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Abstract: Different strategies for modeling Global Horizontal UltraViolet Erythemal irradiance
(GHUVE) based on meteorological parameters measured in Burgos (Spain) have been developed.
The experimental campaign ran from September 2020 to June 2022. The selection of relevant variables
for modeling was based on Pearson’s correlation coefficient. Multilinear Regression Model (MLR)
and artificial neural network (ANN) techniques were employed to model GHUVE under different
sky conditions (all skies, overcast, intermediate, and clear skies), classified according to the CIE
standard on a 10 min basis. ANN models of GHUVE outperform those based on MLR according
to the traditional statistical indices used in this study (R2, MBE, and nRMSE). Moreover, the work
proposes a simple all-sky ANN model of GHUVE based on usually recorded variables at ground
meteorological stations.

Keywords: ultraviolet erythemal irradiance; UVER; statistical analysis; modeling; ANN; multilinear
regression models

1. Introduction

Ultraviolet radiation (UV) represents a small fraction of total solar radiation (5–7%) [1].
It is a highly energetic component of the solar spectrum that must be monitored as it can
be detrimental to life on Earth [2], becoming the main risk factor for human health among
photo-biological factors [3]. The UV region of the solar spectrum spans wavelengths
between 100 and 400 nm, and it is divided into three components, i.e., UVA, UVB, and
UVC. Although UVC radiation (100–280 nm) is entirely absorbed by atmospheric oxygen
and ozone, a fraction of UVB (280–315 nm) and UVA (315–400 nm) reaches the Earth’s
surface as ozone partially absorbs these wavelengths [4]. Surface UV is also influenced by
geographical parameters like altitude over the sea level and latitude [5].

UV radiation exerts significant effects on biological and photochemical processes [6],
showing both beneficial and detrimental impacts. It has beneficial effects on humans,
animals, plants, and the biosphere: while moderate doses of UV radiation enhance vita-
min D synthesis, promote mental health, and reduce blood pressure [3,7,8], excessive
exposure to UV radiation can cause cataracts, premature aging of the skin and skin
cancer [1,9–11]. It also has negative effects on organisms, marine and terrestrial ecosystems,
and certain building materials (paints and plastics) [12,13]. Ideally, there should be a
balance in UV radiation exposure to reduce the adverse effects associated with too few or
too high exposures [8].

The impacts of UV radiation on the skin have been commonly assessed using UV ery-
themal irradiance (UVER). In accordance with the ISO/CIE17166 : 2019(E) standard [14],
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UVER is determined by applying a spectral weighting function known as the erythema
spectral weighting function. This function quantifies the effectiveness of radiation at each
wavelength (λ) to cause minimal erythema. The UVER value is obtained by weighting the
spectral irradiance of the UV radiation at each wavelength using the corresponding ery-
thema effectiveness factor and then summing up these weighted values for all wavelengths
present in the source spectrum, as specified in the standard.

Due to the lack of UV and UVER sensors in many ground-based weather stations [15],
these variables are often estimated from other radiometric or meteorological parameters.
The effect of cloudiness on UVER has been analyzed for all-sky conditions. In overcast
conditions and skies with low clouds, UVER decreases as cloudiness increases [16]. Cloud
optical thickness and UVER radiation have an exponential dependence, with higher at-
tenuation occurring in low clouds [17]. Therefore, the solar zenith angle (θz) is one of
the most influential parameters in the variation of UVER [18]. As θz increases, there is a
corresponding decrease in UVER [16,19]. Notably, a reduction of up to 40% is observed
when the zenith angle increases from 20◦ to 50◦ [19].

The relationship between UVER, relative optical air mass, and atmospheric clearness
has been analyzed, concluding that atmosphere transmissivity to UVER exhibits higher
sensitivity to changes in atmospheric clearness compared to variations in the total ozone
column (TOC) [20].

