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Abstract: Elevators are essential tools in daily life; timely and accurate fault diagnosis plays a crucial
role in ensuring their safe operation. However, the existing elevator fault diagnosis methods often
neglect the imbalance between the actual collected normal samples and the fault samples, resulting
in low diagnostic accuracy. In this study, we propose an improved Aquila optimizer (IAO) extreme
gradient boosting tree (XGBoost)-based elevator fault diagnosis method under unbalanced samples.
The proposed method includes three main components: multi-domain feature extraction, sample
balancing, and fault diagnosis. In the feature extraction phase, the time domain, frequency domain
and entropy features of the vibration signal are extracted. In the sample balance phase, aiming at the
problem of unbalanced fault samples, after feature selection using recursive feature elimination (RFE),
the minority class samples are oversampled by applying SMOTE-Tomek. In the fault diagnosis phase,
IAO is used to optimize the hyperparameters in the XGBoost, and the optimized hyperparameters
are brought into XGBoost for fault diagnosis. The fault diagnosis accuracy of the method proposed in
this study can reach 99.06%, and the method can accurately identify the fault state of the elevator.

Keywords: elevator; fault diagnosis; unbalanced samples; Aquila optimizer

1. Introduction

Elevators are integral to daily life, bringing convenience and improving accessibility
for people. However, as the frequency of elevator use increases, so does the frequency of
elevator safety accidents [1]. Abnormal vibrations in the elevator car can have a detrimental
impact on its lifespan and even pose a threat to people’s lives [2]. Hence, it is of great
significance to study an efficient and stable elevator fault diagnosis method.

In the actual operation of elevators, there is often a significant disparity between the
number of collected fault data and that of the normal data samples. Using unbalanced
sample data can result in insufficient learning of certain classes of samples during model
training [3], causing the model to overlook correct classifications for those classes. There
are two main solutions for fault diagnosis with unbalanced samples [4]: resampling the
data and improving the fault diagnosis model; the first approach involves modifying the
sample data distribution to address the sample imbalance; the second approach focuses on
enhancing the fault diagnosis model to handle imbalanced sample data [5]. Resampling
the data is not limited by the model and is more commonly employed when dealing with
unbalanced samples [6].

In the elevator fault diagnosis field, the research on data resampling techniques is
limited. However, related studies from other fields offer valuable insights. Chawla [7]
utilized the synthetic minority oversampling technique (SMOTE) algorithm to achieve the
purpose of balancing the samples by oversampling the samples of a few classes. Refer-
ence [8] proposed the synthetic minority oversampling technique (SVM) SMOTE algorithm
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to achieve sample balancing based on decision making mechanism. Reference [9] consid-
ered the possibility that oversampling may generate new noise samples; so they used the
MeanRadius-SMOTE algorithm to reduce the generation of noise samples and add more
samples that have the ability to influence the decision boundary. Reference [10] considered
the effect of redundant samples, and the SMOTE algorithm was improved by removing the
noisy samples in the dataset before oversampling. The above methods solve the problem
of sample imbalance but do not consider the effect of sample features on oversampling.

Reference [11] proposed XGBoost, an integrated learner based on Boosting. XGBoost
trained multiple individual learners based on the negative gradient of the loss function.
Reference [12] used the XGBoost algorithm to model wind turbine fault classification. The
method had better diagnostic results compared to SVM. The selection of hyperparameters
of the XGBoost model has a significant impact on the performance of the model, so tuning
the hyperparameters of the model is a critical process. Manual tuning requires practical
experience, and the complicated steps are not easy to realize. For this reason, many scholars
propose the optimization of model hyperparameters through intelligent optimization
algorithms. Reference [13] used genetic algorithm (GA) to optimize the hyperparameters
of the XGBoost model to establish a transformer fault diagnosis model, and the results
showed that this method effectively improved the accuracy and stability of transformer
fault diagnosis.

