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Abstract: Airborne bathymetric LiDAR (ABL) acquires waveform data with better accuracy and
resolution and greater user control over data processing than discrete returns. The ABL waveform is
a mixture of reflections from the water surface and bottom, water column backscattering, and noise,
and it can be separated into individual components through waveform decomposition. Because the
point density and positional accuracy of the point cloud are dependent on waveform decomposition,
an effective decomposition technique is required to improve ABL measurement. In this study, a new
progressive waveform decomposition technique based on Gaussian mixture models was proposed
for universal applicability to various types of ABL waveforms and to maximize the observation
of seafloor points. The proposed progressive Gaussian decomposition (PGD) estimates potential
peaks that are not detected during the initial peak detection and progressively decomposes the
waveform until the Gaussian mixture model sufficiently represents the individual waveforms. Its
performance is improved by utilizing a termination criterion based on the time difference between
the originally detected and estimated peaks of the approximated model. The PGD can be universally
applied to various waveforms regardless of water depth or underwater environment. To evaluate
the proposed approach, it was applied to the waveform data acquired from the Seahawk sensor
developed in Korea. In validating the PGD through comparative evaluation with the conventional
Gaussian decomposition method, the root mean square error was found to decrease by approximately
70%. In terms of point cloud extractability, the PGD extracted 14–18% more seafloor points than the
Seahawk’s data processing software.

Keywords: airborne bathymetric LiDAR; progressive waveform decomposition; Gaussian model;
Seahawk sensor

1. Introduction

Bathymetry, the measurement of underwater topography, is a prerequisite for many
hydrological applications, such as flood forecast and prevention, maritime ecosystem mon-
itoring, and sustainable development of wetlands [1,2]. Traditional bathymetry approaches
based on field measurements have achieved precise results, but they are laborious, time-
consuming, and infeasible in unnavigable areas [3]. Accordingly, airborne bathymetric
LiDAR (ABL) has been introduced as a promising alternative tool because of its fast and
efficient data acquisition capability, acceptable accuracy, and high spatial density [4,5].

With the rapid advance in LiDAR hardware, most current ABL systems adopt full-
waveform systems, which acquire the returned signals with a very short sample interval of
less than 1 ns. The entire time history of the reflected signal can be restored, and valuable
information regarding not only the target position but also its properties can be extracted
from the waveform data. The full-waveform LiDAR system yields more detailed and
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accurate three-dimensional (3D) maps [6–8] and value-added information, such as seafloor
roughness [9], suspended sediment concentrations [10], or water turbidity [11]. However,
the use of ABL waveform data is limited in practice due to difficulties associated with their
analysis. Consequently, the potential of ABL waveform data has not been fully exploited.

The LiDAR waveform comprises multiple returns from various targets and non-
negligible noise. The simple and traditional method for measuring the target position
involves using the waveform to detect peak positions induced by returns from targets.
Several methods have been applied, including the center of gravity, local maximum, zero-
crossing of the second derivative, and averaged square difference function [12,13]. However,
peak detection methods cannot be utilized to derive valuable properties, such as the ampli-
tude and width of the return pulses, by focusing on the positions of the peaks. Measuring
the position and radiation characteristics of each target requires a waveform decomposition
process that can separate a continuous signal into individual return signals [14,15].

Waveform decomposition divides the returned waveform signals from different targets
into multiple individual parameterized components. Accordingly, suitable parameterized
functions for each returned waveform should be assumed to distinguish the meaningful
components accurately. A Gaussian model is generally utilized for waveform decompo-
sition [9,16]. The approximated parameters (e.g., amplitude, center, and width) of each
decomposed Gaussian component are related to the target’s physical properties and can be
used as waveform features for further applications such as point classification [17–19] and
land–water discrimination [20,21]. Conventional Gaussian decomposition (CGD) approxi-
mates individual waveforms with Gaussian models of the number of previously detected
peaks [22]. The CGD technique exhibits stable decomposition performance when applied to
topographic LiDAR data in urban or forest areas where multiple return pulses are separate
and have prominent peaks [23,24]. However, it may not be suitable for asymmetric ABL
waveforms with a peak left shift due to attenuation of the return pulse energy [25,26],
which can lead to point omissions for seafloor objects [18].

