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Abstract: Paving blocks are concrete pieces exposed to the weather and subjected to loads and wear.
Hence, quality control in their manufacture is essential to guarantee their properties and durability.
In Ecuador, the requirements are described in the technical standard “NTE INEN 3040”, and tensile
splitting strength is a fundamental requirement to guarantee product quality. The objective of the
study is to predict the tensile splitting strength using two groups of predictor variables. The first
group is the thickness in mm, width in mm, length in mm, mass of the fresh paving block in g, and
percentage of water absorption; the second group of predictor variables is the density of the fresh
paving block in kg/m3 and the percentage of water absorption. The data were obtained from a
company that can produce 30,000 units per day of rectangular paving blocks with 6 cm thickness.
The research involves sampling, analysis of outliers, descriptive and inferential statistics, and the
analysis of multivariate models such as multiple linear regression, regression trees, random forests,
and neural networks. It is concluded that the multiple linear regression method performs better in
predicting the first group of predictor variables with a mean square error (MSE) of 0.110086, followed
by the neural network without hidden layers, resulting in an MSE of 0.112198. The best method for
the second set of predictors was the neural network without hidden layers, with a mean square error
(MSE) of 0.112402, closely followed by the multiple linear regression model, with an MSE of 0.115044.

Keywords: multivariate analysis; prediction of tensile splitting strength; quality in concrete paving
blocks; density of the fresh paving block; water absorption of concrete paving blocks; weight of the
fresh paving blocks

1. Introduction

Concrete is a mixture that has revolutionized construction. Standard [1] defines it as
a material composed of a binding component with embedded particles and aggregates.
However, producing high-quality paving blocks on a large scale poses challenges. The
batch-type paving block manufacturing process involves mixing, vibro-compacting, curing,
and palletizing. In process control, a company with high production volumes in Quito-
Ecuador has quality controls with specialists in raw materials, intermediate goods, and
finished goods for each batch of 30,000 paving blocks. The vibro-compacting machine
compacts the mixture of cement, water, aggregates, and additives that enters the mold and
uses a tamper that shapes the fresh paving blocks, for which the dimensions, the weight of
the vibro-compacted paving block, and the water absorption test are means of controlling
the product quality initially.

The tensile splitting strength test was described in standard [2], but its scope is limited
to concrete cylinders. The Ecuador standard [1] is applied for paving blocks and replaces
standard [3], where the compressive strength test is omitted from the tensile splitting
strength test. The article described by [4] indicates how the paving blocks break on site in
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their daily use, not by compression but by fracture (splitting); for this reason, the tensile
splitting strength test was recommended to measure its ability to resist stresses.

The tensile splitting strength is a crucial quality characteristic for customers, indicating
the material’s breaking point and useful life. However, this property is tested 28 days
after manufacture. Predicting tensile strength earlier would enable manufacturers to avoid
nonconforming paving blocks due to limited vision regarding this property. This study
investigates how tensile strength depends on two groups of predictor variables in the
production process. The first group is the thickness in mm, width in mm, length in mm,
mass of the fresh paving block in g, and percentage of water absorption; the second group
of predictor variables is the density of the fresh paving block in kg/m3 and the percentage
of water absorption. Predictive modelling with statistical validation enables acceptable
error when forecasting tensile strength using these explanatory variables.

A statistical sampling is carried out to infer 30,000 units of the rectangular paving block
with 6 cm thickness (study population) representing a production batch. Specific objectives
are identifying multivariate techniques for this case study, implementing predictive models,
and comparing methodologies to determine the best model for predicting tensile splitting
strength. To perform accurate statistical analysis predicting a continuous dependent vari-
able from multiple continuous independent variables, we must verify hypotheses, infer the
population, take representative samples, process data, identify outliers, build models, and
check assumptions.

Related Work

Predicting concrete tensile splitting strength from related properties has been an
important research focus. Simple linear regression models provide initial correlations but
limited analysis. Several studies used linear and nonlinear regression models to predict
splitting strength. The research by [5] used simple linear regression to correlate tensile
splitting strength with compressive strength, water/binder ratio, and age. While simple,
this limited analysis of related variables. Nonlinear equations proposed increasing tensile
strength slower than compression. The investigation in [6] related abrasion and splitting
strength to bulk density and ultrasonic pulse velocity, finding that the logarithmic transform
of dry bulk specific better predicted splitting strength than the linear model.

The study that was carried out by [4] indicated that the compression test described in
Standard NS 6717:1986, which is carried out in the laboratory, does not represent the real
behavior in the paving blocks in real conditions of use and is caused by splitting stresses,
which generates a fracture by dividing the paving block into two parts. Compressive and
tensile strengths were related through regression. Compressive strength is also related to
density. The study carried out by [7] elaborated mixes with recycled aggregates, establishing
compressive strength’s dependence on density. Ref. [8] related density and compression to
rubber content through linear and logarithmic regression, with increased rubber reducing
both. High compressive strengths occurred alongside high densities. The prediction by
multiple linear regression of the compressive strength can be seen in the study carried
out by [9], where it is indicated that the compressive and traction strength decreases by
incorporating rubber from vehicular transport tires in the paving block mixture.

The relationship of different physical and mechanical properties of concrete paving
blocks was investigated by [10], where it is described in terms of physical variables—
water absorption, porosity, and specific gravity—and mechanical variables—compressive
strength and tensile splitting strength. The regressions of the variables were carried out,
where it was found that the most robust correlation coefficients are (a) correlation between
the water absorption and the tensile splitting strength, (b) the compressive strength and the
water absorption, (c) porosity and compressive strength, (d) porosity and tensile splitting
strength. Additionally, it is indicated that water absorption is a physical property that can
be easily determined, has a high correlation with performance parameters, and can also be
used as a rapid quality control parameter.
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The research led by [11] used 200 × 100 × 100 paving blocks manufactured by vibro-
compaction; the objective was to determine the changes in density using the DIN12390-7
standard, absorption, freezing–thawing resistance, and tensile splitting strength of paving
blocks on the pallet. It is indicated that the changes at the ends of the tray were at-
tributable to the uneven distribution of the compaction and filling of the mixture in the
vibro-compacting machine, making the density higher in the center and lower at the ends.
Likewise, when the density is lower at the ends, the product’s resistance is lower. In the
investigation carried out by [12], several concrete mixtures with different densities and
water/cement ratios were elaborated to relate them with the resistance at 28 days of age.
The increase in the density of the concrete increased the compressive strength with an
exponential behavior. The study described by [13] incorporates tea waste ash with different
proportions to replace cement, giving us a lower density and compression with a higher
proportion of ash. It can be seen in the graphs that the first two mixtures with the minor
cement replacement give us the highest compressive strength, and these same samples are
the ones with the highest density. In Indonesia, the study carried out by [14] uses different
ratios of NaOH/Na2SiO3 and fly ash as a substitute for cement to predict the performance
of paving blocks; higher Na2SiO3 content results in lower percentage absorption and higher
endurance.

Ref. [15] details that two groups were compared; the first group incorporates only
sand, and the second gravel (stone). It was indicated that a high-quality paving block has a
high compressive strength and low water absorption percentage. The results show that
the resistance of the paving block only with sand gives greater resistance. The elaboration
of different mixtures incorporating wheat straw fibers with and without treatment with
sodium silicate was studied by [16], where the untreated mixtures increased the percentage
of water absorption and decreased the compressive strength and tensile splitting strength.
In this study, it can be seen from the graphs that the mixture with the lowest compressive
strength and tensile splitting strength is the one with the highest percentage of water
absorption. The authors of [17] prepared concrete mixes with different water/cement ratios
in cubes, subjecting them to different curing methods. The authors indicated no clear
relationship between compressive strength and water absorption.

Simple linear regression is a method that is basic and easy to calculate. However, it can
only be accurate if it does not violate the assumption of linearity. Multivariate methods and
machine learning are revolutionizing data analysis in scientific research. These powerful
tools allow us to explore complex relationships between multiple variables, discover hidden
patterns in large datasets, and build superior predictive models. In the study carried out
by [18], 40 types of methods for data analysis are summarized and discussed with an
approach to pavement engineering for the prediction and classification of variables. They
delved into the data analysis, explaining in detail the definition of each one, making the
regression models understandable and easy to interpret as linear and nonlinear equations,
logistic regression, survival analysis, and stochastic processes, giving the coefficients of
regression a quantitative meaning. Supervised machine learning models, such as artificial
neural networks, decision trees, support vector machine, and k-nearest neighbors, give the
ability to predict and classify large volumes of data. The investigation carried out by [19]
to predict the tensile splitting strength in concrete indicates that the compressive strength
and tensile strength are essential characterization indices of the concrete, indicating that
generally, the compressive strength is much lower than the tensile strength; the study
proposes an alternative method to predict the tensile splitting strength by compressive
strength using a novel method called GEP, which is a gene expression programming
technique based on constantly adapting tree structures.