Aiming at the sample imbalance and hyper-parameter tuning of the XGBoost model,
this study proposes an elevator fault diagnosis method by recursive feature elimination
(RFE)-SMOTE-Tomek and IAO-XGBoost. First, RFE is utilized for feature screening to
remove redundant features while reducing the dimensionality of the data. Second, SMOTE
is applied to generate new samples, followed by the application of Tomek-Link to remove
the noisy samples in the new samples to obtain the sample-balanced dataset. This method
enhances the proportion of valid features in the samples while reducing the effect of noise
samples in the newly generated samples. Finally, the hyperparameters of the XGBoost
model are optimized by the IAO algorithm to construct the IAO-XGBoost elevator fault
diagnosis model. The results show that the method is accurate and effective for elevator
fault diagnosis.

2. Elevator Vibration Signal Feature Extraction
2.1. Elevator Vibration Signals

Figure 1 shows a signal acquisition device arranged on top of an elevator car, including
the vibration sensor to record three-axis (X, Y, and Z) vibration data and a serial port data
logger to record data. The vibration sensor is installed on the top of the elevator car
through the serial port data logger to obtain the elevator car vibration signal and sample
the vibration signal at a frequency of 200 Hz.
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Figure 1. Signal acquisition equipment.
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Elevator faults are typically manifested in the horizontal vibration signal. The hor-
izontal vibration signal is divided into the X-axis and the Y-axis; after experiments, the
Y-axis vibration signal is more accurate for elevator fault diagnosis, so the Y-axis vibration
signal is used for elevator fault diagnosis. The dataset contains signals from five states:
normal operation, loose guide shoe, elevator emergency stop, poor car door sliding, and
wear traction rope. A total of 650 samples make up the original dataset, and the length of
each set of signals is 4000.

The time domain and frequency domain waveforms of different conditions of vibration
signal are shown in Figure 2. Figure 2a reveals that the normal signal is relatively stable
in the time domain, whereas fault signals are larger amplitudes and irregular impacts. As
seen in Figure 2b, the faulty conditions demonstrate irregular amplitudes between 0 and
40 Hz compared to normal operation. Observation of the time and frequency domain plots
indicates that the elevator car vibration signal is nonstationary and nonperiodic in nature.
Therefore, construction of a multi-dimensional feature vector is necessary in order to extract
fault characteristics from the signals.
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Figure 2. Time and frequency domain diagrams of Y-axis vibration signal. (a) Time domain. (b) Fre-
quency domain.
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2.2. Elevator Vibration Signals

Elevator fault vibration signals cannot be fully represented by a single domain alone [14];
in extracting fault features in a single domain, it is difficult to include fault features fully and
accurately. The multi-domain features reflect the operation state of the elevator, extracting
the time domain, frequency domain, and entropy features of elevator vibration signals.
Specifically, 11 time-domain, 12 frequency-domain, and 3 entropy features are extracted
from the elevator car vibration signal, comprising a 26-dimensional multi-domain feature
set. Table 1 details the multi-domain features extracted.

Table 1. Multi-domain features.

Feature Type Serial Number Feature Name Feature Type Serial Number Feature Name
1 Average value 15 (i\f/[:?p\{iat‘ife
2 Standard deviation 16 Stag?g:gpietli;;ion
3 Square root amplitude 17 Amplitude skewness
4 Root mean square 18 Crest factor
igzcc’:eolfiz:?s > Peak value Frequency domain 19 Frequency center
6 Skewness characteristics of gravity
7 Sharpness 20 Variance frequency
8 Peaking factor 21 RMS frequency
9 Margin factor Mean square
10 Waveform factor 2 frequency
11 Pulse index 23 Spectral form factor
Entropy feature 12 Approximate entropy 24 Spectral width factor
13 Sample entropy 2 Spectral skewness
14 Fuzzy entropy 26 Spectral crag

3. Sample-Balancing Method Based on RFE-SMOTE-Tomek

In reality, the fault data samples of the elevator are much smaller than the normal
data samples, and there is an imbalance of sample categories in the obtained dataset. This
imbalance hinders effective model training and fault diagnosis. To address this problem,
RFE-SMOTE-Tomek is proposed to oversample the samples. Redundant features can result
in the generation of new samples that are not conducive to model training. RFE combined
with random forests performs feature filtering on raw features to remove redundant features
while reducing the dimensionality of the data. After feature optimization, the new samples
generated are more meaningful and the quality of oversample is improved. The optimized
features are oversampled by SMOTE-Tomek to obtain the sample balanced dataset. The
flow is shown in Figure 3.