Different mathematical models for ABL waveform decomposition have been designed
for different sensor and surveying environments. In most models, the ABL waveform is
assumed to be decomposed into three distinguishable contributions: returns from the water
surface, water column, and bottom (or seafloor). Returns from the water surface or bottom
are generally approximated based on the Gaussian or Weibull model [14,15,26]. On the
contrary, triangular [14], quadrilateral [15], and improved quadrilateral models [26], among
others, have been used for modeling the returns from the water column considering the
asymmetry due to the exponentially attenuated amplitude. Other studies have proposed
mathematical models considering the water depth because it affects the shape of the
returned signals. A depth-adaptive decomposition method was proposed by adopting
two individual mathematical models according to the water depth [27]. One was an
empirical function based on the calibration waveform for shallow water, and the other
was an improved quadrilateral function with a second polynomial for deep water. A
decomposition method for very shallow water (< 2 m) was also developed based on boxcar
and exponential functions [28]. Waveform decomposition based on the separated functions
for the three contributions can be efficient because the meaningful signals (i.e., the returns
of the water surface and bottom for bathymetry) are simultaneously defined; therefore,
bathymetric maps can be immediately generated. However, they are only applicable to
typical waveforms in the ideal case (e.g., low-turbidity water without unexpected obstacles
such as marine organisms or foam). In practice, the ABL waveform may not include
returns from the bottom due to significant attenuation by the water column or include
prominent returns from unexpected objects in the water, such as fish or seaweed. Multiple
returns from the bottom due to seafloor unevenness may also be included. Furthermore,
waveform decomposition techniques that rely on these fixed models encounter challenges
when applied to further applications because of their limited ability to extract waveform
features from each individual decomposed component. Hence, considering the varying
characteristics of coastal and inland water, a flexible Gaussian decomposition method that
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does not fix the specified model for each contribution or limit the number of mathematical
models may be desirable.

A few methods employing a flexible number of Gaussian models for approximating
returned ABL waveforms have been developed. One of the early studies on waveform data
processing involved decomposing the ABL waveform into multiple Gaussian models and
using the parameters of one of the extracted Gaussian distributions to estimate the seafloor
roughness [9]. Another noteworthy study [25] proposed the Gaussian half-wavelength
progressive decomposition (GHPD) method. The GHPD progressively decomposes a wave-
form using half-wavelength Gaussian functions based on the time sequence of received
echo signals, aiming to reduce the problems of unreasonable decomposition and position
shift of reflected pulse peaks caused by echo superposition. This approach is effective in
decomposing ABL waveforms of various shapes and improves bathymetry performance,
especially in shallow water. Other flexible Gaussian decomposition approaches were
mainly investigated for application to topographic LiDAR data. Progressive waveform
decomposition (PWD) was proposed to detect and fit distinct return components succes-
sively via peak detection [29]. PWD shares similarities with GHPD in that it utilizes a
sequential subtraction strategy but progressively decomposes a waveform, starting with the
maximum peak, in the order of signal intensity rather than time. Although the sequential
subtracting decomposition techniques are fast and flexible, they may inherently involve the
risk of overestimating components decomposed earlier and overlooking ambiguous peaks.
Linearly approximated iterative Gaussian decomposition (LAIGD) linearly estimates the
degree of overlap between adjacent Gaussian components and performs Gaussian model-
ing according to the deformation impact rank by overlap [30]. Another flexible Gaussian
decomposition method utilizes a genetic algorithm to estimate overlapping peaks that
are not detected in the initial peak detection [31]. These flexible Gaussian decomposition
approaches offer a general applicability regardless of waveform types or characteristics,
facilitating the extraction of physical properties (waveform features) from each decomposed
component. However, the techniques generally rely on the residual between the waveform
and approximate model as a termination criterion for progressive processes. This can
potentially lead to the omission of weak reflections (such as those of deep seafloors) in
ABL waveforms.

In this study, we aimed to propose a novel flexible Gaussian decomposition approach
that can be generally applied to practical ABL waveform data. The primary objectives of
the method are as follows:

• Decompose ABL waveforms of various types and shapes;
• Improve the extractability of seafloor points by detecting elusive seafloor signals.

The proposed approach decomposes an ABL waveform to multiple Gaussian models
by progressively estimating the potential components that are not sensed during peak
detection. The decomposition performance is improved by utilizing a termination criterion
based on the time difference between the originally detected and estimated peaks as well as
the residuals between the original waveform and the approximated model. The approach
was demonstrated through experiments with the waveform data acquired by Seahawk, an
ABL system [32].

The remainder of this paper is organized as follows. In Section 2, the test site and data
employed in the experiments are described. Section 3 provides the theoretical foundation
and details of the proposed approach. Experimental results and evaluations are presented
in Section 4. Section 5 presents the discussion, and Section 6 concludes with the summary
and final remarks.

2. Materials

The proposed approach was tested on two Seahawk waveform datasets acquired
at different water depths and seafloor terrains on the eastern and southern coasts of
South Korea.
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2.1. Seahawk System

Seahawk was developed by Geostory Inc. since 2014 to monitor wetlands and coasts
in Korea. The system can measure co-registered green and NIR laser beams using a
holographic optical element [32]. It was designed to measure more than one point on a
2× 2 m2 area at up to 35 m depth in clear water at a flight altitude of 400 m. The ABL
point cloud is generated from raw observation data using its own software, namely the
Lidar BAthymetry SyStem—Data processing (LBASSD); the data processing algorithms
are not disclosed. Since its first successful flight on July 1, 2018, Seahawk has been used
for bathymetric measurements of coastal zones, focusing on coastal erosion monitoring in
South Korea. Details of the Seahawk system are listed in Table 1.