Previous research has assessed the effect of ozone on UVER, revealing that higher
ozone levels lead to a decrease in UVER due to the ozone absorption band within the UV
range [18,21]. The dependence of UVER on ozone is influenced by the variation of the
zenith angle [13]. The influence of TOC on UVER is considerably smaller under overcast
skies than under clear skies [22].

Different mathematical models have been developed to model UVER as a function
of different meteorological variables. Empirical and radiative transfer models have been
used to correlate UV radiation, solar broadband radiation, and atmospheric parameters
(cloudiness, TOC, aerosols) [12,18,19,23–26]. Linear regressions (LR) have analyzed the
effect of some geometric and atmospheric parameters on the ratio between global horizontal
UV erythemal irradiance (GHUVE) and global horizontal irradiance (GHI). The aerosol
load, TOC, and precipitable water exhibit a linear relationship with respect to GHUVE/GHI
while θz and clearness index, kt, defined as the ratio of GHI over the corresponding
extraterrestrial irradiance, exhibit exponential and polynomial behaviors, respectively [27].
Additionally, LR was employed to analyze the GHUVE/GHI ratio at various altitudes,
revealing a strong correlation between these variables. The determination coefficient (R2)
exhibits an increasing trend with higher altitudes [12].

In recent years, the use of machine learning (ML) algorithms for modeling climatic
and meteorological data has become widespread [28]. These algorithms allow us to solve
complex problems with higher performance than classical modeling [29]. Among the ML
techniques, Artificial Neural Networks (ANN) are particularly noteworthy as they act as
“black boxes” that establish mathematical relationships between the inputs and the output
data without prior knowledge of the specific relationship (linear or nonlinear) existing
between them [30]. Numerous researchers have used ANNs to calculate UVER, using GHI
as main input [31–36] regardless of the characteristics of the other variables used. Table 1
shows an overview of the variables used in different studies to estimate UVER and the
ratio UVER/GHI from ANN, LR, and multilinear regressions (MLR). Notably, GHI and
TOC [31,34–36] have been used as the most used inputs in conjunction with other variables
in all cases.
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Table 1. Studies to estimate UVER ratio around the world.

Ref. Location Model Meteorological Variables Models Data
Granularity

[37] Spain UVER m, TOC, VIS, latitude, cloudiness ANN 3 h
[31] Spain UVER m, TOC, k, kb, kt ANN 30 min
[38] Spain UVER TOC, cloudiness, AOD MLR 1 min
[27] Thailand UVER/GHI θz, AOD, TOC, kt, precipitable water LR 10 min
[39] Korea UVER/GHI CC, AOD, SCD MLR 10 min
[40] Spain UVER m, TOC,kt LR 30 min
[34] Germany UVER GHI, DHI, SD, TOC, VIS, θz ANN daily

[35] European Sites UVER
UVER/GHI

SD, GHI, DHI, θz, CC, TOC,VIS, Month,
snow weight, Albedo. ANN 30 min

[36] Serbia UVER GHI, cloudiness, m, kt, TOC ANN 10 min
[12] Argentina UVER/GHI GHI, θz, kt, altitude LR 1 min

m : relative optical air mass, TOC: total ozone column, VIS: horizontal visibility, SCD : ozone slant column
density, θz: solar zenith angle, AOD: aerosol optical depth, CC: cloud cover, GHI: global irradiation, DHI: diffuse
irradiation, SD: sunshine duration

The main objective of this work is to develop mathematical models using different
strategies for UVER from meteorological parameters measured in Burgos (Spain) during an
extensive experimental campaign run from September 2020 to June 2022. After selecting the
variables based on the Pearson correlation coefficient, both MLR and ANN techniques were
employed to model GHUVE under different sky conditions, including all skies, overcast, in-
termediate, and clear skies, classified according to ISO/CIE standard sky classification [41].
It is important to highlight that the variables used in the models developed in this study
were experimental variables typically recorded in terrestrial facilities that underwent the
strictest quality controls. The use of variables from satellite observations or additional
databases was discarded due to their different sampling frequency and to guarantee, as far
as possible, the applicability of locally obtained models in other emplacements using only
ground meteorological data.

