional Resilience Administrator relies on information of number of
likes and impressions of messaging.

7. Misinformation User Stories

7.1 To decide how, when and what vetted, validated information (on community
needs and situational awareness) to disseminate to the public in a timely manner
and where to obtain the information, a Local/Regional Public Information Officer
needs to identify point sources of misinformation and misinformation itself.

7.2 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved
by city council/commissioner, a Local/Regional Resilience Administrator relies
on information of public perception of risk and mitigation efforts with filtered
misinformation.

8 Filtered Communications User Stories

8.1 To prioritize the 9-1-1 emergency response dispatch of consolidated resource
requests (reducing calls to the right number of resource needs rather than re-
sources/caller who may call about the same event) to the right local agency, a Local
Emergency Responder relies on situational information (weapons, threats, etc.).

8.2 To decide when people can return based on hazards and access to utilities (water
and power), a Regional Recovery Administrator relies on information on who is
evacuating and not evacuating in real time.

8.3 To decide where to focus on sheltering resources for both displaced citizens and
responders, a Regional Recovery Administrator relies on information of who
needs resources (filtered by social media).

8.4 To decide if resources spent helping on the ground are less than they would
receive in consulting on recovery, a Regional Recovery consulting company relies
on validated, geolocated information from reliable sources on damages (e.g.,
downed power lines).

8.5 To decide what agency information to share publicly based on what the public
needs to know to reduce the number of duplicate calls on the same incident, a
Local Public Information Officer relies on information of evacuations (plans and
crowdsourced feedback on available/limited resources and access).
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8.6 To decide how, when and what vetted, validated information (on community
needs and situational awareness) to disseminate to the public in a timely manner
and where to obtain the information, a Regional Public Information Officer uses
information to identify the mavens (local media influencers).

8.7 To build public-facing relationships around a cohesive, collaborative strategy
across political boundaries for incident response, Incident Command approves
staff of the National Incident Management Office (NIMO) as part of the USFS to
use validated information on the local event with images, location, timestamps,
and information on who took it.

8.8 To determine how and when to pay out on a claim and how to reorganize capital
to handle catastrophic events, a (re-)insurance company in national/international
resilience planning relies on information of claim validation in the form of geolo-
cation and photos.

9. Public Perception User Stories

9.1 To protect lives, property, and the environment through response, prevention,
and education made locally across departments, Local Emergency Responders
coordinated across jurisdictional boundaries (“mutual aid) by the State (e.g., CAL
FIRE) with federal resources allocated by Geographic Area Coordination Centers
(GACC) rely on information of community perceptions of risk based on fire
history and awareness.

9.2 To protect lives, property, and the environment through response, prevention,
and education made locally across departments, Local Emergency Responders
coordinated across jurisdictional boundaries (“mutual aid) by the State (e.g., CAL
FIRE) with federal resources allocated by Geographic Area Coordination Centers
(GACC) rely on information of public perception with respect to rumor control
of misinformation and ability to turn information into intelligence.

9.3 To develop resilience plans coordinated with each community locally based on
watersheds on for planning evacuation routes, infrastructure improvements,
where to conduct fuel hazard reductions, and which homes to defend during
active response, Local Emergency Responders rely on information of public
perception with respect to rumor control of misinformation about resilience
measures (e.g., prescribed fire).

9.4 To prioritize the 9-1-1 emergency response dispatch of consolidated resource
requests (reducing calls to the right number of resource needs, rather than re-
sources/caller who may call about the same event) to the right local agency, Local
Emergency Responders rely on information of public perception of the event.

9.5 To set strategic priorities of how to use limited staff to be successful and where to
prioritize investments to reduce risks (e.g., construction tailored to threats) in prepa-
ration for an upcoming wildfire season, the grant management of State/Regional
Emergency Management rely on information of public perception about prioriti-
zation of protecting assets based on variable value systems.

9.6 To decide where and when to strategically position resources (contracted or in-
house) on the ground at the right location when needed and in response to mutual
aid requests brokered between the public and local, state and federal agencies,
State and Regional Emergency Managers rely on information public perception
about prioritization of protecting assets based on variable value systems (e.g.,
timber vs. homes).