Table 1. Specifications of Seahawk system.

Parameter Specifications

Sensor

Laser wavelength 532 nm (green)
1064 nm (NIR)

Laser beam divergence 7 mrad (green)
10.5 mrad (NIR)

Laser pulse width 1.7 ns
Scan method Rotating prisms
Field of view 20◦

Pulse repetition rate 10 kHz

Operation

Operating flight altitude 400 m
Swath width Flying altitude at 70%
Aircraft speed 140 kts
Minimum range (1.5 Secchi depth) 10 m

The Seahawk system digitizes the received analog signal at 1.6 Giga samples per
second; thus, the time bin resolution of the waveform is 0.625 ns. The Seahawk individual
waveform is recorded in 2400 bins at 16 bits (0–65,536 digital number (DN)) per sample.
The system assumes a 35 m underwater arrival time of 160 ns when the laser transmission
angle is 20◦. Therefore, considering the round-trip propagation time, 1 bin (0.625 ns) of the
waveform corresponds to a depth difference of approximately 0.068 m.

2.2. Test Data

To verify the validity of the proposed approach and its bathymetric performance, we
selected two waveform datasets where the water depth at the site is within the observation
range of the Seahawk system (maximum depth < 35 m), and seafloor observations for some
local areas are missing. Figure 1 shows the locations and seafloor height (WGS84 Ellipsoid)
ranges of the two test sites. The first test data were acquired from the eastern coast of
Donghae-Si, Gangwon-Do, South Korea. The eastern coast of the Korean Peninsula is ridge-
shaped with a monotonous coastline and steep slope where the seafloor rises to land, and
the tidal difference is small. The coast has a predominantly sandy substrate and is subject
to coastal erosion influenced by waves [33]. The dataset consists of 286,720 waveforms
for a 381,392 m2 area with water depth ranging from 5 to 16 m in water depth (Table 2).
The second test site is located offshore of the southeastern coast of Jeju Island, which is an
uplifted terrain created by volcanic activity. It includes various volcanic coastal terrains,
such as coastal cliffs and rock formations, on the southern coast [34]. The dataset was
acquired from a rocky shore mainly comprising basalt with an uneven seafloor topography.
It includes 143,360 waveforms for a 215,152 m2 area ranging from 0 to 9.5 m in water
depth (Table 2).
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Figure 1. Test sites of Seahawk: (a) locations of the test sites; (b) test site 1 on eastern coast of Donghae,
Korea; (c) test site 2 on southeastern coast of Jeju Island, Korea.

Table 2. Summary of the test datasets.

Location Acquisition
Date

Area
(m2)

Depth
Range (m)

Number of
Waveforms

Site 1 Donghae, Republic of Korea 22 March 2022 381,392 5–16 286,720
Site 2 Jeju Island, Republic of Korea 28 March 2022 215,152 0–9.5 143,360

To objectively evaluate the experimental results, the echo-sounding data acquired at a
similar time with the test data were utilized as the ground truth. Multibeam echo-sounder
(MBES) data are generally used as ground truth for bathymetry; however, a ship-mounted
MBES system usually measures water depths greater than 4 m. Accordingly, single-beam
echo-sounder (SBES) data were used in test site 2, which has shallow water. The MBES
data for test site 1, acquired in November 2021, were surveyed approximately four months
before the Seahawk data were obtained. The SBES data for test site 2 were measured in
June 2022, representing a three-month gap from the date the Seahawk data were acquired.

3. Methods

The green laser beam used for ABL traverses the water surface and propagates in the
water column until it reaches the bottom (Figure 2). The amplitude is rapidly attenuated
by absorption, scattering, and refraction. If the beam is not entirely attenuated while
traveling through the air–water interface, the backscatter signal reaches back to the receiver,
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revealing the water surface and bottom positions through peaks in the waveform [35]. A
typical ABL waveform is composed of the water surface return, water column backscatter
return, bottom return, and noise [10]. Each component is separated through waveform
decomposition, and points from the decomposed components are registered.
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Figure 2. Data generation in airborne bathymetric LiDAR system.

A LiDAR waveform is a convolution between a transmitted laser pulse and a surface
scattering function, both of which are generally considered to follow a Gaussian model.
Waveforms received through multipaths can be represented as Gaussian mixture mod-
els [24], as in Equation (1), where n, Ai, µi, and σi denote the number of Gaussian models,
amplitude, center position, and standard deviation of the ith Gaussian model, respectively.
Because the parameters of Gaussian mixture models have physical meanings related to the
position, intensity, and properties of the signal, the characteristics of individual signals can
be analyzed through the parameters. To approximate the waveform to the nonlinear model,
iteration optimization, such as the Levenberg–Marquardt technique, is performed. In this
process, initial values for each parameter (n, Ai, µi, and σi) are required. In particular, it is
important to select initial values for the iterative operation to finally converge to a global
rather than a local solution.