3.1. RFE-RF

Feature recursive elimination is performed through iterative model training [15]. All
initial features were provided to random forest (RF) for ranking by importance. The least
important features are removed; then, the retained features are re-fed into the model for the
feature importance ranking, and the iterations are performed repeatedly to finally obtain
the optimal set of features.
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Figure 3. Sample balance flow chart of RFE-SMOTE-Tomek.

3.2. SMOTE-Tomek
3.2.1. SMOTE

The SMOTE oversampling method is proposed by Chlawla to increase the minority
class samples in the dataset by interpolating the minority class samples to generate new
samples to achieve sample balance. The basic principle is shown in Figure 4.

:Majority sample

:Minority samples

Xi2 Xil

\ :Generate new samples
XHew
~
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Figure 4. SMOTE algorithm schematic diagram.

SMOTE algorithm steps:

(1) First, traverse the minority class samples and select each of them in turn (sample xi);

compute the distance from xi to the other samples in terms of the Euclidean distance
to obtain its k-nearest neighbor;

(2) Randomly select some nearest neighbors to generate a new sample by linear interpo-
lation with sample xi. The expression is as in Equation (1):
Xnew = Xj + (Xij — x;)0, 1
where 0 is a random number between (0, 1).
3.2.2. Tomek

Tomek Links is an undersampling method. Tomek Links sample pairs are pairs of

connections between nearest neighbor samples of opposite classes [16]. The principle of
the algorithm is as follows:
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For any sample pair (x;,x;), compute the Euclidean distance d(x;,x;) between sample pair
if there does not exist any sample x;, such that d(x,x;) < d(x;,x;) or d(xg,x;) < d(x;,x;) holds.

Then, the sample pair (x;x;), located at the boundary of the class, is a Tomek Links sample pair.
Therefore, the Tomek Links samples belonging to the newly generated samples are eliminated.

4. XGBoost Parameter Optimization Method Based on IAO Algorithm

The hyperparameters of XGBoost directly affect the classification effect, and different com-
binations of hyperparameters yield varying classification effects. In order to obtain the optimal
combination of hyperparameters, the IAO algorithm is used to search for the hyperparameters.
Compared with other group optimization algorithms, the AO algorithm has the advantages of
powerful search ability, fast convergence speed, and high accuracy. However, when the problem
is complex, the AO algorithm, prone to fall into local optimization, easily leads to the premature
convergence of the algorithm. The AO algorithm is improved to address this problem.

4.1. AO Algorithm

The AO algorithm is developed and explored through four hunting strategies [17]. The
iterative process of the AO algorithm optimization search consists of the following steps:

(1) Expanded search (Xj)
The Aquila flies from a high altitude to determine the region of the search space. The

expression is shown in Equation (2):
Xl(t + 1) = Xbest(t) (1 - %) =+ (XM(t) - Xbest(t)) * R
Xpu(t) =5 L Xi(t),V;=1,2,--- ,dim @

—_

where X (t + 1) is the solution of the next iteration; Xj,(t) is the optimal solution obtained
before the tth iteration; Xy(t) is the mean of the current population; R is the random number
of (0, 1); t is the number of the current iteration; T is the maximum number of iterations;
and dim is the dimension of the variable.

(2) Narrowing the scope of exploration (X»)
Aquila narrows the selected area, explores the target prey, and prepares to attack. The
expression is as in Equation (3):

Xo(t+1) = Xpest (t) x Levy(D) + Xgr(t) + (y — x) * R, (©)]
where D denotes the dimension space; Xg(f) is a random solution in the range [1,N]; and
Levy(D) is the levy flight distribution function.

(3) Expanded development (X3)
The Aquila utilizes a selected target area to approach its prey and attack. The expres-
sion is as in Equation (4):

X3(t+1) = (Xpest(f) — Xp(t)) x « — R+ ((UB — LB) X rand + LB) x 4, 4)
where « and ¢ are adjustment parameters in (0, 1); LB is the upper bound of the problem;
and the UB score is the lower bound of the problem.