The work is structured as follows: in Section 2, the experimental data used for mod-
eling are described and analyzed, along with the criteria ensuring their quality. Section 3
presents the feature selection process based on the Pearson criterion. A complete discussion
of the results is shown in Section 4. Finally, Section 5 presents the key findings and main
conclusions obtained from this study.

2. Experimental Data and Quality Control

The SWIFT Research Group ground meteorological facility, located on the flat roof of
the Higher Polytechnic School of the University of Burgos (42◦21′04” N, 3◦41′20” W, 856 m
a.s.l.), and shown in Figure 1, has provided the experimental data used for this study, in a
10 min basis, with an average scanning granularity of 30 s, recorded from September 2020
to June 2022.

Various climatic parameters were recorded, including air temperature (T), relative
humidity (RH), wind speed (WS), and direction. GHI and Diffuse Horizontal Irradiance
(DHI) were measured with Hulseflux pyranometers (model SR11) and Direct Normal
Irradiance (DNI) by means of a Hulseflux pyrheliometer (model DR01). A GEONICA-
SEMS-3000 sun tracker equipped with a shading disc was employed for the measurement
of DHI. Additionally, the pyrheliometer was mounted on the sun tracker to measure DNI.
GHUVE values were obtained with a Kipp and Zonnen SUV-E radiometer. Sky luminance
and radiance distributions, used to classify the sky condition, were determined with a sky-
scanner EKO MS-321LR. The cloud cover (CC) was calculated with a commercial all-sky
camera (SONAD201D) that records every 1 s an RGB color image with 1158 × 1172 pixels
of resolution. A complete description of the experimental facility and instruments can be
found in previous works [42,43].
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Figure 1. Experimental facility used in this study (Higher Polytechnic School, University of
Burgos, Spain).

The collected GHI, GHUVE, DHI, and DNI data underwent the quality control proce-
dure recommended by the MESoR project [44]. For the GHUVE data, it was determined
that GHUVE values should not exceed the corresponding extraterrestrial UVER on the
horizontal plane (UVEH0). The calculation of UVEH0 involved applying a correction factor
(fc), which considered the estimated orbital eccentricity to the UVER solar constant (UVEsc)
multiplied by the cosine of the solar zenith angle (θz), as described in Equation (1).

UVEH0 = fc ·UVEsc · cos θz (1)

In the absence of a standardized value, UVEsc was determined by integrating the
product of the extraterrestrial solar spectrum [45] and the erythema spectral weighting
function [14] over the wavelength range of 280 to 400 nm. This calculation yielded a value
of 14.5 W·m−2. Data points corresponding to solar elevation angles below 5◦ were excluded
from the analysis to mitigate the cosine response issues inherent to the GHI, and GHUVE
measurement instruments.

A summary of the variables used in this study is shown in Table 2. Among these
meteorological variables, the following were directly obtained from the experimental
measurements: GHI, DHI, DNI, CC, RH, T, and WS. θz, and ψ were calculated. The
remaining variables, including diffuse fraction, D [46], kt [47], k’d, Perez´s brightness factor
( ∆) [48], and Perez´s clearness index, ε [48], were calculated using the equations described
in Table 2.

The skies of the city of Burgos have been classified according to the ISO/CIE stan-
dard [41], which considers the angular distribution of luminance in the sky measured by the
sky scanner. The sky is classified into 15 different types, where types 1 to 5 are considered
overcast skies, types 6 to 10 are categorized as intermediate skies, and sky types 11 to 15
are identified as clear skies. A complete description of the ISO/CIE classification according
to 15 types based on sky scanner measurements can be found in previous works [42,43].

Figure 2a illustrates the frequency of occurrence (FOC) of each ISO/CIE standard sky
type during the experimental campaign. Clear skies predominate in Burgos, with the most
frequent sky type being classified as 13 (cloudless polluted with a wider solar corona). This
sky type exceeds the 20% of all observed skies. When only the three main sky categories
are considered, as shown in Figure 2b (overcast, intermediate, and clear), clear skies have
the highest FOC (higher than 45%). This fact concurs with findings from previous studies
conducted in Burgos [28].
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Table 2. Variables measured and calculated in Burgos.