ŷ =
n

∑
i=1

Aiexp

−
(

t− µi)
2

2σ2
i

 (1)

Generally, the Gaussian decomposition technique approximates a waveform to the
Gaussian mixture models using peak parameters (amplitude, center, and width) extracted
via peak detection as initial values. This CGD relies on peak detection results and is suitable
for waveforms in which individual return pulses are detected as separate peaks. However,
the ABL waveform is continuously scattered during underwater signal propagation, and
multiple Gaussian return signals are densely overlapped, resulting in a signal tilted to the
left. It is challenging to separate the overlapped underwater backscattering components by
CGD, which consequently imposes limitations on precisely decomposing the water surface
and bottom returns.

In this study, a progressive Gaussian decomposition (PGD) method is proposed to
effectively decompose the ABL waveform data. The proposed approach gradually decom-
poses a waveform by estimating the overlapping peaks that are undetected during the
initial peak detection (Figure 3). The PGD method uses the detected peaks as the first initial
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value but is not bound by them. It repeats multiple Gaussian curve fitting, progressively
estimating potential peaks (PPs) until the desired criteria are achieved. Denoising and
signal range selection are performed as preprocessing in the proposed approach. The
detailed process is as follows.
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3.1. Noise Removal and Signal Range Selection

The waveform includes background noise and random noise caused by environmental
and systematic factors. Background noise is long-term, low-frequency noise that is mainly
related to solar radiation and detector dark current. In contrast, random noise is short-
term, high-frequency noise that is mainly caused by random fluctuations inherent in the
acquisition [36]. Systematic background noise tends to be uniformly distributed throughout
the duration of the signal and is traditionally removed by applying a threshold [23,36].
However, because the amount of background noise can slightly vary for each waveform,
applying a constant threshold to all waveforms acquired in a single flight may not be
appropriate. Accordingly, a threshold value for each waveform, such as the mean value at
the non-signal range [29] or a wavelet adaptive threshold [37], is commonly used. Because
the main contribution to DN in the non-signal range occupying most of the waveform
is background noise, we assumed that the most frequently recorded DN value in each
waveform would be reflecting the background noise. The background noise is removed by
subtracting the mode of an individual waveform, as follows:

y∗ = y−mode (y), (2)
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where y and y∗ are the original waveform and the waveform with background noise
removed, respectively. Low-pass filtering techniques are mainly used to remove random
noise [38,39]. In this study, the waveform is smoothed through Gaussian filtering to remove
random noise:

y′t =
1√

2πσ2
G

∑w
k=1 y∗k exp

−
(

t− k)2

2σ2
G

, (3)

where y′t is the Gaussian filtered value at time t, w indicates the number of waveform
samples, and σG is the standard deviation of the Gaussian distribution. The larger σG is,
the more smoothing is performed, which may be effective in removing noise, but a return
signal with low intensity may be ignored. In this study, σG was 1. Figure 4 presents an
example of a waveform signal before and after noise removal.
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In a waveform with thousands of samples, the range over which the signal reflected
from the actual targets is recorded occupies a short part of all the recording samples [25,27].
The range depends on the flight altitude, transmission angle, topographic elevation, and
water depth. Therefore, if the actual signal range can be determined, the waveform
processing can be more efficient. Moreover, the generation of noise-induced outlier points
can be avoided. In the criterion suggested in [40], signal range was detected if the waveform
was at least triple the standard deviation of noise for a 5 ns duration. Another study [27]
assumed the last 10% of the waveform as the non-signal range and estimated the mean and
standard deviation of the amplitude of this interval as the noise level. The interval with an
amplitude greater than the mean plus three standard deviations was selected as the signal
range. The Seahawk system records 2400 waveform samples over a period of 1.5 µs, during
which no reflection signal is returned for the first 0.11 µs. In this study, the first 0.1 µs
(160 bins) of the Seahawk waveform was considered as the non-signal range, and the signal
range was selected based on the standard deviation σN in this period. The start and end
points of the signal range, tS and tE, respectively, are determined as follows (Figure 5).

tS = min
{

t
∣∣ y′t+1 − y′t > 3σN

}
, (4)

tE = max
{

t
∣∣ y′t+1 − y′t < −1.5σN

}
, (5)
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As given by Equation (4), tS, making the start of the water surface return with a distinct
intensity increase, is selected as the point where the amplitude increases by more than 3σN .
To avoid the failure of detecting the bottom peak, which may have a relatively low intensity,
tE was selected as the point where the amplitude decreased to 1.5σN or less, as shown in
Equation (5).