9.7 To decide whether to defend a home or not, a local/state/regional firefighter
relies on information of public perception about prioritization of protecting assets
based on variable value systems (e.g., timber vs. homes).

9.8 To decide where, when and what kind of fuel breaks to allocate (prescribe a
fire, hand crew, dozer, goats, etc.) during response to active wildfire or in the
“shoulder season”, local/state/regional firefighters rely on information of public
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perception of fuel treatments and geotagged photos of what is happening; written
text needs to be verified in real time (trusted vs. not trusted).

9.9 To decide when to alert and warn people of risk and how to educate the public to
take mitigation action, a Local Resilience Administrator relies on information of
public perception of events in real time as they happen and that is reliable from
trusted sources and accurate with photos and geotagging.

9.10 To develop a strategic plan on what mitigation efforts to prioritize based on
capability/capacity, infrastructure programs, and social justice that is often vetted
with the local community through public engagement exercise and approved by
the city council/commissioner, a Local/Regional Resilience Administrator relies
on information of public perception of risk and mitigation efforts with filtered
misinformation.

9.11 To decide how to transition from strategic planning to implementation based on
priorities of the local community identified by and ranked by the city Chief Re-
silience Officer, a Local/Regional Resilience Administrator relies on information
of public perception of risk and mitigation efforts with filtered misinformation.

9.12 To communicate and prepare communities about risk reduction needs and mea-
sures (e.g., evacuation routes and planning as well as home hardening), a Lo-
cal/Regional Resilience Administrator relies on information of public perception
and understanding of fire risk and preparedness as well as public sentiment to
determine messaging to communities of fire expectations.

9.13 To influence communication strategy for effective communications with com-
munities (access, e.g., 5G, language, messaging, notifications/alerts, etc.), a Lo-
cal/State/Regional Resilience Administrator relies on information of the number
of public sentiments to determine buy-in of assets being protected.

9.14 To decide how, when and what vetted, validated information (on community
needs and situational awareness) to disseminate to the public in a timely manner
and where to obtain the information from within the constraints and scope
directed by an Incident Commander, a Local/Regional Public Information Officer
relies on information of public sentiment of the event.

References
1. IOM. World Migration Report 2015—Migrants and Cities: New Partnerships to Manage Mobility; IOM: Grand-Saconnex, Switzerland,

2015; Volume 8, ISBN 978-92-9068-709-2.
2. IPCC. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management,

Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Cambridge University Press: Cambridge, UK, 2022;
ISBN 978-1-00-915798-8.

3. Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.;
Maguire, K.C.; et al. Has the Earth’s Sixth Mass Extinction Already Arrived? Nature 2011, 471, 51–57. [CrossRef]

4. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.)
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021.

5. Khan, I.; Hou, F.; Le, H.P. The Impact of Natural Resources, Energy Consumption, and Population Growth on Environmental
Quality: Fresh Evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [CrossRef]

6. Van Meerbeek, K.; Jucker, T.; Svenning, J.-C. Unifying the Concepts of Stability and Resilience in Ecology. J. Ecol. 2021, 109,
3114–3132. [CrossRef]

7. Bohrer, G.; Cavender-Bares, J.; Chaplin-Kramer, R.; Chavez, F.; Dietze, M.; Fatoyinbo, T.; Gaddis, K.; Geller, G.; Guralnick, R.;
Hestir, E.; et al. NASA Biological Diversity and Ecological Forecasting: Current State of Knowledge and Considerations for the Next Decade;
NASA: Washington, DC, USA, 2022.

8. IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. Zenodo, 2019.
9. IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group

II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B.,
Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University
Press: Cambridge, UK, 2022.

https://doi.org/10.1038/nature09678
https://doi.org/10.1016/j.scitotenv.2020.142222
https://doi.org/10.1111/1365-2745.13651


Appl. Sci. 2023, 13, 11034 23 of 26

10. NRC. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space: An Overview for Decision Makers and the
Public; National Academies Press: Washington, DC, USA, 2019; p. 25437, ISBN 978-0-309-49241-6.