Different regression methods were studied by [20], such as neural networks and gene
expression programming, to predict splitting tensile strength and water absorption using
predictor variables such as the amount of cement, amount of ZnO2 nanoparticles, type of
aggregate, content of water, amount of superplasticizer, age and cured type, and number of
test attempts with various types of concrete including ZnO2 nanoparticles. The training
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and validation data are separated to test two models with different design parameters.
The determination coefficients for the relationship between predicted values and values
of the validation set were above 0.9. Ref. [21] applied Random Forest, Support Vector
Regression, and XGBoost to predict the resistance of high-performance concrete, finding
XGBoost to be the most accurate. The artificial neural network, decision trees, and random
forest methods for predicting tensile splitting strength were described in the study by [22],
where concrete is used as a recycled aggregate, obtaining a database divided into training
and validation. The input variables were the amount of water, cement, superplasticizer,
fine aggregate, coarse aggregate, residual coarse aggregate, density, and water absorption.
The random forest method showed a higher coefficient of determination when relating the
predicted values and the validation base; additionally, it gave lower error values than the
other methods.

Multidimensional methods provide a complete understanding of complex phenom-
ena that may go unnoticed in simple models. Nonlinear behaviors can be addressed
through machine learning techniques; however, this entails computational costs and re-
quires software for analysis, as well as the limited capacity to graphically represent multiple
dimensions in space, since the physical environment is abstracted into three dimensions.

2. Materials and Methods

The paving blocks of the present investigation were obtained from a factory that
produces 30,000 units per day in Quito-Ecuador; the paving block model is rectangular with
nominal dimensions of 200 mm in length, 100 mm in width, and 60 mm in thickness. The
research has a quantitative approach, since all the variables to be analyzed are continuous
quantitative.

As a first point, the sample size is estimated using the G* Power software for multiple
linear regression of 5 predictors, using a medium range effect size of 0.0363, which allowed
us to estimate a sample size of 300 paving stones, with which an estimated power of the
test of 0.9502764 was obtained. On production day, the paving blocks for the population
of 30,000 units are sampled as the pieces come out of the vibro-compacting machine, the
measurements of the length, width, thickness, and mass of the fresh paving block are taken,
the paving blocks are marked to guarantee traceability, and the absorption and resistance
tests are carried out according to the [1] The database consists of rows representing the
analysis individuals of the sampled and numbered paving blocks; the columns represent
the analysis variables.

The variables that enter the models of multivariate techniques, also called input, pre-
dictor, or independent, are length in mm, width in mm, height in mm, the mass of the fresh
paving blocks (each piece fresh from the vibro-compacting process) expressed in grams,
and the percentage of absorption based on the NTE INEN 3040 standard. Additionally,
since the dimensional variables of the paving blocks and the mass of the fresh product
can be reformulated into a new variable called the density of the fresh product expressed
in units of (kg/m3), this was taken into account together with the percentage of water
absorption to make the prediction and compare the multivariate methods.

The response variable, also called dependent or output, is the indirect tensile strength
in megapascals (MPa), which will depend on the predictor variables, which are grouped
into the first group of predictor variables (5): length, width, thickness, mass of the fresh
product, and water absorption percentage. The second group of predictor variables were
(2) density of the fresh paving block and percentage of water absorption.

Water absorption. The water absorption test is carried out by reference to the NTE
INEN 3040 (2016) standard, which indicates that to determine the absorption rate, the
paving block must be submerged in potable water at 20 ± 5 ◦C minimum for three days,
and then the surface must be cleaned of excess water with a moistened cloth, and the
moistened paving block must be weighed to a constant mass. In the same way, an oven
is used to find the mass of the dry paving block, and it is placed for a minimum period
of 3 days at 105 ± 5 ◦C until constant mass. The calculation is made by the difference
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between the saturated and dry mass divided by the dry mass. This would correspond to
the percentage of the maximum mass of water that the paving block has absorbed from the
dry state to the saturated state. The calculation formula is as follows:

Wa =
M1 −M2

M2
(1)

M1 is the mass of the specimen saturated with water, expressed in grams.
M2 is the final mass of the dry specimen, expressed in grams.

Fresh paving block weight (mass). It is the mass of the paving block expressed in
grams taken just after it leaves the mold in the vibro-compaction process.

Thickness (height), length, and width of the paving block. The height of the paving
block, or thickness, is the distance between the lower and upper face. In practice, the height
variation is given by the vertical mobility of the mechanical parts in the vibro-compactor,
where the plate of tamping compresses the mixture into the mold. The width and length of
the paving blocks are taken from one end to the other.

Tensile splitting strength. The tensile splitting strength test is carried out using
a hydraulic press, giving the measured load at failure in newtons, and the strength is
calculated by applying the following formula indicated in the standard NTE INEN 3040
(2016).

T = 0.637× k× P
S

(2)

where T is the paving block strength in MPa, P is the measured load at failure in newtons,
S is the area of failure plane in mm2 that results from the multiplication of the measured
failure length and the thickness at the failure plane of the paving block, and k = 0.87 for a
thickness of 60 mm.

Mahalanobis Distance. The importance of identifying outlier data in a database is
that these can distort the statistical analysis, and therefore, the distance to the centroid
and the shape are taken into account; the Mahalanobis distance takes these two premises
into account [23]. The study by [24] indicates that in the multivariate field with Gaussian
data, the Mahalanobis distance follows a chi-square distribution, where p means degrees
of freedom and represents the number of variables. The Mahalanobis distance measures
the amount of the standard deviation of an observation or individual from the mean of a
distribution, considering correlations for multivariate analysis. The Mahalanobis distance
transforms to a Euclidean distance when the covariance matrix is the identity matrix [25].
A multivariate normal distribution is defined as follows:

f (X) =

(
1

2π

)p/2
∗ |Σ|−1/2 ∗ exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (3)

where Σ is the covariance matrix, and µ is the mean vector. If X is a vector with p variables
which follows a multivariate normal distribution X ∼ Np(µ, Σ ), then the Mahalanobis
distance square D2 follows a chi-squared distribution with p degrees of freedom D2 ∼ X2

p.
Mahalanobis represents the distance between each data point and its center of mass and is
defined by the following formula:

D2 = (X− µ)T Σ−1 (X− µ) (4)

Simple linear regression. Simple linear regression allows one to relate two variables:
variable Y, called response or dependent, and variable X, predictor or explanatory. The
regression of the two random variables is given by the expected value of Y when X takes a
specific value (X = x). If we consider linear regression with intercept β0, slope β1, and ei
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represents the random error of Yi, Ref. [26] explains that the residuals êi are yi − ŷi, where
ŷi is the fitted value of y.

Yi = E(Y|X = x) + ei = β0 + β1x + ei (5)

The popular method for obtaining β1 and β0 is RSS ordinary least squares to minimize
the difference between the observed and predicted values. The minimization is carried out
by differentiating RSS concerning the coefficients b0 and b1 and setting it equal to 0.

RSS = ∑n
i=1 ê2

i = ∑n
i=1(yi − b0 + b1xi)

2 (6)

The structural assumptions of the regression model are the linearity that explains
that Y depends on x through linear regression, and the homoscedasticity indicates that the
variance of the errors when X = x must be common, better explained as Var(e|X = x) = σ2;
the normality assumption indicates that the errors must follow a normal distribution with
0 mean and variance σ2, and finally the independence of the errors. The inference of the
linear regression under the previous assumptions β̂1 follows a normal distribution with
mean β1 and variance

(
σ2/SXX

)
where SXX = ∑n

i=1(xi − x)2; if we consider to be σ2

unknown, then the test statistic follows a distribution of T-student with n − 2 degrees
of freedom, where Ho: β1 = 0 is the null hypothesis and Ha: β1 6= 0 is the alternative
hypothesis. T is described by the following expression:

T =
β̂1 − β1

s/
√

SXX
∼ tn−2, (7)

Similarly, for β0, the T statistic follows a T-student distribution with n-2 degrees of
freedom, where the null hypothesis is Ho: β0 = 0 and the alternative hypothesis is Ha:
β0 6= 0.

T =
β̂0 − β0

s/
√

1
n + x2

SXX

∼ tn−2, (8)

The analysis of variance allows us to decompose the variability by analyzing the mean
of Y, the predicted and observed points; the total variability is separated into the sum of
the variability explained by the model plus the unexplained variability or error. The total
sum of squares is SST = SYY = ∑n

i (yi − y)2 and SST = SSreg+ RSS, where SSreg is the
sum of squares of the regression ( SSreg) = ∑n

i (ŷi − y)2 and RSS is the sum of squares of
the residuals RSS = ∑n

i (yi − ŷi)
2.

yi − y = (yi − ŷi) + (ŷi − y) (9)

SST = SSreg + RSS (10)

The F statistic follows an F distribution with 1 and n-2 degrees of freedom, where the
null hypothesis is Ho: β1 = 0 and the alternative hypothesis is Ha : β1 6= 0. It can be seen
that if the null hypothesis is rejected, then Y depends on X.