Variables. Meteorological Variables Expression

GHI Global Horizontal irradiance measured
DHI Diffuse Horizontal irradiance measured
DNI Direct Normal irradiance measured
CC Cloud cover measured
RH Relative Humidity measured
T Air temperature measured

WS Wind speed measured
ψ Solar azimuth angle calculated
θz Solar zenith angle calculated
D Diffuse fraction D = DHI

GHI

kt Clearness index kt =
GHI

Bscfccosθz

kd
Diffuse to extraterrestrial

irradiance kd = DHI
Bsc

∆ Perez´s brightness factor ∆ = m·DHI
Bsc·fc·cosθz

ε Perez´s clearness index ε =
DHI+DNI

DHI +k(θz)
3

1+k(θz)
3

Bsc is the solar constant (1361.1 W·m−2 [49]). fc is the average value of the orbital eccentricity of the Earth.
k = 1.04

(
or 5.56·10−6 if θz is expressed in degrees).
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The box and whisker plot of Figure 3 shows the distribution of the GHUVE/GHI ratio
based on 10 min data grouped by UTC hours, calculated from sunrise to sunset, using the
complete database of the experimental campaign. The graph presents various statistical
measures, including the mean value (gray crosses), the median (white lines inside the box),
the interquartile range (the limits of the boxes), and both the maximum and minimum data
values (the extreme whiskers), as well as the outlier values (black and gray circles). It can
be observed that the hourly mean and median values of GHUVE/GHI gradually increased
until noon (12 : 00 h) and then decreased until sunset. Higher dispersion of the values
in the central hours of the day (10 : 00 h to 14 : 00 h) may be observed, as shown by the
interquartile range (around 9 · 10−3%). The maximum value (4.2 · 10−2%) is reached at
12 : 00 h UTC.

Figures 4 and 5 show the statistical analysis of the 10 min data of the GHUVE/GHI
ratio grouped by month and season, respectively. Figure 4 reveals a gradual increase of
GHUVE/GHI until May, followed by practically constant values until August, and then
a decrease for the rest of the year. The interquartile range fluctuated between 3 · 10−3%
and 1.2 · 10−2% and the standard deviation ranged between 3 · 10−3% and 7 · 10−3%.
During the months from May to August, the ratio exhibited the greatest dispersion of
the measurement campaign, with interquartile ranges around 1.1 · 10−2% and standard
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deviations around 6 · 10−3%. The maximum value was recorded in July (4.2 · 10−2 · %),
while the minimum was reached in April (1 ·10−3%).
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Figure 5 shows the greatest dispersion of values for the summer months and the
highest value of the GHUVE/GHI ratio. Conversely, the dispersion of values in winter was
relatively smaller. The interquartile ranges were 1.1 · 10−2% and 5 · 10−3% with standard
deviations of 6 · 10−3% and 4 ·10−3%, respectively.

Upon analyzing the GHUVE/GHI ratio based on the 15 ISO/CIE sky types (Figure 6),
it is evident that sky type 15 exhibits the highest ratio value and the lowest data dispersion.
Conversely, sky type 12 demonstrates the lowest ratio value, with an average level of data
dispersion. Notably, both sky types belong to the category of clear skies.
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3. Methodology
3.1. Feature Selection

Feature selection (FS) identifies the features that are related within a dataset, and it
allows the elimination of irrelevant or unimportant features that contribute little or nothing
to the definition of the target variable, providing more accurate models. This technique
increases the performance of the developed model, improving its accuracy and reducing
its complexity and overfitting, as well as its execution time.