11. Diaz, J.; Denis, L.S. Classifying Twitter Users for Disaster Response: A Highly Multimodal or Simple Approach? In Proceedings
of the Information Systems for Crisis Response and Management Conference (ISCRAM 2020), Blacksburg, VA, USA, 24–27 May
2020; pp. 774–789.

12. Tabor, K. Achieving Multiple Conservation Goals with Satellite-Based Monitoring and Alert Systems. Ph.D. Thesis, University of
Maryland, Baltimore County, MA, USA, 2023.

13. Ingram, P.; Choi, Y.; Martin, R.L.; Reeves, M.; Gulati, R. Defining Your Organization’s Values. Harvard Business Review; Harvard
Business Publishing: Boston, MA, USA, 2022.

14. Sharp, H.; Preece, J.; Rogers, Y. Interaction Design: Beyond Human-Computer Interaction, 5th ed.; Wiley: Indianapolis, IN, USA, 2019;
ISBN 978-1-119-54725-9.

15. Norman, D. The Design of Everyday Things; Revised Edition; Basic Books: New York, NY, USA, 2013; ISBN 978-0-465-05065-9.
16. Koberg, D.; Bagnall, J. The Universal Traveler: A Soft-Systems Guide to: Creativity, Problem-Solving, and the Process of Reaching Goals;

Revised Edition; W. Kaufmann: Los Altos, CA, USA, 1974; ISBN 978-0-913232-05-7.
17. Nelson, G. How to See: A Guide to Reading Our Manmade Environment; Little, Brown and Company: Boston, MA, USA, 1979;

ISBN 978-0-316-60312-6.
18. McKim, R.H. Experiences in Visual Thinking, 2nd ed.; Cengage Learning: Monterey, CA, USA, 1980; ISBN 978-0-8185-0411-2.
19. Thomas, V.; Remy, C.; Bates, O. The Limits of HCD: Reimagining the Anthropocentricity of ISO 9241-210. In Proceedings of

the 2017 Workshop on Computing within Limits; Association for Computing Machinery, New York, NY, USA, 22 June 2017;
pp. 85–92.

20. Van Velsen, L.; Ludden, G.; Grünloh, C. The Limitations of User-and Human-Centered Design in an EHealth Context and How to
Move Beyond Them. J. Med. Internet Res. 2022, 24, e37341. [CrossRef]

21. Vlaskovits, P. Henry Ford, Innovation, and That “Faster Horse” Quote. Harvard Business Review; Harvard Business Publishing: Boston,
MA, USA, 2011.

22. Tanweer, A.; Aragon, C.R.; Muller, M.; Guha, S.; Passi, S.; Neff, G.; Kogan, M. Interrogating Human-Centered Data Science:
Taking Stock of Opportunities and Limitations. In Proceedings of the Extended Abstracts of the 2022 CHI Conference on Human
Factors in Computing Systems; Association for Computing Machinery, New York, NY, USA, 28 April 2022; pp. 1–6.

23. Rittel, H.W.J.; Webber, M.M. Dilemmas in a General Theory of Planning. Policy Sci. 1973, 4, 155–169. [CrossRef]
24. Kennedy, M.C.; Ford, E.D.; Singleton, P.; Finney, M.; Agee, J.K. Informed Multi-Objective Decision-Making in Environmental

Management Using Pareto Optimality. J. Appl. Ecol. 2008, 45, 181–192. [CrossRef]
25. Stavros, E.N. Wicked Problems Need WKID Innovation. Res.-Technol. Manag. 2022, 65, 39–47. [CrossRef]
26. Ackoff, R. From Data to Wisdom. J. Appl. Syst. Anal. 1989, 16, 3–9.
27. Aguilar, F.J. Scanning the Business Environment; Macmillan Publishers Limited: New York, NY, USA, 1967.
28. NASA. NASA Systems Engineering Handbook; NASA SP-2016-6105; NASA: Washington, DC, USA, 2007.
29. Taplin, D.H.; Clark, H.; Collins, E.; Colby, D.C. Theory of Change; ActKnowledge: New York, NY, USA, 2003.
30. Iglesias, V.; Stavros, N.; Balch, J.K.; Barrett, K.; Cobian-Iñiguez, J.; Hester, C.; Kolden, C.A.; Leyk, S.; Nagy, R.C.; Reid, C.E.; et al.