F =
SSreg/1

RSS
(n−2)

∼ F1, n−2, (11)

The coefficient of determination in linear regression is given by the following:

R2 =
SSreg
SST

(12)
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Multiple Linear Regression (MLR). According to [26], the response variable (Y) in
MLR is predicted and related to multiple explanatory or predictor variables, where the
expectation of Y when each variable X takes a specific value is represented as follows:

E(Y|X1 = x1, X2 = x2, .., Xp = xp
)
= β0 + β1x1 + . . . + βpxp (13)

Yi = β0 + β1x1i + · · ·+ βpxpi + ei (14)

The sum of squares for the multivariate case is

RSS = ∑n
i=1 ê2

i = ∑n
i=1(yi − ŷi)

2 = ∑n
i=1

(
yi − b0 + b1x1i + · · ·+ bpxpi

)2 (15)

Multiple linear regression is denoted as

Y = X β + e (16)

Each term expressed in vectors and matrices indicates the following:

Y =


y1
y2
...
yn

, X =


1 x11 . . .
1 x21 . . .

...
...

...
1 xn1 . . .

x1p
x2p
...

xnp

, β =


β1

β2
...
βp

, e =


e1

e2
...
ep


The estimated coefficients of each term can be calculated by linear algebra calculus,

where the term X
(
XTX

)−1 XT is defined as a Hat Matrix (H) and the residual maker
matrix as M, which is equal to In − H, where In is the identity matrix, and the projection Ŷ
is equal to H ∗Y, so in the regression hyperplane, Ŷ is a transformation of Y.

β̂ =
(

XTX
)−1

XT Y (17)

If the errors follow normal distribution with constant variance, then the T statistic
follows a student’s t distribution with n-p-1 degrees of freedom and is given by

Ti =
β̂i − βi

se
(

β̂i
) ∼ tn−p−1 (18)

The term se
(

β̂
)

is the estimated standard deviation of β̂i, where the null hypothesis
indicates that Ho: βi = 0 and the alternative hypothesis is Ha: βi 6= 0. In the analysis
of variance in the multivariate case, as in the case of simple linear regression, the total
variability is equal to the variability explained by the model plus the unexplained variability
or error. The F statistic follows an F distribution with p and n-p-1 degrees of freedom, where
the null hypothesis is Ho: β1 = β2 = β3 = · · · = βp = 0 and the alternative hypothesis
indicates that Ha: at least some o f the βi 6= 0.

F =
SSreg/p

RSS
(n−p−1)

∼ Fp, n−p−1 (19)

Adding the number of predictors increases R2, so R2
adj is used.

R2
adj = 1− RSS/(n− p− 1)

SST/(n− p)
(20)

Regression trees. A decision tree is an algorithm in machine learning that can be
used in regression and classification; that is, a white box where they are intuitive and
easy to interpret. For the regression case, the tree, instead of predicting a class, predicts
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a value that is the average value across the training instances of the node. Instead of
minimizing impurity, the regression tree minimizes the mean squared error (MSE) [27].
The cost function for regression is

J(k, tk) =
mle f t

m
MSEle f t +

mright

m
MSEright (21)

where m is the number of instances to the left or right, and MSE is the mean square error.

MSE = ∑iε node

(
ŷnode − y(i)

)2
(22)

ŷnode =
1

mnode
∑iε node y(i) (23)

The limits on the decision trees are perpendicular to the axis (orthogonal) and are
sensitive to variations in training. The regression trees, according to [28], generate divisions
of the database into more homogeneous groups, with a set of “if” and “then” conditions
being easily interpretable with different predictors. A disadvantage that could occur is
instability with minor changes in the data. The oldest and most widely used technique is
CART by [29], whose methodology is to find the predictor and the dividing value of the
base whose squared error is the smallest.

SSE = ∑iεS1 (yi − y1)
2 + ∑iεS2(yi − y2)

2 (24)

y1 represents the subgroup mean S1, y2 represents the subgroup mean S2, and the
division process continues within the sets S1 and S2 up to a stopping criterion. The
predictor’s relative importance can be calculated using SSE, where the predictors higher
up the tree or that are more frequent are the most important.

Random forests. In the research by [30], an algorithm called the random forest
allows for predicting and reducing overfitting. The procedure consists of choosing the
number of tree models to be built from 1 to m, obtaining an initial sample, and then
training the tree model for each division; the predictors are randomly selected, the best
one is chosen, and finally, the stopping criteria are used. Each tree model generates
a prediction, and the m predictions are averaged to generate the final prediction. By
randomly choosing the k variables in each division, their correlation decreases. Random
forests are computationally more efficient tree by tree, and the predictors’ importance can
also be seen through the permutation or impurity methodology [28]. The tree bagging
procedure reduces the prediction variance. The ensemble method is the algorithm that
analyzes the predictions as a whole, obtaining the predictions of each individual tree with
different random subsets [27]. Analyzing the predictions together will yield better results
than just one prediction. Random forests are trained by bagging with max_samples.

Principal component analysis. It is a dimension reduction technique that occupies
the orthogonal transformation so that a group of correlated n-dimensional variables can
maintain their variability information in other uncorrelated k-dimensional ones. The
general process consists first of data standardization so that the base has a mean of zero and
a variance of one. The covariance matrix, correlation matrix, eigenvectors, and eigenvalues
are calculated. The first eigenvectors representing the most significant variability are
chosen [31]. Research carried out by [32] indicates that this technique was developed
by Karl Pearson and Harold Hotelling independently. The technique linearly transforms
multivariate data into a new uncorrelated set of variables. The eigenvectors are vectors
that do not change position when a data transformation occurs and represent the axis of
maximum variance, called the principal component.

According [33], principal components are commonly defined as the matrix multi-
plication between the eigenvectors of the correlation matrix (A) and the standardized
variables (X∗).

z = AT X∗ (25)
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The principal components calculated by covariance have a drawback, and it is the sen-
sitivity to the units of measurement, for which it is carried out using the correlation matrix
with the standardized variables, since each variable has a different unit of measurement.
Also, the sizes of the variances of the principal components have the same implications
in correlation matrices as in covariance matrices. One of the properties of the principal
components using the correlation matrix is that they do not depend on the absolute values
of the correlation.

According to the study in [34], principal component analysis can determine the number
of hidden layers in artificial neural networks, which represents sufficient variability for
statistical analysis. On the other hand, the study by [35] shows the number of hidden layers
in neural networks through principal component analysis to predict a continuous variable,
giving good results through quality measures with optimal performance.

Artificial neural networks. Neural networks were inspired by the biological capacity
of the brain. The perceptron is a different neuron called a threshold logic unit, where the
inputs are numbers just like the outputs, and each connection has a weight [27]. A fully
connected layer has the outputs hW,b(X), where X is the input matrix (instance rows and
feature columns), W is the weight matrix (rows per input neurons and columns per artificial
neuron), b is the polarization vector (connection weights of the bias neuron and the artificial
neurons), and is the activation function.

hW,b(X) = (X W + b) (26)

Learning has a rule; the perceptron connections are strengthened when the error is
reduced, receiving one instance at a time and making the predictions. Perceptron learning
is performed by wi,j

(next step):

wi,j
(next step) = wi,j + η

(
yj − ŷj

)
xi (27)

where wi,j is the weight of the connection between the input and output of the neurons,
xi is the input value of the instance, ŷj is the output value of the instance, yj is the target
output value, and η is the learning rate. The perceptron convergence theorem tells us that
the algorithm converges to a solution if the instances are linearly separable. The multilayer
perceptron, MLP, has an input layer (lower layer), hidden layers, and an output layer (upper
layer). If the artificial neural network (ANN) has more than one hidden layer, it is called a
deep neural network (DNN). An algorithm called gradient descent was created to calculate
the gradients automatically with one pass forward and another pass backwards; the process
is repeated until converging to the solution. According to [36], the sigmoid neuron has
weights and a bias occupying the sigmoid function defined as σ(z) = 1/(1 + e−z), where
z = wx + b and the bias b = 1/

(
1 + e−∑j wjxj−b

)
is the introduced bias. Considering the

cost function to evaluate the model and quantify how well the objective is achieved, we
have the following:

C(w, b) =
1

2n∑x‖y(x)− a‖2, (28)

where w represents the weights of the network, b are all the biases, n is the total training
inputs, a is the vector of outputs when inputting an x, y(x) is the output desired, x sums
over the training inputs, and C is the cost function. As the cost function approaches 0 and
as y(x) approaches the output a, gradient descent allows minimization of the cost function,
where ∆C can be written as ∆C ≈ ∇C ∆v, where ∇C is the gradient vector and relates the
changes of C to changing v, so ∆v is the vector of changes in position, and m is the number
of variables.