In this study, to determine the most relevant meteorological variables for the estima-
tion of UVER, a selection of variables was performed based on the Pearson correlation



Appl. Sci. 2023, 13, 10979 8 of 16

coefficient (r), and the following rules: if GHUVE and one selected variable have a very
weak relationship, the Pearson coefficient is 0; the relationship is very strong when r is
close to 1 (direct correlation) or −1 (inverse correlation). To facilitate the assessment of
correlation strength, the Thumb rule [50] established five r intervals for the correlation:
direct (1 ≥ |r(GHUVE, variable)| ≥ 0.9), strong (0.9 > |r(GHUVE, variable)| ≥ 0.7), mod-
erate (0.7 > |r(GHUVE, variable)| ≥ 0.5), weak (0.5 > |r(GHUVE, variable)| ≥ 0.3), and
negligible (|r(GHUVE, variable)| < 0.3).

Table 3 shows the various intervals of Pearson’s coefficients calculated for the different
meteorological variables. It can be observed that GHI exhibits a very strong and direct
influence on GHUVE for all-skies, overcast, and clear skies, while for intermediate skies,
GHI is strongly correlated. In clear skies, θz is also very strong and is inversely correlated
with GHUVE, while for all-skies, overcast, and intermediate skies, this variable is strongly
correlated. Likewise, in the case of all-sky types, kt, D, ε, RH, DNI, and T have a moderate
relationship with GHUVE. When analyzing overcast skies, a direct and strong relationship
with kd and DHI is observed, and a moderate relation with kt, D, ∆, DNI. For interme-
diate skies, the relation between GHUVE and kt, kd, D, DHI, and DNI is moderate. WS,
ψ, and CC present a negligible relation with GHUVE, so these meteorological variables
were discarded as inputs for modeling GHUVE. These findings agree with the literature,
which identifies GHI and θz as the two variables that strongly influence GHUVE measure-
ments [18,19,31]. Meteorological variables whose relationship with GHUVE is moderate,
strong, or very strong (r ≥ 0.5) have been selected.

Table 3. Pearson’s coefficients were calculated for the different variables.

|r(GHUVE,Variable)|.
CIE Sky Type [1–0.9] (0.9–0.7] (0.7–0.5] (0.5–0.3] (0.3,0]

All-sky GHI θz kt, D, ε, RH, DNI, T kd, DHI ∆, WS, ψ, CC
Overcast GHI θz, kd, DHI kt, D, DNI, ∆, ε, RH, T WS, ψ, CC

Intermediate - GHI, θz kt, kd, D, DHI, DNI ε, RH, T ∆, WS, ψ, CC
Clear GHI, θz - T kt, kd, D, ε, RH, DNI ∆, DHI, WS, ψ, CC

3.2. Multilinear Regression Model

Meteorological variables selected in Section 3.1 were used as input variables for both
MLR and ANN models. Four MLR models were developed: one for all skies and three
additional specific models for the clear, intermediate, and overcast sky types. To develop
the MLR models, the data were divided into two groups: the first group, comprising 85%
of the data, was used for model fitting, and the remaining 15% of the data was used for
model validation. Conventional statistics were employed to evaluate the adequacy of fit for
each model: coefficient of determination (R2), normalized root mean square error (nRMSE)
and normalized mean bias error (nMBE), calculated by Equations (2)–(4), respectively.

R2 =
∑n

i=1
(
GHUVEmod −GHUVEmod

)
·
(
GHUVEexp −GHUVEexp

)√
∑n

i=1
[(

GHUVEmod −GHUVEmod
) 2·
(
GHUVEexp −GHUVEexp

)2
] (2)

nRMSE =
1

GHUVEexp

√√√√√ n
∑

i=1

(
GHUVEmod −GHUVEexp

)2

n
100(%) (3)

nMBE =
1

GHUVEexp

n
∑

i=1

(
GHUVEmod −GHUVEexp

)
n

100(%) (4)
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where n represents the number of experimental data points used for model fitting and
testing in each case; GHUVEexp is the experimental value of GHUVE, and GHUVEmod is
the modeled GHUVE value.

The mathematical expressions of the four regression models and the goodness of fit of
each one are shown in Table 4. The model’s fitting results presented a high determination
coefficient with the experimental data (R2 > 0.92); however, the nRMSE values obtained
through multilinear regressions exceeded 20% in all cases.