Fires That Matter: Reconceptualizing Fire Risk to Include Interactions between Humans and the Natural Environment.
Environ. Res. Lett. 2022, 17, 045014. [CrossRef]

31. Jerrett, M.; Jina, A.S.; Marlier, M.E. Up in Smoke: California’s Greenhouse Gas Reductions Could Be Wiped out by 2020 Wildfires.
Environ. Pollut. 2022, 310, 119888. [CrossRef]

32. Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-Started Wildfires Expand the Fire Niche
across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [CrossRef]

33. Mietkiewicz, N.; Balch, J.K.; Schoennagel, T.; Leyk, S.; St. Denis, L.A.; Bradley, B.A. In the Line of Fire: Consequences of
Human-Ignited Wildfires to Homes in the U.S. (1992–2015). Fire 2020, 3, 50. [CrossRef]

34. Moritz, M.A.; Morais, M.E.; Summerell, L.A.; Carlson, J.M.; Doyle, J. Wildfires, Complexity, and Highly Optimized Tolerance.
Proc. Natl. Acad. Sci. USA 2005, 102, 17912–17917. [CrossRef] [PubMed]

35. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-Induced
Variations in Global Wildfire Danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [CrossRef] [PubMed]

36. Stavros, E.N.; Abatzoglou, J.T.; McKenzie, D.; Larkin, N.K. Regional Projections of the Likelihood of Very Large Wildland Fires
under a Changing Climate in the Contiguous Western United States. Clim. Chang. 2014, 126, 455–468. [CrossRef]

37. Barbero, R.; Abatzoglou, J.T.; Larkin, N.K.; Kolden, C.A.; Stocks, B. Climate Change Presents Increased Potential for Very Large
Fires in the Contiguous United States. Int. J. Wildland Fire 2015, 24, 892. [CrossRef]

38. Iglesias, V.; Balch, J.K.; Travis, W.R. U.S. Fires Became Larger, More Frequent, and More Widespread in the 2000s. Sci. Adv. 2022,
8, eabc0020. [CrossRef]

39. Abatzoglou, J.T.; Battisti, D.S.; Williams, A.P.; Hansen, W.D.; Harvey, B.J.; Kolden, C.A. Projected Increases in Western US Forest
Fire despite Growing Fuel Constraints. Commun. Earth Environ. 2021, 2, 227. [CrossRef]

40. Kolden, C.A. We’re Not Doing Enough Prescribed Fire in the Western United States to Mitigate Wildfire Risk. Fire 2019, 2, 30.
[CrossRef]

https://doi.org/10.2196/37341
https://doi.org/10.1007/BF01405730
https://doi.org/10.1111/j.1365-2664.2007.01367.x
https://doi.org/10.1080/08956308.2022.1994249
https://doi.org/10.1088/1748-9326/ac5c0c
https://doi.org/10.1016/j.envpol.2022.119888
https://doi.org/10.1073/pnas.1617394114
https://doi.org/10.3390/fire3030050
https://doi.org/10.1073/pnas.0508985102
https://www.ncbi.nlm.nih.gov/pubmed/16332964
https://doi.org/10.1038/ncomms8537
https://www.ncbi.nlm.nih.gov/pubmed/26172867
https://doi.org/10.1007/s10584-014-1229-6
https://doi.org/10.1071/WF15083
https://doi.org/10.1126/sciadv.abc0020
https://doi.org/10.1038/s43247-021-00299-0
https://doi.org/10.3390/fire2020030


Appl. Sci. 2023, 13, 11034 24 of 26

41. Coen, J.L.; Stavros, E.N.; Fites-Kaufman, J.A. Deconstructing the King Megafire. Ecol. Appl. 2018, 28, 1565–1580. [CrossRef]
42. Pascolini-Campbell, M.; Lee, C.; Stavros, N.; Fisher, J.B. ECOSTRESS Reveals Pre-Fire Vegetation Controls on Burn Severity for

Southern California Wildfires of 2020. Glob. Ecol. Biogeogr. 2022, 31, 1976–1989. [CrossRef]
43. Iglesias, V.; Braswell, A.E.; Rossi, M.W.; Joseph, M.B.; McShane, C.; Cattau, M.; Koontz, M.J.; McGlinchy, J.; Nagy, R.C.;