(4) Reducing the scope of development (X4)

When the Aquila approaches the target, it moves randomly and attacks according to
the position of the prey. The expression is as in Equation (5):

X4(t+1) = QF x Xbest(t) - (G1 X (1 — X(f)) — Gy X Levy(D) + R X G

2xR-1
QF(t) = -1 ®)
G =2xR-1

Gy =2x(1—-%)
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where QF is the quality function used to balance the search strategy; G; denotes the different
methods used by the Aquila to pursue the prey; and G, denotes the decreasing value from
2 to 0, representing the flight slope of the Aquila.

4.2. IAO Algorithm

The problem solved by the AO algorithm can easily fall into the local optimum when
complex, with this tendency leading to the premature convergence of the algorithm. Tent
chaotic mapping, nonlinear inertia weights, and nonlinear convergence factors are introduced
to optimize the AO algorithm in terms of balancing the ability of the global search and the local
search and enhancing the ability of jumping out of the local optimum and the global search.

4.2.1. Tent Chaotic

The adoption of a uniform distribution for the initial population enables the optimiza-
tion algorithm to efficiently approximate the global optimal solution. In the AO algorithm,
the position of the initial population is randomly generated and may be unevenly dis-
tributed. Tent chaotic mapping is introduced to generate a more evenly distributed initial
population. The expression is shown in Equation (6):

o 2x; x; < 0.5
Yir1 = { 2(1—x;),% > 05 ©)

4.2.2. Nonlinear Inertia Weights

Nonlinear inertia weights balance the ability of the global and local search. In the early
stage of the algorithm iteration, the inertia weights should be larger, and the Aquila goes to
the neighborhood of the target value faster with better global search capability. In addition,
in the later stage of the algorithm iteration, the inertia weights should be smaller, making
the Aquila explore at a lower speed to avoid falling into the local optimum, while attaining
better local search ability. The expression for the nonlinear inertia weights is as follows:

0.5t "

w = cos ( T ) - (7)

where T is the maximum number of iterations; n is the inertia weight control parameter;
and the larger n tends towards local search development.
The improved expression is as follows:

X114 1) = Xt (1= cos(CF) ) & () = Koo ) R 9

4.2.3. Nonlinear Convergence Factor

In the Aquila optimization algorithm, in the reduced exploitation range, G, is the
flight slope of the Aquila, and the value is a linearly decreasing convergence factor from 2
to 0. This may result in the Aquila not being able to move efficiently to the prey position.
Introducing a nonlinear convergence factor can make the algorithm converge to the optimal
solution faster while avoiding falling into a local optimum.

2

G =—"7-——+7—,
LT 14 eQCFD

©)

where Q =9.903438.

4.3. XGBoost Model

The XGBoost model is an implementation of the gradient boosting tree algorithm, which
is used to construct a model by combining multiple decision trees. In this way, models can be
constructed with higher accuracy. XGBoost model performance is improved by iteratively
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training a series of decision trees. Each new decision tree is trained on the residuals of the
previous decision trees to reduce the error of the model on the training data. XGBoost model:

s K
y; =) frlxi) fu € F (10)

k=1
F:{f(x):wq(x)},q:Rm%T,weRT, (11)

where (x;,;) is the dataset; xi is the feature vector of the ith sample; y; is the label of the
ith sample; f; corresponds to an independent tree model; F is the set of all trees; g is the
mapping of the feature vectors to the corresponding leaf nodes; and wy(,) denotes the leaf
weights. The objective function of the model is as follows:

n . K
0=y lyiy)+ Y Of) (12)
i=1 k=1
Q(f) =T+ %sz, (13)

n — —~
where Y I(y;, ;) is the training loss function; y; is the predicted value; y; is the test value;
i=1

K
Y. Q(fx) is the penalty function; and y and A are the regularization parameters.
k=1

4.4. IAO-XGBoost Hyperparameter Optimization Process
The IAO-XGBoost algorithm flow is as follows, and the flow chart is shown in Figure 5.

Tent chaos map initializes
population position

Calculate fitness value

. Narrowing the scope Reducing the scope Expanded
Expanded search . . .
of exploration of development development

Print optimal

hyperparameters

Figure 5. IAO-XGBoost algorithm flow chart.
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(1) Generating initial population through Tent chaotic mapping;

(2) The error rate of the XGBoost model is used as a fitness function to calculate the
fitness value;

(3) Using the improved strategy to find the optimal hyperparameter combination;

(4) Determining whether the iteration termination conditions are met; if so, the algorithm
outputs the optimal hyperparameter combination; otherwise, it returns to step (2).