Table 4. Multilinear regression (MLR) models of GHUVE and goodness of fit (based on 85% of data).

Sky Types MLR Model R2 nRSME(%) nMBE (%)

All skies GHUVE = 1.90·10−2 + 2.35·10−4GHI− 1.74·10−2θz − 9.85·
10−2kt + 7.44·10−4T

0.937 25.60 −2.05·10−1212

Overcast GHUVE = 2.98·10−2 + 1.61·10−4GHI− 2.71·10−2θz
+1.30kd − 9.89·10−4DHI

0.926 29.80 6.92·10−13

Intermediate GHUVE = 8.54·10−2 + 2.59·10−4GHI− 6.98·10−2θz − 1.80·
10−4DHI− 9.91·10−5DNI

0.934 22.49 3.23·10−12

Clear GHUVE = 1.75 · 10−1 + 5.84 · 10−5GHI− 1.52 · 10−1θz + 6.89 ·
10−4T

0.940 21.10 9.87·10−13

3.3. Artificial Neural Network Model

In this work, ANNs were used to estimate GHUVE through the Levenberg–Marquardt
Back-Propagation (LMBP) algorithm. The ANN architecture adopted for this purpose
consists of a single hidden layer and a single output, as outlined in a previous publica-
tion [28,29]. In the input layer, each neuron is a meteorological variable. Determining
the optimal number of neurons in the hidden layer is currently unknown, but it is ac-
knowledged that this number should not exceed the number of neurons in the preceding
layer [51]. Therefore, if the input layer has only one variable and thus a single neuron,
the hidden layer can have only one neuron. If the input layer has two meteorological
variables, the hidden layer can have either one or two neurons. Similarly, if the input has
three variables and, therefore, three neurons, the hidden layer can have three, two, or one
neuron/s, and this trend continues for additional variables in the input layer. The iterative
process and the fitting are explained elsewhere [28].

Four ANN models were generated and tested in this work, one for all skies and three
for each sky type (clear, intermediate, and overcast), considering the selected meteorological
variables shown in Table 3. Table 5 shows the goodness of fit for each ANN model according
to the described statistics. It can be observed that in four cases, a good determination
coefficient was obtained, R2 > 0.95. The nRSME obtained varied between 11.9% and 21.3%.
The best results were obtained for clear skies (R2 > 0.98 and nRMSE < 12%).

Table 5. Goodness of fit of the ANN models (based on 85% of data).

Sky Condition R2 nRMSE (%) nMBE (%)

All skies
(MLR1) 0.988 14.36 6.69 · 10−2

Overcast 0.962 21.32 6.69 · 10−2

Intermediate 0.955 18.68 9.09 · 10−2

Clear 0.981 11.92 7.59 · 10−3

4. Results and Discussion

The remaining 15% of the data, not used previously for generating the MLR and ANN
models, were used as a validation set for both MLR and ANN models. The results are
shown in Table 6, with MLR outcomes on the left and ANN results on the right. The best
results were obtained for clear skies (R2 > 0.97, and nRMSE < 12.4%). Both nRMSE and
nMBE values obtained through multilinear regressions exceeded 20% in all cases, results
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close to those obtained by other authors [2] who performed models using second-degree
polynomials, obtaining nRMSE values between 20% and 54%. Previous works modeled
hourly [31] and daily [34–37] GHUVE values through ANN obtaining nRMSE ranging
from 14 and 21%. Considerable improvement in performances occurred when the highly
influential parameter TOC was introduced as ANN input.

Table 6. Goodness of fit of MLR and ANN models (based on 15% of data).