Balch, J.; et al. Risky Development: Increasing Exposure to Natural Hazards in the United States. Earths Future 2021,
9, e2020EF001795. [CrossRef]

44. Higuera, P.E.; Cook, M.C.; Balch, J.K.; Stavros, E.N.; Mahood, A.L.; St. Denis, L.A. Shifting Social-Ecological Fire Regimes Explain
Increasing Structure Loss from Western Wildfires. PNAS Nexus 2023, 2, pgad005. [CrossRef] [PubMed]

45. Vilà, M.; Ibáñez, I. Plant Invasions in the Landscape. Landsc. Ecol. 2011, 26, 461–472. [CrossRef]
46. Mosher, E.S.; Silander, J.A.; Latimer, A.M. The Role of Land-Use History in Major Invasions by Woody Plant Species in the

Northeastern North American Landscape. Biol. Invasions 2009, 11, 2317. [CrossRef]
47. Abatzoglou, J.T.; Kolden, C.A. Relationships between Climate and Macroscale Area Burned in the Western United States. Int. J.

Wildland Fire 2013, 22, 1003. [CrossRef]
48. Stavros, E.N.; Iglesias, V.; Decastro, A. The Wicked Wildfire Problem and Solution Space for Detecting and Tracking the Fires That

Matter. Available online: http://www.essoar.org/doi/10.1002/essoar.10506888.1 (accessed on 7 June 2021).
49. Nagji, B.; Tuff, G. Managing Your Innovation Portfolio, Harvard Business Review; Harvard Business Publishing: Boston, MA, USA, 2012.
50. NIST. Trustworthy and Responsible AI; NIST: Gaithersburg, MD, USA, 2022.
51. Fovell, R.G.; Brewer, M.J.; Garmong, R.J. The December 2021 Marshall Fire: Predictability and Gust Forecasts from Operational

Models. Atmosphere 2022, 13, 765. [CrossRef]
52. Twitter Inc. Twitter API V2 2023. Available online: https://developer.twitter.com/en/docs/api-reference-index (accessed on

8 September 2023).
53. St. Denis, L.A.; Hughes, A.L. ‘What I Need to Know Is What I Don’t Know!’: Filtering Disaster Twitter Data for Information

from Local Individuals. In Proceedings of the 17th ISCRAM Conference, Blacksburg, VA, USA, 24–27 May 2020; Hughes, A.L.,
McNeill, F., Zobel, C., Eds.

54. St Denis, L. Social Media Content Filtering for Emergency. Management. Patent Pending Application 18/000,314.
55. Pereira, R.H.M.; Saraiva, M.; Herszenhut, D.; Braga, C.K.V.; Conway, M.W. R5r: Rapid Realistic Routing on Multimodal Transport

Networks with R5 in R. Findings 2021. [CrossRef]
56. NIFC. NIFC Open Data Site: Federal Interagency Wildland Fire Maps and Data for All 2018; NIFC: Boise, ID, USA, 2018.
57. Zillow Inc. ZTRAX: Zillow Transaction and Assessment Dataset 2016; Zillow: Seattle, WA, USA, 2016.
58. Joseph, M.B.; Rossi, M.W.; Mietkiewicz, N.P.; Mahood, A.L.; Cattau, M.E.; St. Denis, L.A.; Nagy, R.C.; Iglesias, V.; Abatzoglou, J.T.;

Balch, J.K. Spatiotemporal Prediction of Wildfire Size Extremes with Bayesian Finite Sample Maxima. Ecol. Appl. 2019, 29, e01898.
[CrossRef]

59. Zhang, H.; Song, M.; He, H. Achieving the Success of Sustainability Development Projects through Big Data Analytics and
Artificial Intelligence Capability. Sustainability 2020, 12, 949. [CrossRef]

60. Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Scarascia Mugnozza, G.; Moshelion, M.; Tuskan, G.A.;
Keurentjes, J.J.B.; Altman, A. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence.
Trends Biotechnol. 2019, 37, 1217–1235. [CrossRef] [PubMed]

61. Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The Potential of Remote Sensing and Artificial
Intelligence as Tools to Improve the Resilience of Agriculture Production Systems. Curr. Opin. Biotechnol. 2021, 70, 15–22.
[CrossRef]

62. NSF Directorate for Technology, Innovation and Partnerships (TIP) Resources and Contracts. Available online: https://beta.nsf.
gov/tip/resources (accessed on 29 March 2023).