5. Elevator Car Fault Diagnosis Example Analysis
5.1. Experimental Data

In this study, 650 sets of data are collected from the vibration sensor at the top of
the elevator car, with a ratio of 7:3 between the training set and the test set. The dataset
includes five states: normal operation, loose guide shoe, elevator emergency stop, poor car
door sliding, and wear traction rope. The distribution of the training and test set samples is
shown in Table 2.

Table 2. The case of different types of sample data.

Data Type Training Set Test Set Amount
Normal operation 217 94 311
Loose guide shoe 120 51 171

Elevator emergency stop 41 18 59
Poor car door sliding 39 17 56
Wear of traction rope 37 16 53

Amount 455 195 650

5.2. Analysis of the Results of Sample Balancing Based on RFE-SMOTE-Tomek

The number of features affect both sample balancing and the fault diagnosis results.
In order to select the optimal feature set, different sets of features are inputted into the
XGBoost model, and the corresponding fault diagnosis accuracies are obtained. The initial
hyperparameters of the XGBoost model are preset as n_estimators = 100; max_depth =4,
learning rate = 0.1; subsample = 1; colsample_bytree = 1. The results of the effect of different
numbers of features on fault accuracy are shown in Figure 6.

100

| @ Accuracy corresponding to the number of features

95
.00.'°.00000..".".00.

90

85 F

accuracy/%

75 L1 1 1 1 1 1 1 1 1 1 1 1 I
2 4 6 § 10 12 14 16 18 20 22 24 26

Number of features

Figure 6. Effect of different numbers of features on fault accuracy.

Reducing the dimensionality of the data by removing redundant features helps miti-
gate the impact of such features on the accuracy of fault diagnosis. However, eliminating
too many features may lead to the removal of useful ones. It is essential to determine the
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optimal number of features. From Figure 5, when the number of features is 17, the accuracy
of fault diagnosis reaches its maximum, which is 94.63%. According to the effect of different
numbers of features on fault diagnosis, the top 17 features, in terms of importance ranking,
are selected as the preferred feature dataset.

To validate the effectiveness of the RFE-SMOTE-Tomek sample-balancing method, the
original feature dataset, the dataset after feature optimization, and the dataset processed by
different sample-balancing methods (SMOTE, Borderline-SMOTE, SMOTE-ENN, SMOTE-
Tomek, and SMOTE-Tomek) are selected for comparison. The fault diagnosis model is
XGBoost. The sample distribution of the training set before and after sample balancing via
RFE-SMOTE-Tomek is shown in Table 3. The comparison of fault diagnosis accuracy under
different sample processing methods is shown in Table 4.

Table 3. The distribution of the number of samples before and after the training set sample balance.

Data Type Original Dataset Sample Balanced Dataset
Normal 217 217
Loose guide shoe 120 217
Elevator emergency stop 41 215
Poor sliding of car door 39 169
Wear of traction rope 37 160

Table 4. Comparison of fault diagnosis accuracy under different sample processing methods.

Sample Processing Methods Accuracy/%
Original dataset 93.81
RFE Feature Selection 94.63
SMOTE 95.50
Borderline-SMOTE 96.78
SMOTE-ENN 96.75
SMOTE-Tomek 97.47
RFE-SMOTE-Tomek 97.88

Table 4 show that the accuracy of fault diagnosis is 3.54—4.36% higher for the dataset
with the sample-balancing process compared to the dataset without the sample-balancing
process. Compared to the sample-balancing methods of SMOTE, Borderline-SMOTE,
SMOTE-ENN, and SMOTE-Tomek, the proposed RFE-SMOTE-Tomek sample-balancing
method in this study improves the accuracy of fault diagnosis by 2.38%, 1.1%, 1.13%,
and 0.41%, respectively. From the results, the accuracy of fault diagnosis is improved by
the sample-balancing method proposed in this study. Reducing the feature dimension by
eliminating invalid features through the RFE method and reducing the impact of redundant
features when sampling via SMOTE-Tomek enable the model to better learn a small number
of classes of samples and improve its fault diagnosis ability.