3.2. Progressive Gaussian Decomposition

The proposed PGD adopts an iterative approach to estimate the most appropriate
number of Gaussian models for decomposing the individual waveform. It initiates an
iteration according to the number of detectable peaks within the selected signal range, and
the number of Gaussian models is gradually increased. The original peaks (OPs) were
detected using findpeaks, a MATLAB peak detection function [41]. The amplitude, center,
and width (AOPi, µOPi and σOPi, respectively) of each peak are used as the initial values for
the first iteration. In this study, multiple Gaussian curve fitting was implemented using
fit, a MATLAB curve fitting toolbox function [42]. Consequently, the number of initially
approximated Gaussian components is equal to the number of OPs, and the estimated
peaks (EPs) of each component are derived. The fitness of an approximated Gaussian
mixture model is typically evaluated using residual-based measures, such as the error
ratio [31]. In this study, R2 is used to measure the residual between the original waveform
(y) and approximated Gaussian mixture model ( ŷ):

R2 = 1− ∑w
i=1(yi − ŷi)

2

∑w
i=1
(
yi − µy

)2 . (6)

However, the evaluation using residual measures may ignore and miss components
corresponding to relatively small amplitude peaks (e.g., deep bottom return). In view of
this, another criterion is suggested in addition to the residual measure. If the Gaussian
curve fitting is successfully performed, the OPs and their corresponding EPs should be
located in similar positions. Therefore, we devised a new criterion, i.e., the time difference
(∆tOP) between each OP and corresponding (closest) EP, as follows:

∆tOPj = min
1≤k≤n

∣∣∣tOPj − tEPk

∣∣∣, (7)

where n = m + r − 1 represents the number of estimated Gaussian components, m is
the number of OPs, and r represents the number of iterations. If all ∆tOP values are less
than the temporal threshold (τ) and R2 > 0.95, the decomposition is deemed successful,
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and the process is terminated. Otherwise, if any ∆tOP is greater than τ or R2
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0.95, the
decomposition is considered incomplete, and further iteration is performed. Because
Gaussian curve fitting is dependent on the initial value, deciding the initial value to apply
in the next iteration in addition to OPs is critical. If the EPs located far from the OPs are
estimated, it means that the more dominant Gaussian components than the components
corresponding to the OPs have not been undetected in the peak detection. To refer the
undetected component to the initial values, the most distant EP from the OPs, i.e., the
EP least related to the OPs, is selected as the PP and added as an initial value to the next
iteration. In the rth iteration, r EPs are selected as PPs according to the order of those
temporally farthest from the OPs. The time difference (∆tGP) between an EP and the closest
OP serves as the criterion for selecting the PP and is as follows:

∆tEPk = min
1≤j≤m

∣∣∣tEPk − tOPj

∣∣∣ (8)

The PGD process can be expressed as the following steps:
Step i. r = 1; Sinitial = SOP = {OP1, OP2, · · · , OPm}
Step ii. n = m+ r− 1; Gaussian curve fitting with Sinitial→ S EP = {EP1, EP2, · · · , EPn}

Step iii.



i f
∀ ∆tOP < τ

and
R2 > 0.95

 −→ stop,

otherwise −→


SPP =

{
PPi

∣∣∣∣∣ PPi = EPmi, EPmi ∈ SEP,
∆tEPmi = ith max

1≤k≤n

(
∆tEPk

)
, 1 ≤ i ≤ r

}
;

Sinitial = SOP ∪ SPP;
r = r + 1;

Back to step ii.
Figure 6 presents the steps involved in the iterative PGD process. Two OPs (OP1 and

OP2), which represent the water surface and bottom returns, respectively, are extracted
through peak detection. The first Gaussian curve fitting is performed using these two peaks
as initial values (Figure 6a). The peaks of the estimated two Gaussian components (EP1 and
EP2) are located on the water surface and water column backscatter returns, respectively.
Thus, the ∆tOP2 between OP2 and the nearest EP (EP2) is significantly large. Because the
termination criteria are not satisfied, EP2 with the largest ∆tEP is selected as the PP. Then,
EP2 is added as a new initial value along with OP1 and OP2 for the next iteration. Figure 6b
shows the second fitting result decomposed into three Gaussian components using three
initial values. Because ∆tOP2 is smaller than the previous fitting but still greater than τ,
further iteration is required. For the third fitting, two EPs (EP2 and EP3) are selected as PPs
in the order of increasing ∆tEP, and the next fitting is performed with four initial values
(OP1, OP2, EP2, and EP3). Accordingly, the number of PPs is gradually increased according
to the number of iterations. The PPs are not accumulated; instead, they are newly selected
among the recent EPs at each iteration. As shown in Figure 6c, Gaussian curve fitting was
iterated until all ∆tOP converged below τ. Eventually, the final Gaussian mixture models
were determined.