∇C ≡
(

∂C
∂v1

, . . . ,
∂C
∂vm

)T
(29)

Gradient descent repeatedly computes ∇C, looking like small steps in the direction C
decreases the most. The backpropagation algorithm gives information on how to change
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the weights and biases in the behavior of the neural network. The notation to use is l for
the l-th layer, k is the k-th neuron of the l-th layer minus one (l − 1), j is the j-th neuron of
the l-th layer, wl

jk is the weight of the connection of the l-th layer for the j-th neuron and

k-th neuron of the layer (l − 1), bl
j is the bias of the j-th neuron for the l-th layer, and al

j

is the activation of the l-th layer for the j-th neuron, where al
j = σ

(
∑k wl

jk al−1
k + bl

j

)
and

zl
j = ∑k wl

jk al−1
k + bl

j; for matrix and vector notation it is al = σ
(

wl al−1 + bl
)
= σ

(
zl
)

,

zl = wl al−1 + bl , and for the cost function C = 1
2n ∑x

∥∥y(x)− aL(x)
∥∥2. The desired output

is expressed as y(x), n is the number of training instances or examples, and aL = aL(x)
is the output vector of activations when x is entered. The Hadamard product uses � for
denoting the multiplication of the elements of two vectors; the error in the j-th neuron, in
the output layer, is

δL
j =

∂C
∂aL

j
σ′(zL

j ), (30)

A weight will learn slowly if the output neuron is saturated or if the input neuron
has low activation. The rate of change of cost concerning bias is ∂C/∂bl

j, and the rate of

change of cost concerning weight is ∂C/∂wl
jk. The summary backpropagation equations are

δL = ∇aC � σ′
(
zL), δl =

((
wl+1

)T
δl+1

)
� σ′

(
zl
)

, ∂C/∂bl
j = δl

j , and ∂C/∂wl
jk = al−1

k δl
j.

The backpropagation algorithm consists first in establishing the corresponding activation
in the input layer, second we calculate zl = wlal−1 + bl and al = σ(zl), third we calculate
the output error by calculating the vector δL = ∇aC � σ′

(
zL), fourth we calculate the

backpropagation error δl =

((
wl+1

)T
δl+1

)
� σ′

(
zl
)

, and lastly we calculate the gradient

of the cost function. It will be for the weights ∂C/∂wl
jk = al−1

k δl
j, and the bias is ∂C/∂bl

j = δl
j .

An intuitive way to see the rate of change of C concerning the weights in the network is

∂C
∂wl

jk
= ∑mnp...q

∂C
∂aL

m

∂ aL
m

∂ aL−1
n

∂ aL−1
n

∂aL−2
p
· · ·

∂al+1
q

∂al
j

∂al
j

∂wl
jk

(31)

Overfitting. Overfitting is a substantial problem in statistical modeling that can
compromise the integrity of the reported findings. Ref. [27] indicates that it occurs when
the model works very well in training but performs poorly with new instances and does
not allow generalization. If the training set is noisy or small, it is possible for the models to
detect patterns of the noise itself, since very complex models detect negative patterns.

The ways to avoid overfitting are to simplify the model, regularize, and stop training
at an optimal point.

3. Results

The database is obtained from measurements on 300 sample paving blocks; the tensile
splitting strength is the response variable, and the models consider two groups of predictor
variables, the first group of five variables (length, width, thickness, mass of the fresh
paving block, and water absorption percentage) and the second group of two variables
(density of the fresh paving block and percentage of absorption). As the first point in the
data processing, an analysis of missing data is carried out, resulting in the database being
complete; therefore, it does not require any imputation method. Outliers are determined by
Mahalanobis distances, which represent the distance between each data point and its center
of mass. For the first group of predictor variables, the square of the distance is calculated
following a chi-square distribution with six degrees of freedom. The data belonging to the
area under the curve of 99.9% of the distribution are preserved, evidencing seven records
outside that represent 2.3% of the total database, which must be excluded for the analysis,
resulting in a database of analysis that is made up of 293 records that enter the multivariate
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regression analysis of the first group of predictors. Similarly, for the multivariate regression
analysis for the second group of predictors with three degrees of freedom, four records
outside 99.9% of the distribution were detected, which are excluded and represent 1.3% of
the total database, so the analysis database contains 296 records for the second group of
predictor variables. A total of 80% of the database was separated for training records and
20% for validation of the models.

The Table 1 shows the descriptive statistics in the sample of each variable, the measures
of central tendency such as the mean and median, and the measures of dispersion such
as the standard deviation, the range, and the coefficient of variation. Additionally, a
histogram is included, where the values of the variable are grouped into intervals, and each
rectangular bar indicates the frequency of the data in each interval, the red line indicates
the density function for the behavior of the data in the sample, and at the bottom is the
boxplot diagram and the points that indicate the data with its dispersion.

Table 1. Descriptive statistics of the variables.

Variable Measures Histogram, Density Function,
Boxplot (Below), and Dots of Data

Tensile splitting
strength, MPa

Max:_____________________ 5.47 MPa

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 28 
 

Table 1. Descriptive statistics of the variables. 

Variable Measures  Histogram, Density Function, 
Boxplot (Below), and Dots of Data 

Tensile splitting 
strength, MPa 

Max:_____________________ 5.47 MPa 
 Min:_____________________ 1.31 MPa 

Mean:____________________ 3.82 MPa 
Median:__________________ 3.89 MPa 
Standard deviation:________ 0.74 MPa 
Variance:_________________ 0.55 MPa2 
Range:___________________ 4.16 MPa 
Coefficient of variation:____ 19.42 % 

Thickness, 
mm 

Max:_____________________ 62.75 mm 

 

Min:_____________________ 57.19 mm 
Mean: ___________________. 60.08 mm 
Median: _________________. 60.08 mm 
Standard deviation:_______ 0.85 mm 
Variance:_________________ .0.72 mm2 
Range:___________________ 5.56 mm 
Coefficient of variation:____ 1.41 % 

Width, 
mm 

Max:_____________________. 102.03 mm 
 Min:_____________________ 98.77 mm 

Mean:___________________ 100.13 mm 
Median: _________________ 100.14 mm 
Standard deviation:_______ 0.63 mm 
Variance:________________ 0.39 mm2 
Range:  _________________ 3.26 mm 
Coefficient of variation:____ 0.63 % 

Length, 
mm 

Max:____________________ 201.00 mm 
     Min:____________________ 198.00 mm 

Mean:__________________ 199.68 mm 
Median:_________________ 200.00 mm 
Standard deviation:_______. 0.60 mm 
Variance:________________ 0.35 mm2 
Range:___________________ 3.00 mm 
Coefficient of variation:____ .   0.30 % 

Mass of fresh 
paving block, g 

Max:____________________ 2780.30 g  
Min:____________________ 2363.70 g 
Mean:__________________ 2541.55 g 
Median:_________________ 2539.60 g 
Standard deviation:_______ 77.19 g 
Variance:________________. 5958.60 g2 
Range:___________________ 416.60 g 
Coefficient of variation:_____ 3.04 % 

Density of fresh paving 
block, 
kg/m3 

Max:____________________ 2385.27 kg/m3 
 Min:____________________ 1993.58 kg/m3 

Mean:___________________ 2181.57 kg/m3 
Median:_________________ 2186.00 kg/m3 
Standard deviation:_______ 61.53 kg/m3 
Variance:________________ 3785.66 (kg/m3)2 
Range:  _________________ 391.69 kg/m3 
Coefficient of variation:____ 2.82 % 

Percentage of 
water absorption, 

g/g% 

Max:____________________ 13.64 g/g% 
Min:____________________ 2.12 g/g% 
Mean: ___________________ 5.81 g/g% 

Min:_____________________ 1.31 MPa
Mean:____________________ 3.82 MPa
Median:__________________ 3.89 MPa
Standard deviation:________ 0.74 MPa
Variance:_________________ 0.55 MPa2

Range:___________________ 4.16 MPa
Coefficient of variation:____ 19.42 %

Thickness,
mm

Max:_____________________ 62.75 mm

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 28 
 

Table 1. Descriptive statistics of the variables. 