5.3. Analysis of Results of XGBoost Parameter Optimization Method Based on IAO Algorithm
5.3.1. IAO Algorithm Performance Testing

To verify the superiority of the IAO algorithm over other algorithms, a comparative
experiment is conducted between the IAO algorithm and the AO algorithm, whale op-
timization algorithm (WOA), gray wolf optimization (GWO) algorithm, and mountain
gazelle optimization (MGO) algorithm. The maximum number of iterations of the experi-
mental parameters is 1000, and the population size is 20. The algorithm’s performance test
functions are presented in Table 5, which includes single-peak functions (F1 and F2) and
multi-peak functions (F3 and F4).
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Table 5. Algorithm performance test function.

Function Formulas Dimension Realm Optimum Value
n
F1 filx) =X} 30 [-100, 100] 0
i=1
ni=1 2
F2 fx) =X (L %) 30 [—100, 100] 0
i=1 j—1
n n
F3 f3(x) = —20exp(—02, /1 3" x2) —exp(1 ¥ cos(27x;)) 30 [-32,32] 0
i=1 i=1
n n
F4 fa(x) = g0 X xF — TT cos( %) +1 30 [—600, 600] 0
i=1 i=1

Single-peak functions have no extreme points and only a unique optimal solution,
while multi-peak functions have multiple extreme points and an optimal solution. The
former verify the convergence speed and the ability of the algorithm to find the optimum,
while the latter verify the ability of the algorithm to jump out of the local optimum.

Figure 7 shows the convergence curves of each algorithm under different algorithm
test functions. From the analysis of convergence speed, it can be seen from Figure 7a,b
that WOA, GWO, and MGO did not find the extreme point during 1000 iterations. Due to
the introduction of Tent chaotic mapping by IAO, the global optimal value can be found
faster than the AO algorithm. The IAO algorithm has fallen into local optima, while the
IAQ algorithm, which introduces nonlinear inertia weights and nonlinear convergence
factor strategies, overcomes the problem of falling into local optima. The IAO algorithm
has found the extreme point 0 near 50 iterations. The other four algorithms of the IAO
algorithm significantly improve the global search ability and convergence speed, moving
towards the global optimal search and avoiding local optimal values.

Figure 7c shows that the WOA and GWO algorithms have fallen into local optima,
while AO, IAO, and MGO have found global optima. The IAO algorithm converges
faster than the AO algorithm, and MGO jumps out of local optima and finds global
optima after 800 iterations. The introduction of strategy in the IAO algorithm improves
convergence efficiency and the ability to jump out of local optima compared to the AO and
MGO algorithms.

Figure 7d shows that the AO, IAO, WOA, and GWO algorithms have found global
optima, while the GWO algorithm has fallen into local optima. WOA repeatedly falls into
local optima and jumps out of local optima, ultimately finding the global optimum. The
IAO algorithm quickly converges and finds the global optimal point.

In summary, the IAO algorithm avoids falling into local optima and has a faster
convergence speed than other algorithms. It can quickly find the global optimal value,
indicating that the introduced strategy can effectively improve the algorithm’s performance.

5.3.2. Analysis of Fault Diagnosis Results Based on IAO-XGBoost

XGBoost model hyperparameters have a significant effect on the effectiveness of the
model in classification training. During training, the max_depth parameter determines
the depth of the decision trees in the model. Setting it too high allows the model to learn
more features but increases the risk of overfitting and complexity; conversely, a max_depth
that is too low results in a simplistic model that fails to capture the full features of the data,
leading to underfitting. Additionally, n_estimators, learning_rate, subsample, and colsam-
ple_bytree collectively influence the model’s learning performance and classification ability.
The IAO algorithm is utilized for iterative optimization of the above five hyperparameters.
The number of populations is 20, the maximum number of iterations is 15, and the fitness
function is the error rate of the model. The adaptation degree change curve is shown in
Figure 8.
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The fitness change curve shows that when the iteration reaches six times, the fitness
value is 0.01316 and the algorithm converges. The optimal hyperparameter combination is
obtained, and the parameters are shown in Table 6.