The threshold, τ, represents the allowable temporal error on the waveform time bins in
the Gaussian curve fitting, which is determined according to the required fitness or depth
precision and sensor systematic characteristics. Too small τ values can cause overfitting
and increase computational time, whereas too large values can reduce depth precision. In
this study, the value of τ was set to 5 bins through a preliminary experiment. In a Seahawk
system with a waveform sampling interval (1 bin) of 0.625 ns, assuming a transmission
angle of 20◦ and a flight altitude of 400 m and considering a water surface refraction angle
of 14.9◦, 5 bins can be regarded as a depth difference of approximately 0.34 m.
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4. Results

To validate the effectiveness of the proposed PGD approach, its performance is quanti-
tatively and qualitatively evaluated using the Seahawk waveform dataset, as illustrated in
Figure 7. To evaluate its applicability to diverse and complex waveforms, the fitness of PGD
is compared with that of CGD, which simply approximates the Gaussian mixture model
based on peak detection. In addition, to evaluate the improvement in the seafloor measure-
ment performance of the proposed approach, the extractability and geolocation accuracy of
bottom points are assessed after point registration. The bottom point extractability (number
of points) of the point cloud generated by PGD is compared with that of the point cloud
generated by the LBASSD (Seahawk’s processing software). Lastly, the geolocation accura-
cies of the bottom points extracted using PGD and LBASSD are compared by referring to
echo-sounding data.
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4.1. Fitness Evaluation

To assess the decomposition performance of the proposed PGD on diverse waveform
types, quantitative evaluation and qualitative analysis are implemented, the results are
compared with those of CGD. Several indicators that measure fitness were calculated
for quantitative assessment. The root mean squared error (RMSE) and R2 are used to
measure the error between the original waveform (y) and Gaussian mixture model ( ŷ)
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approximated through waveform decomposition. In addition, the structural similarity
index map (SSIM) [43] is referenced to evaluate the structural fitness:

RMSE =

√
1
w∑w

i=1(yi − ŷi)
2, (9)

SSIM =

(
2µyµŷ + C1

)(
2σyŷ + C2

)(
µ2

y + µ2
ŷ + C1

)(
σ2

y + σ2
ŷ + C2

) , (10)

where w indicates the number of waveform samples, σyŷ is the covariance, and C1 = (k1L)2

and C2 = (k2L)2 are the variables for adjusting the weak denominator. The general
constant parameters are k1 = 0.01 and k2 = 0.03, and the dynamic range of the signal is
L = 2bits per signal − 1 [43].

The smaller the RMSE value and the closer R2 and SSIM are to 1, the higher the fitness.
The mean and standard deviation of the fitness indicators are listed in Table 3. For a more
intuitive evaluation of the RMSE magnitude, it has been expressed as normalized RMSE
(nRMSE) scaled to a waveform amplitude range (65,536 DN). In both test datasets, the
PGD was found to approximate the ABL waveforms better than the CGD. In test site 1,
PGD exhibited better fitness than CGD in terms of error (nRMSE = 0.179), approximation
(R2 = 0.978), and structural similarity (SSIM = 0.907). The approximation error decreased by
approximately 72% in nRMSE, and R2 and SSIM improved by 0.269 and 0.372, respectively.
In test site 2, the fitness of PGD was indicated by nRMSE = 0.0260, R2 = 0.980, and SSIM
= 0.901. In the foregoing, nRMSE decreased by approximately 66%, and R2 and SSIM
improved by 0.172 and 0.206, respectively, compared with those of the CGD results.

Table 3. Fitness evaluation results of conventional Gaussian decomposition (CGD) and progressive
Gaussian decomposition (PGD).

Method Normalized RMSE R2 SSIM

Site 1
CGD 0.0635 ± 0.0302 0.709 ± 0.140 0.535 ± 0.184
PGD 0.0179 ± 0.0114 0.978 ± 0.019 0.907 ± 0.055

Site 2
CGD 0.0759 ± 0.0363 0.808 ± 0.142 0.695 ± 0.183
PGD 0.0260 ± 0.0183 0.980 ± 0.023 0.901 ± 0.072

To analyze how the proposed approach is applied to various ABL waveforms, experi-
ments were performed on waveform types with different peak numbers and shapes, and the
results were compared. The curves shown on the upper part of Figure 8 are the decomposi-
tion results obtained via CGD, and those on the lower part are the decomposition results
obtained via the proposed PGD. Figure 8a,e show the waveform with similar intensities of
water surface and bottom returns in shallow water, and each return component has its own
peak. When each return is detected, both CGD and PGD successfully decompose the wave-
form into the same components. However, as shown in Figure 8b,f, in shallower waters,
the water surface and bottom components closely overlap; hence, the bottom return peak
may not be detected. Consequently, the bottom point could not be extracted by CGD, but
PGD can measure even a very shallow bottom by decomposing the potential components.
The bottom return signal shown in Figure 8c,g is very weakly detected compared with the
water surface return, and two OPs are present. Although the bottom return was detected
during the initial peak detection, the bottom component was not decomposed by CGD
due to its weak intensity (Figure 8c). However, because PGD gradually estimates potential
components until the initially detected peak is decomposed into separate components, the
bottom return is successfully measured (Figure 8g). Figure 8d,h show a complex waveform
type with multiple peaks resulting from underwater objects such as fish and corals or
rugged seafloor topography. The underwater peaks and bottom returns were not properly
decomposed in the CGD results (Figure 8d), but PGD effectively decomposed multiple
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peaks by estimating three additional Gaussian components (Figure 8h). These examples
confirm that the proposed PGD successfully decomposes different types of waveforms.
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4.2. Point Extractability Evaluation