Variable Measures  Histogram, Density Function, 
Boxplot (Below), and Dots of Data 

Tensile splitting 
strength, MPa 

Max:_____________________ 5.47 MPa 
 Min:_____________________ 1.31 MPa 

Mean:____________________ 3.82 MPa 
Median:__________________ 3.89 MPa 
Standard deviation:________ 0.74 MPa 
Variance:_________________ 0.55 MPa2 
Range:___________________ 4.16 MPa 
Coefficient of variation:____ 19.42 % 

Thickness, 
mm 

Max:_____________________ 62.75 mm 

 

Min:_____________________ 57.19 mm 
Mean: ___________________. 60.08 mm 
Median: _________________. 60.08 mm 
Standard deviation:_______ 0.85 mm 
Variance:_________________ .0.72 mm2 
Range:___________________ 5.56 mm 
Coefficient of variation:____ 1.41 % 

Width, 
mm 

Max:_____________________. 102.03 mm 
 Min:_____________________ 98.77 mm 

Mean:___________________ 100.13 mm 
Median: _________________ 100.14 mm 
Standard deviation:_______ 0.63 mm 
Variance:________________ 0.39 mm2 
Range:  _________________ 3.26 mm 
Coefficient of variation:____ 0.63 % 

Length, 
mm 

Max:____________________ 201.00 mm 
     Min:____________________ 198.00 mm 

Mean:__________________ 199.68 mm 
Median:_________________ 200.00 mm 
Standard deviation:_______. 0.60 mm 
Variance:________________ 0.35 mm2 
Range:___________________ 3.00 mm 
Coefficient of variation:____ .   0.30 % 

Mass of fresh 
paving block, g 

Max:____________________ 2780.30 g  
Min:____________________ 2363.70 g 
Mean:__________________ 2541.55 g 
Median:_________________ 2539.60 g 
Standard deviation:_______ 77.19 g 
Variance:________________. 5958.60 g2 
Range:___________________ 416.60 g 
Coefficient of variation:_____ 3.04 % 

Density of fresh paving 
block, 
kg/m3 

Max:____________________ 2385.27 kg/m3 
 Min:____________________ 1993.58 kg/m3 

Mean:___________________ 2181.57 kg/m3 
Median:_________________ 2186.00 kg/m3 
Standard deviation:_______ 61.53 kg/m3 
Variance:________________ 3785.66 (kg/m3)2 
Range:  _________________ 391.69 kg/m3 
Coefficient of variation:____ 2.82 % 

Percentage of 
water absorption, 

g/g% 

Max:____________________ 13.64 g/g% 
Min:____________________ 2.12 g/g% 
Mean: ___________________ 5.81 g/g% 

Min:_____________________ 57.19 mm
Mean: ___________________ 60.08 mm
Median: _________________ 60.08 mm
Standard deviation:_______ 0.85 mm
Variance:_________________ 0.72 mm2

Range:___________________ 5.56 mm
Coefficient of variation:____ 1.41 %

Width,
mm

Max:_____________________ 102.03 mm

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 28 
 

Table 1. Descriptive statistics of the variables. 

Variable Measures  Histogram, Density Function, 
Boxplot (Below), and Dots of Data 

Tensile splitting 
strength, MPa 

Max:_____________________ 5.47 MPa 
 Min:_____________________ 1.31 MPa 

Mean:____________________ 3.82 MPa 
Median:__________________ 3.89 MPa 
Standard deviation:________ 0.74 MPa 
Variance:_________________ 0.55 MPa2 
Range:___________________ 4.16 MPa 
Coefficient of variation:____ 19.42 % 

Thickness, 
mm 

Max:_____________________ 62.75 mm 

 

Min:_____________________ 57.19 mm 
Mean: ___________________. 60.08 mm 
Median: _________________. 60.08 mm 
Standard deviation:_______ 0.85 mm 
Variance:_________________ .0.72 mm2 
Range:___________________ 5.56 mm 
Coefficient of variation:____ 1.41 % 

Width, 
mm 

Max:_____________________. 102.03 mm 
 Min:_____________________ 98.77 mm 

Mean:___________________ 100.13 mm 
Median: _________________ 100.14 mm 
Standard deviation:_______ 0.63 mm 
Variance:________________ 0.39 mm2 
Range:  _________________ 3.26 mm 
Coefficient of variation:____ 0.63 % 

Length, 
mm 

Max:____________________ 201.00 mm 
     Min:____________________ 198.00 mm 

Mean:__________________ 199.68 mm 
Median:_________________ 200.00 mm 
Standard deviation:_______. 0.60 mm 
Variance:________________ 0.35 mm2 
Range:___________________ 3.00 mm 
Coefficient of variation:____ .   0.30 % 

Mass of fresh 
paving block, g 

Max:____________________ 2780.30 g  
Min:____________________ 2363.70 g 
Mean:__________________ 2541.55 g 
Median:_________________ 2539.60 g 
Standard deviation:_______ 77.19 g 
Variance:________________. 5958.60 g2 
Range:___________________ 416.60 g 
Coefficient of variation:_____ 3.04 % 

Density of fresh paving 
block, 
kg/m3 

Max:____________________ 2385.27 kg/m3 
 Min:____________________ 1993.58 kg/m3 

Mean:___________________ 2181.57 kg/m3 
Median:_________________ 2186.00 kg/m3 
Standard deviation:_______ 61.53 kg/m3 
Variance:________________ 3785.66 (kg/m3)2 
Range:  _________________ 391.69 kg/m3 
Coefficient of variation:____ 2.82 % 

Percentage of 
water absorption, 

g/g% 

Max:____________________ 13.64 g/g% 
Min:____________________ 2.12 g/g% 
Mean: ___________________ 5.81 g/g% 

Min:_____________________ 98.77 mm
Mean:___________________ 100.13 mm
Median: _________________ 100.14 mm
Standard deviation:_______ 0.63 mm
Variance:________________ 0.39 mm2

Range: _________________ 3.26 mm
Coefficient of variation:____ 0.63 %

Length,
mm

Max:____________________ 201.00 mm

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 28 
 

Table 1. Descriptive statistics of the variables. 

Variable Measures  Histogram, Density Function, 
Boxplot (Below), and Dots of Data 

Tensile splitting 
strength, MPa 

Max:_____________________ 5.47 MPa 
 Min:_____________________ 1.31 MPa 

Mean:____________________ 3.82 MPa 
Median:__________________ 3.89 MPa 
Standard deviation:________ 0.74 MPa 
Variance:_________________ 0.55 MPa2 
Range:___________________ 4.16 MPa 
Coefficient of variation:____ 19.42 % 

Thickness, 
mm 

Max:_____________________ 62.75 mm 

 

Min:_____________________ 57.19 mm 
Mean: ___________________. 60.08 mm 
Median: _________________. 60.08 mm 
Standard deviation:_______ 0.85 mm 
Variance:_________________ .0.72 mm2 
Range:___________________ 5.56 mm 
Coefficient of variation:____ 1.41 % 

Width, 
mm 

Max:_____________________. 102.03 mm 
 Min:_____________________ 98.77 mm 

Mean:___________________ 100.13 mm 
Median: _________________ 100.14 mm 
Standard deviation:_______ 0.63 mm 
Variance:________________ 0.39 mm2 
Range:  _________________ 3.26 mm 
Coefficient of variation:____ 0.63 % 

Length, 
mm 

Max:____________________ 201.00 mm 
     Min:____________________ 198.00 mm 

Mean:__________________ 199.68 mm 
Median:_________________ 200.00 mm 
Standard deviation:_______. 0.60 mm 
Variance:________________ 0.35 mm2 
Range:___________________ 3.00 mm 
Coefficient of variation:____ .   0.30 % 

Mass of fresh 
paving block, g 

Max:____________________ 2780.30 g  
Min:____________________ 2363.70 g 
Mean:__________________ 2541.55 g 
Median:_________________ 2539.60 g 
Standard deviation:_______ 77.19 g 
Variance:________________. 5958.60 g2 
Range:___________________ 416.60 g 
Coefficient of variation:_____ 3.04 % 

Density of fresh paving 
block, 
kg/m3 

Max:____________________ 2385.27 kg/m3 
 Min:____________________ 1993.58 kg/m3 

Mean:___________________ 2181.57 kg/m3 
Median:_________________ 2186.00 kg/m3 
Standard deviation:_______ 61.53 kg/m3 
Variance:________________ 3785.66 (kg/m3)2 
Range:  _________________ 391.69 kg/m3 
Coefficient of variation:____ 2.82 % 

Percentage of 
water absorption, 

g/g% 

Max:____________________ 13.64 g/g% 
Min:____________________ 2.12 g/g% 
Mean: ___________________ 5.81 g/g% 

Min:____________________ 198.00 mm
Mean:__________________ 199.68 mm
Median:_________________ 200.00 mm
Standard deviation:_______ 0.60 mm
Variance:________________ 0.35 mm2

Range:___________________ 3.00 mm
Coefficient of variation:____ 0.30 %



Appl. Sci. 2023, 13, 10956 12 of 28

Table 1. Cont.

Variable Measures Histogram, Density Function,
Boxplot (Below), and Dots of Data

Mass of fresh
paving block, g

Max:____________________ 2780.30 g
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The Figure 1 shows us the dot plot of all the variables that can be related two by two
and the correlation coefficient that measures the intensity of the linear relationship of the
two variables, which is positively higher, with values close to 1 (direct relationship) or
−1 (inverse relationship); diagonal graphs show the density function that indicates the
probability that the variable takes the values in a specific interval. It is observed that the
response variable tensile splitting strength has a high linear correlation with the density of
the fresh paver (R2 = 0.834) and the percentage of water absorption (R2 = 0.843), indicating
the linear nature of the data for multivariate models.