63. Ramirez, J. California 2020: Worst Fire Season Ever, Again. Now What? An Effort to Dissect the California Fire Quilt; International
Association of Wildland Fire: Missoula, Montana, USA, 2021; Available online: https://www.iawfonline.org/article/california-
2020-worst-fire-season-ever-again-now-what-an-effort-to-dissect-the-california-fire-quilt/ (accessed on 29 March 2023).

64. NRC. Accelerating Technology Transi-Tion: Bridging the Valley of Death for Materials and Processes in Defense Systems; National
Academies Press: Washington, DC, USA, 2004.

65. NASA. The Application Readiness Level Metric; NASA Applied Sciences: Washington, DC, USA, 2019.
66. Hallett, L.M.; Morelli, T.L.; Gerber, L.R.; Moritz, M.A.; Schwartz, M.W.; Stephenson, N.L.; Tank, J.L.; Williamson, M.A.;

Woodhouse, C.A. Navigating Translational Ecology: Creating Opportunities for Scientist Participation. Front. Ecol. Environ. 2017,
15, 578–586. [CrossRef]

67. Markman, G.D.; Siegel, D.S.; Wright, M. Research and Technology Commercialization. J. Manag. Stud. 2008, 45, 1401–1423.
[CrossRef]

68. Polk, M. Transdisciplinary Co-Production: Designing and Testing a Transdisciplinary Research Framework for Societal Problem
Solving. Futures 2015, 65, 110–122. [CrossRef]

https://doi.org/10.1002/eap.1752
https://doi.org/10.1111/geb.13526
https://doi.org/10.1029/2020EF001795
https://doi.org/10.1093/pnasnexus/pgad005
https://www.ncbi.nlm.nih.gov/pubmed/36938500
https://doi.org/10.1007/s10980-011-9585-3
https://doi.org/10.1007/s10530-008-9418-8
https://doi.org/10.1071/WF13019
http://www.essoar.org/doi/10.1002/essoar.10506888.1
https://doi.org/10.3390/atmos13050765
https://developer.twitter.com/en/docs/api-reference-index
https://doi.org/10.32866/001c.21262
https://doi.org/10.1002/eap.1898
https://doi.org/10.3390/su12030949
https://doi.org/10.1016/j.tibtech.2019.05.007
https://www.ncbi.nlm.nih.gov/pubmed/31235329
https://doi.org/10.1016/j.copbio.2020.09.003
https://beta.nsf.gov/tip/resources
https://beta.nsf.gov/tip/resources
https://www.iawfonline.org/article/california-2020-worst-fire-season-ever-again-now-what-an-effort-to-dissect-the-california-fire-quilt/
https://www.iawfonline.org/article/california-2020-worst-fire-season-ever-again-now-what-an-effort-to-dissect-the-california-fire-quilt/
https://doi.org/10.1002/fee.1734
https://doi.org/10.1111/j.1467-6486.2008.00803.x
https://doi.org/10.1016/j.futures.2014.11.001


Appl. Sci. 2023, 13, 11034 25 of 26

69. Hawkins, J.; Madden, K.; Fletcher, A.; Midgley, L.; Grant, A.; Cox, G.; Moore, L.; Campbell, R.; Murphy, S.; Bonell, C.; et al.
Development of a Framework for the Co-Production and Prototyping of Public Health Interventions. BMC Public Health 2017,
17, 689. [CrossRef]

70. Schlesinger, W.H. Translational Ecology. Science 2010, 329, 609. [CrossRef]
71. Enquist, C.A.; Jackson, S.T.; Garfin, G.M.; Davis, F.W.; Gerber, L.R.; Littell, J.A.; Tank, J.L.; Terando, A.J.; Wall, T.U.;