Sky
Condition R2 nRSME

(%)
nMBE

(%)
Sky

Condition R2 nRSME
(%)

nMBE
(%)

All skies
(MLR1) 0.938 25.21 1.41 · 10−1 All skies

(ANN1) 0.979 14.63 1.55 · 10−1

Overcast
(MLR2) 0.930 29.65 6.28 · 10−1 Overcast

(ANN2) 0.965 21.06 6.58 · 10−1

Intermediate
(MLR3) 0.923 23.57 −5.75 · 10−1 Intermediate

(ANN3) 0.953 19.20 3.38 · 10−1

Clear
(MLR4) 0.942 20.57 −2.10 · 10−1 Clear

(ANN4) 0.979 12.35 4.31 · 10−1

Table 6 comparison revealed that ANN models performed better than MLR models.
For all skies and clear skies, the nRMSE value improved significantly, decreasing over 40%
with respect to the MLR models. The nMBE value was overestimated for intermediate and
clear skies.

Figures 8 and 9 compare the modeled GHUVE values from derived MLR models and
ANN models, respectively, and the corresponding experimental GHUVE measurements
obtained from the Burgos meteorological station using the referred validation data set. A
good determination coefficient was obtained (R2 > 0.92, MRL models, R2 > 0.95 ANN
models) both for all skies, overcast, intermediate, and clear sky conditions.
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To improve the previous results, a new approach was introduced to optimize the
number of variables for minimizing nRMSE using ANN models for all-sky conditions. The
number of neurons in the hidden layer can be adjusted accordingly to accommodate the
complexity and dimensionality of the input data, from one neuron to the number of input
variables of the ANN.

The two variables identified as strongly correlated to GHUVE based on Pearson’s
coefficient, as shown in Table 3, GHI and θz, were used as reference in this study. The
ANN with two neurons in the hidden layer, with GHI and θz as input variables presented
nRMSE of 17.02%, as shown in Table 7. By retaining GHI and θz as input variables, new
ANN models were generated, increasing one by one the number of variables included in
Table 2 and, consequently, the number of neurons in the hidden layer, from one neuron to
as many neurons as the number of variables in each case.

Table 7. nRMSE for ANN model (GHI, θz) calculated with one and two neurons.

All-Skies nRMSE(%)

One neuron Two neurons
GHI, θz 18.65 17.02

Table 8 shows the percentage of GHUVE ANN models resulting from combinations
of input variables out of the total of possible combinations for each case, whose nRMSE
was below 15%. For the combination of five variables, with two to five neurons in the
hidden layer, nRMSE < 15% was obtained for 5%, 25%, 28%, and 30% of the generated
ANNs, respectively. For the combination of six variables, from two neurons to six neurons,
nRMSE < 15% was obtained for the range 22− 57% of the generated ANN models.
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Table 8. Percentage of generated GHUVE ANN models, according to number of input variables and
number of neurons, with nRSME < 15%..

Number of Input Variables

N
um

be
r

of
ne

ur
on

s
in

th
e

hi
dd

en
la

ye
r 3 4 5 6

1 0 0 0 0
2 0 2 5 22
3 8 14 25 27
4 18 28 41
5 30 48
6 57

Table 9 shows the combinations of five and six input variables ranging from two to
six neurons in the ANN hidden layer, which estimated the lowest nRMSE. Among the
various ANN models considered, despite its slightly higher error, Model 2 was considered
the optimal model due to the use as input data variables that are commonly measured at
ground radiometric stations. The practical advantage of this model lies in the accessibility
and availability of GHI, θz, T, kt, and ψ data, making it easier to implement in real-world
scenarios without the need for additional specialized measurements. In contrast, the
other models are based on meteorological variables that are not frequently recorded at
meteorological stations. ANN Models 3, 7, 8, and 9 depend on CC, which requires the use
of a sky camera. Models 1, 4, 5, and 6 rely on DHI, thus requiring the use of a pyrheliometer
and a solar tracker, elements of high cost and complex maintenance, and, therefore, scarce
in meteorological ground facilities.

Table 9. Performance (nRSME (%)) of ANN models of GHUVE, generated from combinations of five
and six experimental meteorological variables and from two to six neurons in the hidden layer.