The variables are plotted in three dimensions in Figures 2 and 3, where the variable
(y) is the tensile splitting strength, which is also represented through color to be able to
distinguish the location of the points in the graph; the points in green indicate a high tensile
strength, followed by the yellow and red dots. The grouping of the data with high tensile
splitting strength in a specific area and the gradual decrease to the red points initially
indicate a linear behavior of the data through a prediction plane.

3.1. Multiple Linear Regression (MLR)
3.1.1. Multiple Linear Regression Model for the First Group of Predictors (Thickness,
Width, Length, Mass of Fresh Paving Block, and Percentage of Water Absorption)

The multiple linear regression model for the first group of predictors shows us a
non-significant p-value of 0.22736 in the T-test of the coefficient of the width variable.
Therefore, the null hypothesis is not rejected βi (width) = 0, and there is no statistical
evidence to affirm that βi (width) 6= 0. The discarding of the width variable indicated that it
does not significantly influence the prediction of tensile splitting strength. The following
model is carried out with the variables (thickness, length, mass of fresh paving block,
and the percentage of water absorption), giving rise to significant results (p-value < 0.05);
in all the T-tests of the coefficients for a confidence level of 95% the null hypothesis is
rejected βi = 0, there being significant statistical evidence to affirm that βi 6= 0, so the
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predictor variables do influence the response variable. The resulting adjusted coefficient of
determination is 0.7974. In the F-test, the p-value is much less than 0.05, so for a confidence
level of 95%, the null hypothesis is rejected, there being significant evidence to affirm
that at least some o f the βi 6= 0, obtaining a mean square error of 0.110086. The structural
assumptions are verified, and Figure 4 illustrates the adjustment to new values for the
prediction of tensile splitting strength vs. the current values of the test dataset; the model
can be seen below, where the variable with the most significant inverse influence is the
thickness followed by the percentage of water absorption.

Tensile splitting strength = (29.911784)+
(−0.244570) Thickness+
(−0.108435) Length+
(0.004428) Mass_o f _ f resh_paving_block+
(−0.174059) Percentage_o f _water_absorption

(32)
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Figure 4. Prediction of the observations vs. their actual value from the evaluation database for the
first group of predictors in MLR.

3.1.2. Multiple Linear Regression Model for the Second Group of Predictors (Density of
Fresh Paving Block and Percentage of Water Absorption)

When carrying out the model with the predictors of the density of the fresh paving
block and the percentage of water absorption, a p-value of less than 0.05 is evidenced
for the two variables in the T-test of the coefficients; for a confidence level of 95%, the
null hypothesis is rejected, βi = 0 exhibiting significant statistical evidence to affirm that
βi 6= 0. In the F-test, the p-value is less than 0.05, so for a confidence level of 95%, the
null hypothesis is rejected, that is, β1 = β2 = β3 = · · · = βp = 0, there being significant
evidence to affirm that at least some o f the βi 6= 0; the adjusted coefficient of determination
is 0.7897 and results in a mean square error of 0.115044.

The verification of the structural assumptions is carried out by statistical tests on the
residuals. Linearity, homoscedasticity, and normality are verified, having a low variance
inflation factor. The 3D graph of the tensile splitting strength prediction model is presented
using the predictor variables, the density of the fresh paving block, and the percentage of
water absorption; the prediction plane can be seen in Figure 5, where the linear behavior is
evidenced in three dimensions. Additionally, Figure 6 illustrates the prediction of the tensile
splitting strength vs. the actual values of the test dataset, evidencing the adjustment to
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new values. The model can be seen as follows, where the variable with the most significant
inverse influence is the percentage of water absorption:

Tensile splitting strength = (−7.9314769)+
( 0.0058441) Density_o f _ f resh _paving_block+
(−0.1741685) Percentage_o f _water_absorption

(33)Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 28 
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ing mean squared error is 0.165174, and the diagram of Figure 7 shows the tree splits and 
their model conditions according to the predictor variables, and a route is created for the 
new values entered into the model, which is practical in the applicability of the prediction. 
However, the limitation and rigidity in terms of predicted values is evident. For the re-
gression trees of the first group of predictors, Figure 8 shows a low test error. 
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percentage of water absorption. The green, yellow and red dots represent the high, medium and low
tensile splitting strength tensile strength respectively.
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3.2. Regression Trees
3.2.1. Regression Tree Model for the First Group of Predictors (Thickness, Width, Length,
Mass of the Fresh Paving Block, and Percentage of Water Absorption)

A regression tree is created to be treated by cross-validation and find the optimal
size of terminal nodes to reduce the validation error, resulting in 10 terminal nodes; the
resulting mean squared error is 0.165174, and the diagram of Figure 7 shows the tree splits
and their model conditions according to the predictor variables, and a route is created
for the new values entered into the model, which is practical in the applicability of the
prediction. However, the limitation and rigidity in terms of predicted values is evident. For
the regression trees of the first group of predictors, Figure 8 shows a low test error.
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The regression tree model to predict the tensile splitting strength through the varia-
bles density of the fresh paving block and percentage of water absorption is carried out 
through cross-validation, where it is found that the optimal size to minimize the error is 
nine terminal nodes; Figure 9 shows the architecture of the regression tree with the divi-
sions according to the conditions of the model, which makes the path to follow intuitive 
according to the input values of the predictor variables. Figure 10 shows the model�s pla-
nar projection (regression surface) in three dimensions to predict the tensile splitting 
strength through the predictor variables, and each step is a prediction value. The higher 
steps show greater resistance to tensile splitting, corresponding to a higher density and 
lower percentage of absorption. Figure 11 shows the training of the model to find the op-
timal number of nodes to identify the stopping point where the overfitting begins, allow-
ing the data to be well-generalized. The resulting mean square error is 0.139050. 

Figure 7. Representation of the regression tree for the first group of predictors (thickness, width,
length, mass of the fresh paving block, and percentage of water absorption). The results in green,
yellow and red represent high, medium and low tensile strength, respectively.
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3.2.2. Regression Tree Model for the Second Group of Predictors (Density of Fresh Paving
Block and Absorption Percentage)

The regression tree model to predict the tensile splitting strength through the variables
density of the fresh paving block and percentage of water absorption is carried out through
cross-validation, where it is found that the optimal size to minimize the error is nine
terminal nodes; Figure 9 shows the architecture of the regression tree with the divisions
according to the conditions of the model, which makes the path to follow intuitive according
to the input values of the predictor variables. Figure 10 shows the model’s planar projection
(regression surface) in three dimensions to predict the tensile splitting strength through
the predictor variables, and each step is a prediction value. The higher steps show greater
resistance to tensile splitting, corresponding to a higher density and lower percentage
of absorption. Figure 11 shows the training of the model to find the optimal number of
nodes to identify the stopping point where the overfitting begins, allowing the data to be
well-generalized. The resulting mean square error is 0.139050.
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Figure 9. Representation of the regression tree for the second group of predictors (density of the fresh
paving block and percentage of water absorption). The results in green, yellow and red represent
high, medium and low tensile strength, respectively.
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Figure 10. Three-dimensional planar representation of the regression tree model for the second group
of predictors (density of the fresh paving block and percentage of water absorption). The green,
yellow and red steps represent the high, medium and low indirect tensile strength respectively.
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3.3. Random Forest
3.3.1. Random Forest Model for the First Group of Predictors (Thickness, Width, Length,
Mass of the Fresh Paving Block, and Percentage of Water Absorption)

The random forest model is created with the predictor variables of the first group
(thickness, width, length, mass of the fresh paving block, and percentage of water absorp-
tion). The resulting optimal hyperparameters using the cross-validation method are 278 for
the number of trees, and the number of predictor variables randomly chosen for each divi-
sion is 4. The result of the model performance gives a mean square error of 0.115392. The
importance of the predictors by permutation can be seen in Figure 12; the impact of each
variable on the performance of the model is measured when the values of the variable are
randomized, where the most important variable is the percentage of absorption, followed
by the mass of the fresh paver, the thickness, width, and length. Figure 13 shows the model
error for different numbers of trees in the training dataset and the test dataset, where it is
observed that a few trees generate high errors and as the number increases, it stabilizes
sufficiently at 278 trees.
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3.3.2. Random Forest Model for the Second Group of Predictors (Density of the Fresh
Paving Block and Percentage of Water Absorption)

For the prediction with the variable density and percentage of water absorption, an
optimal number of trees of 144 is obtained by cross-validation; The importance of each
predictor is shown in Figure 14, where the percentage of water absorption is the most
important variable, followed by the density of the fresh paving block. Figure 15 indicates
the prediction of the tensile splitting strength with the use of the predictor variables in three
dimensions, where it can be noted that the random forest model has many more steps than
the regression tree model, which gives it greater flexibility and better fit in the behavior of
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the data than a single tree, shown in Figure 10. Figure 16 shows the errors of the model for
the training dataset and test dataset, two predictors as the number of variables for each
division, and the resulting performance of the model gives a mean square error of 0.125097.
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3.4. Neural Networks
3.4.1. Regression Using Neural Networks for the First Group of Predictors (Thickness,
Width, Length, Mass of the Fresh Paving Block, and Percentage of Water Absorption)