To identify the quantitative improvement in bathymetry performance achieved using
the PGD method, decomposed components were registered to coordinated points and sub-
sequently compared with a point cloud generated utilizing LBASSD software. Because the
bathymetry performance depends on seafloor observation, bottom points were extracted by
manually classifying each point cloud generated by PGD and LBASSD. Figure 9 depicts the
process of generating and classifying points from different types of waveforms decomposed
by PGD.

The number of points and point densities were compared for the entire point cloud
and point clouds classified as bottom (Table 4). In both test sites, the point cloud extracted
through PGD exhibited significantly improved performance compared to the point cloud
generated by the LBASSD software. In test site 1, the total number of points (979,283) and
point density (2568 pts/m2) generated through PGD were 127% higher than those from the
LBASSD results (number of points: 430,376; point density: 1.128 pts/m2). Because the PGD
decomposed the water column part into separate components, the total number of points
considerably increased. Regarding the bottom points, which are more significant than the
total number of points, the number of points (76,336) and point density (0.200 pts/m2)
increased by 18%. In test site 2, the total number of points (545,020) and point density
(2.533 pts/m2) of the PGD results increased by 32% compared to those from the LBASSD
results (number of points: 412,760, point density: 1.918 pts/m2). For the bottom point cloud,
the number of points (71,945) and point density (0.334 pts/m2) increased by 14%. The
visual comparison shown in Figures 10 and 11 confirms that the PGD significantly extracted
the bottom points not captured by LBASSD. At test site 1, the bottom points missed by
LBASSD in relatively deep areas could be extracted by PGD. This may be because the PGD
effectively decomposed weak return components. On the other hand, the extractability of
the bottom points in the shallow area (depth < 2 m) at test site 2 was improved by PGD.
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This demonstrates that the PGD effectively decomposed the shallow bottom component
that overlapped closely with the water surface component, as shown in Figure 8f.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 9. Point cloud of test site 1 generated by PGD: (a) examples of decomposed waveforms; (b) 
cross-section of point cloud; (c) regional 3D point cloud; (d) bottom point cloud. 

The number of points and point densities were compared for the entire point cloud 
and point clouds classified as bottom (Table 4). In both test sites, the point cloud extracted 
through PGD exhibited significantly improved performance compared to the point cloud 
generated by the LBASSD software. In test site 1, the total number of points (979,283) and 
point density (2568 pts/m2) generated through PGD were 127% higher than those from the 
LBASSD results (number of points: 430,376; point density: 1.128 pts/m2). Because the PGD 
decomposed the water column part into separate components, the total number of points 
considerably increased. Regarding the bottom points, which are more significant than the 
total number of points, the number of points (76,336) and point density (0.200 pts/m2) in-
creased by 18%. In test site 2, the total number of points (545,020) and point density (2.533 
pts/m2) of the PGD results increased by 32% compared to those from the LBASSD results 
(number of points: 412,760, point density: 1.918 pts/m2). For the bottom point cloud, the 
number of points (71,945) and point density (0.334 pts/m2) increased by 14%. The visual 
comparison shown in Figures 10 and 11 confirms that the PGD significantly extracted the 
bottom points not captured by LBASSD. At test site 1, the bottom points missed by 
LBASSD in relatively deep areas could be extracted by PGD. This may be because the PGD 
effectively decomposed weak return components. On the other hand, the extractability of 
the bottom points in the shallow area (depth < 2 m) at test site 2 was improved by PGD. 
This demonstrates that the PGD effectively decomposed the shallow bottom component 
that overlapped closely with the water surface component, as shown in Figure 8f. 

Table 4. Point extractability evaluation of LBASSD and PGD results. 
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Table 4. Point extractability evaluation of LBASSD and PGD results.