ANN
Number of

Variables/Neurons
in the Hidden Layer

Meteorological
Variables RSME(%)

Model 1 5/2 GHI, θz, ε, T, kt 14.49
Model 2 5/3 GHI, θz, T, kt,ψ 14.16
Model 3 5/4 GHI, θz, T, CC,ψ 13.34
Model 4 5/5 GHI, θz, T, ∆,ψ 13.01
Model 5 6/2 GHI, θz, kt, ε, T, RH 14.11
Model 6 6/3 GHI, θz, DHI, T, RH,ψ 13.59
Model 7 6/4 GHI, θz, T, RH, CC,ψ 12.94
Model 8 6/5 GHI, θz, T, RH, CC,ψ 12.53
Model 9 6/6 GHI, θz, kt, T, CC,ψ 12.16

5. Conclusions

This study was based on the experimental data recorded and analyzed at 10 min
intervals between September 2020 and June 2022 in Burgos (Spain). The GHUVE/GHI
ratio was analyzed at different time intervals as a function of the sky type classified
according to the ISO/CIE standard. The analysis of the GHUVE/GHI ratio yielded a
gradual increase from dawn to noon (12:00 h) and a subsequent decrease until sunset.
A greater dispersion of values was observed in the central hours of the day (10:00 a.m.
to 2:00 p.m.). The relationship showed higher values with a higher dispersion for the
months from May until August and lower values in December and January. The value of
the ratio and the data dispersion into the three categories (overcast, intermediate, and clear
skies) was very similar.

Different models were analyzed to determine GHUVE based on meteorological and
radiative variables collected in Burgos, using multilinear regression models (MLR) and
artificial neural network (ANN) for all skies, overcast, intermediate, and clear skies. The
use of variables from databases or satellite observation was not considered to guarantee, as
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far as possible, the applicability of locally obtained models in other locations using data
from ground meteorological facilities.

The MLR model fitting results presented high determination coefficients with the
experimental data (R2 > 0.92) for all skies, overcast, intermediate, and clear skies. However,
the nRMSE value was elevated, exceeding 20% in the four cases. Since the MLR models
did not perform as expected, GHUVE was modeled by ANN models, considering the
variables used for MLR modeling for each sky type. In all four cases, a good determination
coefficient was obtained, R2 > 0.95. The nRSME obtained varied between 12 and 21%. The
best results were obtained for clear skies (R2 > 0.97 and nRMSE < 12.4%).

For all skies, the optimal number of variables was evaluated to achieve an nRMSE
of less than 15% by means of ANN models. Through the derivation and analysis of
multiple models, it was determined that the adequate choice was the model encompassing
GHI, θz, T, kt,ψ, due to its high performance and the availability of the required inputs
from most ground meteorological facilities.

Future research endeavors should incorporate the deeply impactful total ozone col-
umn (TOC) variable among the model inputs. Addressing the scarcity of ground-based
experimental TOC data could be achieved by using daily interpolated satellite observations.
Incorporating other time scales (hourly and daily) and employing corrections based on
site adaptation techniques will be imperative to extend the developed models to diverse
locations accurately.
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Nomenclature

Bsc Solar constant (=1361.1 W/m2)
CC Cloud cover (%)
D Diffuse fraction
DHI Diffuse horizontal irradiance (W/m2)
DNI Direct normal irradiance (W/m2)
GHI Global horizontal irradiance (W/m2)
GHUVE Global horizontal UV erythemal irradiance (W/m2)
kt Clearness index
k’d Diffuse to extraterrestrial irradiance
n Number of data points
nRMSE Normalized root mean square error (%)
nMBE Normalized mean bias error (% )
r Pearson correlation coefficient
RH Relative humidity (%)
R2 Determination coefficient
T Air temperature (◦C)

http://hdl.handle.net/10259/7778
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TOC Total ozone column
WS Wind speed
∆ Perez´s brightness factor
ε Perez´s clearness index
fc The average value of the orbital eccentricity of the Earth
θz Solar zenith angle (rad)
ψ Solar azimuth angle (rad)
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