Halpern, B.; et al. Foundations of Translational Ecology. Front. Ecol. Environ. 2017, 15, 541–550. [CrossRef]
72. Bovaird, T. Beyond Engagement and Participation: User and Community Coproduction of Public Services. Public Adm. Rev. 2007,

67, 846–860. [CrossRef]
73. Brandsen, T.; Honingh, M. Distinguishing Different Types of Coproduction: A Conceptual Analysis Based on the Classical

Definitions. Public Adm. Rev. 2016, 76, 427–435. [CrossRef]
74. Schwartz, M.W.; Hiers, J.K.; Davis, F.W.; Garfin, G.M.; Jackson, S.T.; Terando, A.J.; Woodhouse, C.A.; Morelli, T.L.;

Williamson, M.A.; Brunson, M.W. Developing a Translational Ecology Workforce. Front. Ecol. Environ. 2017, 15, 587–596.
[CrossRef]

75. Gwyn, C.W.; Silverman, P.J. EUVL: Transition from Research to Commercialization. Photomask and Next-Generation Lithography Mask
Technology X, 28 August 2003; SPIE: Bellingham, WA, USA, 2003; Volume 5130, pp. 990–1004. [CrossRef]

76. Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to
Market, 2009–2018. JAMA 2020, 323, 844–853. [CrossRef]

77. Buyya, R. Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering Computing as the 5th Utility. In
Proceedings of the 2009 Fourth ChinaGrid Annual Conference, Yantai, China, 21–22 August 2009; pp. xii–xv.

78. Stoeklé, H.-C.; Mamzer-Bruneel, M.-F.; Vogt, G.; Hervé, C. 23andMe: A New Two-Sided Data-Banking Market Model. BMC Med.
Ethics 2016, 17, 19. [CrossRef] [PubMed]

79. Duchelle, A.E.; Simonet, G.; Sunderlin, W.D.; Wunder, S. What Is REDD+ Achieving on the Ground? Curr. Opin. Environ. Sustain.
2018, 32, 134–140. [CrossRef]

80. Thomas, E.; Ntazinda, J.; Kathuni, S. Applying Climate Reparative Finance toward Water Security. Sci. Total Environ. 2023,
875, 162506. [CrossRef] [PubMed]

81. Bryson, J.M.; Crosby, B.C.; Stone, M.M. The Design and Implementation of Cross-Sector Collaborations: Propositions from the
Literature. Public Adm. Rev. 2006, 66, 44–55. [CrossRef]

82. Florin, U.; Lindhult, E. Norms and Ethics: Prerequisites for Excellence in Co-Production. In Proceedings of the Högskola och
Samhälle i Samverkan HSS´, 15, Kalmar, Sweden, 28 May 2015.

83. Page, K. Ethics and the Co-Production of Knowledge. Public Health Res. Pract. 2022, 32, 3222213. [CrossRef]
84. Vicente-Saez, R.; Martinez-Fuentes, C. Open Science Now: A Systematic Literature Review for an Integrated Definition. J. Bus.

Res. 2018, 88, 428–436. [CrossRef]
85. Mikhaylov, S.J.; Esteve, M.; Campion, A. Artificial Intelligence for the Public Sector: Opportunities and Challenges of Cross-Sector

Collaboration. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20170357. [CrossRef]
86. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.;

Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018.
[CrossRef]

87. Carroll, S.R.; Garba, I.; Figueroa-Rodriguez, O.L.; Halbrook, J.; Raseroka, K.; Rodriguez-Lonebear, D.; Rowe, R.; Rodrigo, S.;
Walker, J.D.; Anderson, J.; et al. The CARE Principles for Indigenous Data Governance. Available online: https://datascience.
codata.org/articles/10.5334/dsj-2020-043/ (accessed on 20 April 2021).