An artificial neural network model without hidden layers is made, with a normalized
layer to be able to eliminate drawbacks regarding the units of measurement of the variables
in different scales; an output neuron is taken into consideration since the variable to be
predicted (tensile splitting strength) is continuous. It is trained with 100 epochs, and the
learning rate is 0.1 for each learning stage, taking into account the gradient descent. The
model performance or loss is a mean square error of 0.112198 using the ELU (Exponential
Linear Unit) activation function for the neural network with no hidden layer. Figure 17
shows the neural network training calculating the loss for different epochs; the red line
indicates the errors for the training dataset, and the blue line for the test dataset. Principal
component analysis is applied to specify the number of optimal hidden layers in the neural
network. Figure 18 shows that the cumulative variance proportion reaches 0.9999 with two
principal components. So, two hidden layers are needed to explain 99.99% of the variability.
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For the first hidden layer, the number of neurons is determined by iterating from 2
to 10 neurons, calculating the mean square error (loss), which is lower with 10 neurons.
The training process stabilizes with 40 epochs, which can be evidenced in Figure 19, whose
result of the model for one hidden layer of 10 neurons through the ELU activation function
gives a mean square error of 0.114271; the structure of the model can be seen in Figure 20.
For the second hidden layer, the optimal number of neurons is defined by iterating the
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results of the mean square error with the activation function ELU; the optimal number
of neurons is ten, and the training process is visualized in Figure 21, where the error for
the training dataset is in red and blue for the test dataset, the mean square error of the
model is 0.156214, and the architecture is visualized in Figure 22. The variables enter the
model, creating paths through interconnected networks of nodes that represent neurons,
each node processes the input, generating an output through the activation function, and
during training, the weights are adjusted to minimize the prediction error.
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the first group of predictors. The circles represent neurons, and the lines are the connections in the
neural network.

3.4.2. Regression Using Neural Networks for the Second Group of Predictors (Density of
the Fresh Paving Blocks and Percentage of Water Absorption)

The neural network model without hidden layers, only with the normalization layer
and one output neuron, using an ELU activation function, is trained with 100 epochs,
giving a mean square error performance of 0.112402. Figure 23 shows the training with
the errors of the training dataset and test dataset. Using principal component analysis, it
is determined that one hidden layer explains 99.9% of the variability; this can be seen in
Figure 24, and the number of neurons is determined by iteration from 2 to 10 using the ELU
activation function. The model’s performance results in a mean square error of 0.116783
with ten neurons for one hidden layer.
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predictors.

Figure 25 indicates the prediction plane of the tensile splitting strength and the pre-
dictor variables percentage of water absorption and density of fresh paving block for the
neural network model without hidden layers, showing a plane with a slight curvature. On
the contrary, the prediction plane shown in Figure 26 with 1 hidden layer of 10 neurons
presents more complexity, since the plane is more flexible, with more curvatures, and this
is caused by the fact that there are more neural connections, whose structure is shown in
Figure 27.
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Figure 27. The architecture of the artificial neural network for predicting the tensile splitting strength
for the second group of predictors (density of the fresh paving block and percentage of water
absorption). The circles represent neurons, and the lines are the connections in the neural network.

Table 2 shows each model performance using the mean square error for the two groups
of predictors.

Table 2. Performance of models for each group of predictors using the mean square error (MSE).

MODEL
MSE (Thickness, Length, Width,

Mass of the Fresh Paving Block, and
Percentage of Water Absorption)

MSE (Density of the Fresh Paving
Block and Percentage of Water

Absorption)

Multiple Linear Regression 0.110086 0.115044

Regression tree 0.165174 0.139050

Random forest 0.115392 0.125097

Neural network (without layers) 0.112198 0.112402

Neural network (1 layer) 0.114271 0.116783

Neural network (2 layers) 0.156214 NA

Values in bold indicate the lowest error of the methods for the two groups of predictors, and NA means not
applicable.
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4. Discussion

Based on the results and literature, it can be noted that regression trees are not a robust
technique from the data for the prediction of tensile splitting strength. However, the neural
network allows nonlinear behaviors to be learned, and based on the study carried out,
quality can be guaranteed in terms of tensile splitting strength, knowing the explanatory
variables in the production process, which is a contribution compared to related works,
such as those that relate the components of the mixture, or a predictor variable which
explains in a limited way the population behavior of the tensile splitting strength.

Tensile splitting strength prediction using neural networks was studied by [22], re-
sulting in a mean square error of 0.141; neural network models should be compared with
different layers and numbers of neurons for better modelling, explaining the activation
function used. Table 2 indicates a mean square error of 0.112198 for the neural network
model without layers analyzed in the first group of predictors.

The graphs presented in this research are a contribution to the understanding of the
prediction method used and the behavior of the data, as in Figure 5, where the prediction of
the response variable tensile splitting strength forms a plane whose value point moves three-
dimensionally according to Equation (33), where the predictor variables create the projected
dimension through linear behavior, which is very characteristic of multiple linear regression.
Figure 10 allows us to graphically understand in three dimensions the conditions of the
second group of predictor variables in the regression tree, where each rung predicts the
tensile splitting strength. The prediction using random forest is represented in Figure 15
with an optimal number of 144 trees. Figures 25 and 26 show the nonlinear behavior for
the prediction using artificial neural networks for the second group of predictor variables.

It is observed in Equation (32) for the first group of predictors that the variable with
the most significant influence for the prediction in MLR is the thickness followed by the
percentage of water absorption; for random forests, the importance is shown in Figure 12,
with the percentage of water absorption coming in first place, followed by the mass of the
fresh paving block, the thickness, width, and length. For the second group of predictors,
Equation (33) indicates a more significant influence on the percentage of water absorption,
showing this importance in Figure 14, followed by the density of the fresh paving block.

It is evident in Figure 1 that the density of the fresh paving block and the percentage
of water absorption has a high correlation with the tensile splitting strength and indicates
that the behavior of the data is linear for the prediction, which can be distinguished in
Figures 3 and 5, which show the three-dimensional representation with its projection plane
using multiple linear regression, and can be confirmed in Figures 18 and 24, where it can
be seen that one principal component explains more than 90% of the accumulated variance
in the dataset for the two groups of predictors.

The overfitting was controlled by simplifying the model, regularizing and stopping
the training just in time, taking into account the principle of parsimony; a low test error is
achieved, generalizing the predictions well. Figures 1–3 indicate the behavior of the data.
For the regression trees of the first group of predictors, Figure 8 shows a low test error, with
eight nodes, and is the optimal training stopping point to avoid overfitting, since with more
nodes and higher model complexity, the errors of training decrease, but validation errors
increase, which makes new data poorly predicted. For the second group of predictors, a
similar analysis with nine nodes can be seen in Figure 11. For the random forest model,
the number of optimal trees can be seen in Figure 13, where it stabilizes as the number of
trees increases, remaining at similar values along the horizontal axis; this event occurs for
the training and validation data. Similarly, for neural networks, Figures 17, 19, 21 and 23
show a point at which it stabilizes for a number of optimal epochs, indicating no overfitting
problem.

Multiple linear regression is a classic method that must comply with the structural
assumptions. The regression trees have low predictive power with limited prediction
values. The set of trees generates a random forest, which significantly improves this charac-
teristic but with little interpretability, since it is considered a black box where information
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enters and a result comes out. Neural networks are also considered black boxes, but their
prediction capacity can be applied to non-linear behaviors.

The scope of the study focused on concrete pavers with dimensions of 20 cm × 10 cm
× 6 cm from a specific manufacturing process in a company in Quito-Ecuador. Based
on the research, future studies may expand the sample to different factories, including
specific variables in the statistical control of processes and quality in different production
conditions. This study lays a solid foundation for developing multivariate predictions in
concrete pavers, broadening the perspective on quality control and optimization in the
industrial production of precast vibro-compacted concrete.

5. Conclusions

The study proposes different models to predict the tensile splitting strength through
the explanatory variables in the concrete paving block production process and the per-
centage of water absorption in a company in Quito-Ecuador. The first group of predictor
variables includes thickness, width, length, mass of the fresh paving block, and percentage
of water absorption. The second group of predictor variables includes the density of the
fresh paving block and the percentage of water absorption. The R programming language
is used to carry out descriptive and inferential statistical analysis, multivariate models, and
three-dimensional graphs, with the advantage and freedom that programming generates to
deepen the investigation, allowing one to understand the behavior of the data and models.
Additionally, Python is used with the Anaconda distribution to use the Keras and TensorFlow
packages with the articulate library.