Table 6. Optimized parameters.

Parameter Name Optimum Value
n_estimators 47
max_depth 11
learning rate 0.28
subsample 1
colsample_bytree 0.76

To validate the effectiveness of the IAO-XGBoost model in elevator car fault diagnosis,
experiments are conducted using AO-XGBoost, PSO-XGBoost, GWO-XGBoost, and IAO-
XGBoost on the same training and test sets. The results of the fault diagnosis are presented
in Figure 9.
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Figure 9. Fault diagnosis results of different algorithm optimization models.

From Figure 9, the fault diagnosis accuracy of the IAO-XGBoost model reaches 99.06%.
The fault diagnosis accuracies of AO-XGBoost, PSO-XGBoost, and GWO-XGBoost are
98.11%, 97.88%, and 98.35%, respectively. The results show that the AO algorithm, which
incorporates Tent chaotic mapping, nonlinear inertia weights, and nonlinear convergence
factor strategies, has superior optimization-seeking ability compared to the other algo-
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rithms. The proposed IAO-XGBoost model demonstrates better classification ability than
the other three models, highlighting its higher reliability and superiority for elevator car
fault diagnosis.

To further illustrate the reliability and accuracy of the IAO-XGBoost model, the IAO-
XGBoost model is compared with XGBoost, LightGBM, and RFE, and the fault diagnosis
results are shown in Table 7.

Table 7. Diagnosis results of different fault diagnosis models.

Fault Diagnosis Model Accuracy/% Kappa Factor Time/s
RF 96.69 0.958 0.6673
LightGBM 96.93 0.961 0.1374
XGBoost 97.88 0.973 0.0522
TAO-XGBoost 99.06 0.988 0.0442

As shown in Table 6, the fault diagnosis accuracy of the IAO-XGBoost model proposed
in this study can reach 99.06%, which improves by 2.37%, 2.13%, and 1.18% compared to
RE, LightGBM, and XGBoost models, respectively. Moreover, it has a significant advantage
in diagnosis time. Compared to RF, LightGMB, and XGBoost models, the training time has
been saved by 93.3%, 69.2%, and 15.3%, respectively. The reduction of training time can
help reduce the performance requirements for computer hardware. The kappa coefficient,
combined with accuracy and recall, can comprehensively evaluate the diagnostic perfor-
mance of the model. The higher the kappa coefficient, the more consistent the judgment of
fault diagnosis results and the better the model stability. The IAO-XGBoost model proposed
in this article is used for fault diagnosis, and the Kappa coefficient is the highest among the
five methods, reaching 0.988, and indicating that the proposed model has a more reliable
fault diagnosis effect.

6. Conclusions

In the IAO-XGBoost-based elevator fault diagnosis method under unbalanced samples
proposed in this study, the IAO algorithm improves the ability of the algorithm to jump
out of the local optimum compared with the traditional swarm intelligence algorithm. The
model optimized by the algorithm has a better combination of hyperparameters, improving
the accuracy and reliability of the model. At the same time, taking into account the fact
that the elevator fault samples are small and the sample categories are unbalanced, the
classification performance of fault diagnosis is improved. Combined with the example
analysis, the conclusions obtained are as follows:

1.  The method of RFE-SMOTE-Tomek reduces the influence of redundant features on
the generation of new samples by SMOTE-Tomek, obtains better sample balanced
data, and improves the ability of subsequent fault diagnosis;

2. The AO algorithm is improved by introducing Tent chaotic mapping, nonlinear
inertia weights, and nonlinear convergence factors, which can effectively improve the
convergence speed and optimization- seeking performance of the algorithm;

3. With the proposed method of sample balancing, RFE-SMOTE-Tomek, combined with
the elevator fault diagnosis model of IAO-XGBoost, which accurately identifies the
state of the elevator, fault diagnosis accuracy can reach 99.06%.

The method proposed in this article has achieved good results with respect to sample
imbalance in elevators. Although this article mainly focuses on elevator fault diagnosis,
the proposed method can be extended to the long-term operational health monitoring of
elevators in the future. Through real-time monitoring and diagnosis, potential faults can be
better predicted, and preventive maintenance measures can be taken, thereby extending
the service life of elevators and improving their reliability.
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