Method
Total Point Cloud Bottom Point Cloud

Number of Points Point Density (pts/m2) Number of Points Point Density (pts/m2)

Site
1

LBASSD 430,376 1.128 64,581 0.169
PGD 979,283 2.568 76,336 0.200

Site
2

LBASSD 412,760 1.918 63,156 0.294
PGD 545,020 2.533 71,945 0.334

4.3. Geolocation Accuracy Assessment

To evaluate the robustness of the proposed approach, the geolocation accuracy of
the extracted bottom point clouds by PGD was compared with that of LBASSD, using
echo-sounding data as the ground truth. The vertical distances (∆Z) between the bottom
points and those from the echo-sounding data were calculated. Table 5 describes the mean
error and standard deviation at each test site. The mean error of the PGD results (−0.315 m)
at test site 1 decreased by 0.369 m compared to that of the LBASSD results (−0.684 m). On
the other hand, the mean PGD error (0.109 m) at test site 2 slightly increased compared to
that of the LBASSD result (0.033 m). Although the mean error is advantageous to use as a
reference for measuring accuracy, it may be associated with characteristics of the Seahawk
sensor system and a temporal difference between the ABL and echo-sounding data. The
time differences between the acquisition of Seahawk and echo-sounding range from 3 to
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4 months, during which changes in seafloor topography may have occurred. In particular,
the negative mean ∆Z value at site 1 may indicate that the seafloor height had risen between
the time of the echo-sounding survey (November 2021) and the Seahawk survey (March
2022), due to the deposition of eroded soil from the coast into the near sea. The mean ∆Z at
site 2 may also be due to seafloor changes during the time gap (approximately 3 months),
but the amount is negligible. From the ∆Z results calculated for the two sites, the trend and
amount of variation (standard deviation) may be more meaningful than the mean values.
The standard deviation of ∆Z, which reflects the robustness of the algorithm, did not differ
significantly between LBASSD and the proposed approach at both sites. The ∆Z standard
deviation of the PGD results was slightly higher than that of LBASSD at both test sites.
However, considering that the number of bottom points extracted using PGD at each site
increased by 18% and 14%, respectively, compared with the LBASSD results, the standard
deviations of ∆Z are essentially the same.
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Table 5. Comparison of geolocation accuracy of bottom point clouds based on echo-sounding data.

Method ∆Z Error (m)

Site 1
LBASSD −0.684 ± 0.395

PGD −0.315 ± 0.427

Site 2
LBASSD 0.033 ± 0.457

PGD 0.109 ± 0.501

5. Discussion

The proposed approach is designed to effectively approximate the original wave-
form with a Gaussian mixture model while ensuring that initially detected OPs are not
missed and allowing for the estimation of potential returns that were not detected. The
time difference between the OPs and EPs is utilized to determine whether the decom-
posed model sufficiently represents the original waveform. This criterion can prevent
the neglect of low-intensity return components during Gaussian curve fitting. Figure 12a
shows the decomposition results when only R2 > 0.95 was applied as the termination
condition of iteration. The residual-based termination conditions inevitably include the
possibility of missing weak returns. Figure 12b shows the results when the time difference
criterion from the OP is used in addition to the R2 criterion. The results indicate that
even a weak bottom return can be decomposed into components. However, it may be
vulnerable in distinguishing noise from weak returns. If noise is falsely detected as a
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peak or if a weak peak that should have been detected is missed, incorrect decomposition
could result. The limitation is related to noise removal performance, which can be im-
proved through component verification with neighboring waveforms. Hence, this warrants
further investigation.
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The proposed approach can effectively decompose irregular and various ABL wave-
form types without a data-specific adjustment process. Existing ABL waveform decom-
position techniques, which decompose the waveform into three fixed components (water
surface, water column, and bottom), require separate classification and modeling for very
shallow or deep water. However, PGD does not require such data-specific procedures or
parameter adjustment according to the environment, thus simplifying and unifying the
entire waveform processing. The approaches employing a fixed decomposition model can
simultaneously label the water surface and bottom points during decomposition, but this is
limited to typical ABL waveforms. Actual ABL data may include waveforms in which the
bottom return is not received and noise may not be completely removed during waveform
preprocessing. Consequently, whether the first component represents the water surface
and the last one represents the bottom cannot be definitively determined. Therefore, we are
investigating water labeling by utilizing various waveform features (e.g., amplitude, center,
width, and return number) from the decomposed Gaussian components. The waveform
features can also be used for classifying different underwater objects [18,44].

6. Conclusions

In this study, a new progressive waveform decomposition method based on the Gaus-
sian mixture model is proposed to effectively decompose various ABL waveforms and
improve the bathymetry performance. Experiments using the Seahawk waveform dataset
acquired from different environments were conducted. The results confirmed that the
proposed approach achieved superior performance in measuring bottom points compared
with Seahawk’s data processing software by effectively detecting weak or shallow bottom
returns. The proposed approach is universally applicable regardless of water depth, pres-
ence of unpredictable underwater objects, or irregular topography. In addition, it does not
require a data-specific process according to the environment, thus simplifying the entire
waveform processing. Furthermore, the proposed Gaussian decomposition technique can
potentially be applied to various ABL bathymetry studies by enabling the extraction of
diverse waveform features of the water surface, seafloor, and underwater points. Future
works can include the investigation of the methods for overcoming noise misdetection and
achieving the accurate automatic labeling of generated points.
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