The variable with the greatest influence on the prediction of indirect tensile strength
is the percentage of water absorption, which significantly influenced the random forest
study shown in Figures 12 and 14, which is corroborated by Equation (33) of multiple linear
regression, where the coefficient is greater. The study allowed us to determine the capacity
of the developed models, errors, and their practical advantages, with the conclusion that
the multiple linear regression makes it easier to apply the values in the equation to obtain
the punctual prediction with simple calculations; the regression tree allowed us to follow a
path-specific conditional according to the values of predictors, while random forests require
the use of software for their application, and neural networks, having greater flexibility
to learn behaviors, such as nonlinear ones, require software, due to its high predictive
capacity.

Table 2 shows that the best model to predict the tensile splitting strength in the
first group of predictors is multiple linear regression, with a mean square error (MSE) of
0.110086 and an adjusted coefficient of determination of 0.7974, followed by the neural
network without hidden layers, with an MSE of 0.112198. The best model for the second
group of predictors is the neural network without hidden layers, with a mean square error
(MSE) of 0.112402, followed by multiple linear regression, with an MSE of 0.115044 and an
adjusted coefficient of determination of 0.7897. The worst method used for prediction is
the regression tree, with a mean square error of 0.165174 for the first group of predictors
and 0.139050 for the second. Also, the regression tree method has the worst ability to avoid
overfitting and greater risk of suffering from it, which can be seen in Figures 8 and 11.
Therefore, it is concluded that it is possible to predict the tensile splitting strength through
the predictor variables of the first and second groups, allowing us to determine in advance
the results inferred to the population from the production process and, with the water
absorption test, to guarantee the quality of tensile splitting strength of the paving block.
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11. Skripkiunas, G.; Girskas, G.; Malaiškienė, J.; Šemelis, E. Variation of Characteristics of Vibropressed Concrete Pavement Blocks.

Constr. Sci. 2014, 15. [CrossRef]
12. Wong, S.H.; Shek, P.N.; Saggaff, A.; Tahir, M.M.; Lee, Y.H. Compressive strength prediction of lightweight foamed concrete with

various densities. IOP Conf. Ser. Mater. Sci. Eng. 2019, 620, 012043. [CrossRef]
13. Caronge, M.A.; Lando, A.T.; Djamaluddin, I.; Tjaronge, M.W.; Runtulalo, D. Development of eco-friendly paving block incorpo-

rating co-burning palm oil-processed tea waste ash. IOP Conf. Ser. Earth Environ. Sci. 2020, 419, 012158. [CrossRef]
14. Jonbi, J.; Fulazzaky, M.A. Modeling the water absorption and compressive strength of geopolymer paving block: An empirical

approach. Measurement 2020, 158, 107695. [CrossRef]
15. Mudjanarko, S.W.; Julianto, E.; Harmanto, D.; Wiwoho, F.P. Addition of Gravel in the Manufacture of Paving Block with Water

Absorption Capability. IOP Conf. Ser. Earth Environ. Sci. 2020, 498, 012031. [CrossRef]
16. Al-Kheetan, M.J. Properties of lightweight pedestrian paving blocks incorporating wheat straw: Micro-to macro-scale investiga-

tion. Results Eng. 2022, 16, 100758. [CrossRef]
17. Zhang, S.P.; Zong, L. Evaluation of relationship between water absorption and durability of concrete materials. Adv. Mater. Sci.

Eng. 2014, 2014, 650373. [CrossRef]
18. Dong, Q.; Chen, X.; Dong, S.; Ni, F. Data Analysis in Pavement Engineering: An Overview. IEEE Trans. Intell. Transp. Syst. 2022,

23, 22020–22039. [CrossRef]
19. Saridemir, M. Empirical modeling of splitting tensile strength from cylinder compressive strength of concrete by genetic

programming. Expert Syst. Appl 2011, 38, 14257–14268. [CrossRef]
20. Nazari, A.; Azimzadegan, T. Prediction the effects of ZnO2 nanoparticles on splitting tensile strength and water absorption of

high strength concrete. Mater. Res. 2012, 15, 440–454. [CrossRef]
21. Liu, Y. High-Performance Concrete Strength Prediction Based on Machine Learning. Comput. Intell. Neurosci. 2022, 2022, 5802217.

[CrossRef]
22. Amin, M.N.; Ahmad, A.; Khan, K.; Ahmad, W.; Nazar, S.; Faraz, M.I.; Alabdullah, A.A. Split Tensile Strength Prediction of

Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods. Materials 2022, 15, 4296. [CrossRef]
23. Cabana, E.; Lillo, R.E.; Laniado, H. Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage

estimators. Stat. Pap. 2021, 62, 1583–1609. [CrossRef]
24. Gnanadesikan, R.; Kettenring, J.R. Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics 1972,

28, 81–124. [CrossRef]
25. Ghorbani, H. Mahalanobis distance and its application for detecting multivariate outliers. Facta Univ. Ser. Math. Inform. 2019, 34,

583. [CrossRef]
26. Sheather, S. A Modern Approach to Regression with R; Springer: New York, NY, USA, 2009. [CrossRef]

https://doi.org/10.1016/S0008-8846(02)00768-8
https://doi.org/10.3989/mc.2005.v55.i278.185
https://doi.org/10.1016/j.conbuildmat.2005.06.031
https://doi.org/10.1016/j.conbuildmat.2011.04.074
https://doi.org/10.1016/j.conbuildmat.2013.05.080
https://doi.org/10.2478/cons-2014-0004
https://doi.org/10.1088/1757-899X/620/1/012043
https://doi.org/10.1088/1755-1315/419/1/012158
https://doi.org/10.1016/j.measurement.2020.107695
https://doi.org/10.1088/1755-1315/498/1/012031
https://doi.org/10.1016/j.rineng.2022.100758
https://doi.org/10.1155/2014/650373
https://doi.org/10.1109/TITS.2021.3115792
https://doi.org/10.1016/j.eswa.2011.04.239
https://doi.org/10.1590/S1516-14392012005000038
https://doi.org/10.1155/2022/5802217
https://doi.org/10.3390/ma15124296
https://doi.org/10.1007/s00362-019-01148-1
https://doi.org/10.2307/2528963
https://doi.org/10.22190/FUMI1903583G
https://doi.org/10.1007/978-0-387-09608-7


Appl. Sci. 2023, 13, 10956 28 of 28

27. Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.

28. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [CrossRef]
29. Breiman, L.; Friefman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 1984.
30. Breiman, L. Random Forests. In Machine Learning; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.
31. Reddy, G.T.; Reddy, M.; Lakshmanna, K.; Kaluri, R.; Rajput, D.; Srivastava, G.; Baker, T. Analysis of Dimensionality Reduction

Techniques on Big Data. IEEE Access 2020, 8, 54776–54788. [CrossRef]
32. Frost, H.R. Eigenvectors from Eigenvalues Sparse Principal Component Analysis. J. Comput. Graph. Stat. 2022, 31, 486–501.

[CrossRef]
33. Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002.
34. Ibnu Choldun R, M.; Santoso, J.; Surendro, K. Determining the number of hidden layers in neural network by using principal

component analysis. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; pp. 490–500. [CrossRef]
35. Rachmatullah, M.I.C.; Santoso, J.; Surendro, K. Determining the number of hidden layer and hidden neuron of neural network

for wind speed prediction. PeerJ Comput. Sci. 2021, 7, e724. [CrossRef] [PubMed]
36. Mielsen, M. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1080/10618600.2021.1987254
https://doi.org/10.1007/978-3-030-29513-4_36
https://doi.org/10.7717/peerj-cs.724
https://www.ncbi.nlm.nih.gov/pubmed/34616896

	Introduction 
	Materials and Methods 
	Results 
	Multiple Linear Regression (MLR) 
	Multiple Linear Regression Model for the First Group of Predictors (Thickness, Width, Length, Mass of Fresh Paving Block, and Percentage of Water Absorption) 
	Multiple Linear Regression Model for the Second Group of Predictors (Density of Fresh Paving Block and Percentage of Water Absorption) 

	Regression Trees 
	Regression Tree Model for the First Group of Predictors (Thickness, Width, Length, Mass of the Fresh Paving Block, and Percentage of Water Absorption) 
	Regression Tree Model for the Second Group of Predictors (Density of Fresh Paving Block and Absorption Percentage) 

	Random Forest 
	Random Forest Model for the First Group of Predictors (Thickness, Width, Length, Mass of the Fresh Paving Block, and Percentage of Water Absorption) 
	Random Forest Model for the Second Group of Predictors (Density of the Fresh Paving Block and Percentage of Water Absorption) 

	Neural Networks 
	Regression Using Neural Networks for the First Group of Predictors (Thickness, Width, Length, Mass of the Fresh Paving Block, and Percentage of Water Absorption) 
	Regression Using Neural Networks for the Second Group of Predictors (Density of the Fresh Paving Blocks and Percentage of Water Absorption) 


	Discussion 
	Conclusions 
	References