88. Rasmussen, E.; Moen, Ø.; Gulbrandsen, M. Initiatives to Promote Commercialization of University Knowledge. Technovation
2006, 26, 518–533. [CrossRef]

89. Bryson, J.M.; Crosby, B.C.; Stone, M.M. Designing and Implementing Cross-Sector Collaborations: Needed and Challenging.
Public Adm. Rev. 2015, 75, 647–663. [CrossRef]

90. Mahmoud, H.; Chulahwat, A. Assessing Wildland–Urban Interface Fire Risk. R. Soc. Open Sci. 2020, 7, 201183. [CrossRef]
[PubMed]

91. Mann, M.L.; Berck, P.; Moritz, M.A.; Batllori, E.; Baldwin, J.G.; Gately, C.K.; Cameron, D.R. Modeling Residential Development
in California from 2000 to 2050: Integrating Wildfire Risk, Wildland and Agricultural Encroachment. Land Use Policy 2014, 41,
438–452. [CrossRef]

92. Quarles, S.L.; Pohl, K. Building a Wildfire-Resistant Home: Codes and Costs; Headwaters Economics: Bozeman, Montana, 2018.
93. Chulahwat, A.; Mahmoud, H.; Monedero, S.; Diez Vizcaíno, F.J.; Ramirez, J.; Buckley, D.; Forradellas, A.C. Integrated Graph

Measures Reveal Survival Likelihood for Buildings in Wildfire Events. Sci. Rep. 2022, 12, 15954. [CrossRef]
94. Ribeiro, S.S., Jr.; Davis, C.A., Jr.; Oliveira, D.R.R.; Meira, W., Jr.; Gonçalves, T.S.; Pappa, G.L. Traffic Observatory: A System

to Detect and Locate Traffic Events and Conditions Using Twitter. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Location-Based Social Networks, Redondo Beach, CA, USA, 6 November 2012.

95. Kotzias, D.; Lappas, T.; Gunopulos, D. Home Is Where Your Friends Are: Utilizing the Social Graph to Locate Twitter Users in a
City. Inf. Syst. 2016, 57, 77–87. [CrossRef]

https://doi.org/10.1186/s12889-017-4695-8
https://doi.org/10.1126/science.1195624
https://doi.org/10.1002/fee.1733
https://doi.org/10.1111/j.1540-6210.2007.00773.x
https://doi.org/10.1111/puar.12465
https://doi.org/10.1002/fee.1732
https://doi.org/10.1117/12.504239
https://doi.org/10.1001/jama.2020.1166
https://doi.org/10.1186/s12910-016-0101-9
https://www.ncbi.nlm.nih.gov/pubmed/27059184
https://doi.org/10.1016/j.cosust.2018.07.001
https://doi.org/10.1016/j.scitotenv.2023.162506
https://www.ncbi.nlm.nih.gov/pubmed/36898543
https://doi.org/10.1111/j.1540-6210.2006.00665.x
https://doi.org/10.17061/phrp3222213
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1098/rsta.2017.0357
https://doi.org/10.1038/sdata.2016.18
https://datascience.codata.org/articles/10.5334/dsj-2020-043/
https://datascience.codata.org/articles/10.5334/dsj-2020-043/
https://doi.org/10.1016/j.technovation.2004.11.005
https://doi.org/10.1111/puar.12432
https://doi.org/10.1098/rsos.201183
https://www.ncbi.nlm.nih.gov/pubmed/32968539
https://doi.org/10.1016/j.landusepol.2014.06.020
https://doi.org/10.1038/s41598-022-19875-1
https://doi.org/10.1016/j.is.2015.10.011


Appl. Sci. 2023, 13, 11034 26 of 26

96. Cheng, Z.; Caverlee, J.; Lee, K. You Are Where You Tweet: A Content-Based Approach to Geo-Locating Twitter Users. In
Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada,
26–30 October 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 759–768.

97. Islam, M.R.; Liu, S.; Wang, X.; Xu, G. Deep Learning for Misinformation Detection on Online Social Networks: A Survey and
New Perspectives. Soc. Netw. Anal. Min. 2020, 10, 82. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13278-020-00696-x

	Introduction 
	Methods 
	Research-to-Commercialization (R2C) Model 
	Case Study: Dataset Curation 
	Case Study: Information Gap Analysis 
	Case Study: Proof-of-Concept Demonstrations 

	Results 
	Case Study: Information Gap Analysis Results 
	Case Study: Proof-of-Concept Demonstration 

	Discussion 
	R2C Model for Co-Production of Sustainable Solutions in Environmental Resilience Technology 
	Case Study: Information Gap Analysis and Demonstration Discussion 

	Conclusions 
	Appendix A
	References

