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Abstract: Amid the changes brought about by the 4th Industrial Revolution, numerous studies
have been undertaken to develop smart factories, with a strong emphasis on knowledge-based
manufacturing through smart factory construction. Advances in manufacturing data collection,
fusion, and mining technologies have significantly bolstered the utilization of knowledge-based
manufacturing. Data mining technology is widely employed for facility maintenance and failure
prediction. Smart factory operations are pursuing automation and autonomization. Automation of
production planning is also essential to achieve automation and autonomy in factory operations, from
planning to execution. With the advancement of data mining technology, it is possible to automate
production planning for the production planning and prediction of future production through
information based on current conditions based on the past. The baseline information generated
based on the current situation is suitable for automating short-term operational planning. If we
generate time series reference information based on data from the past to the present, we can also
automate long-term operation planning. By measuring the results of productivity improvements
in mass-produced products from the past to the present and extrapolating them to future products,
time series baseline information on production time is generated. If the baseline information is used
for long-term planning, it can be used to predict future production capacity and facility shortages.
This study presents a methodology and utilization method for calculating the rate of change in
production time, which can be applied to production plan prediction and equipment investment
capacity forecasting in future factory operations, using historical time series production time data.

Keywords: APS time series data; production improvement rate; production improvement rate with
time series data

1. Introduction

It is an undeniable fact that a country’s economic wealth and growth hinge on the
prosperity of its industrial sector. However, manufacturing companies, driven by globaliza-
tion, continually strive for greater competitiveness. To remain competitive on a global scale,
these companies must not only develop and produce innovative, high-quality products
with short lead times but also design resilient and flexible production systems that foster
operational excellence. Additionally, they must engage in ongoing improvement activities
to reduce lead times [1].

In today’s business landscape, whether in manufacturing or services, organizations
must be agile in responding systematically to customer needs [2]. Manufacturing organi-
zations, in particular, need production strategies that align with corporate and business
objectives, emphasizing the development of production systems and resources. There is also
a growing focus on economic, environmental, and social sustainability, which is pushing
the adoption of efficient resource utilization in production systems [3]. Therefore, it is vital
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for any organization to enhance company operations and business strategies to add value
to products and improve productivity, ensuring they stay ahead of competitors [4].

Companies employ various methods to boost their competitiveness. For example,
Toyota, a Japanese automobile company, introduced Lean Manufacturing (LM) or the
Toyota Production System (TPS), which has been widely adopted globally due to its proven
benefits, including quality improvement, cost reduction, flexibility, and rapid response [5].
However, these endeavors come with challenges, such as fierce competition, unpredictable
economic conditions, and resource constraints [6]. Consequently, companies aim to refine
their manufacturing methods and processes by reducing waste, a central theme in the lean
methodology, to cut costs, enhance quality, increase profits, and maximize customer value
through productivity enhancements [7,8].

Increasing productivity in manufacturing is a challenge. Every manufacturing orga-
nization aspires to achieve productivity gains by reducing costs, improving quality, and
delivering products to customers promptly. With the advancement of artificial intelligence
(AI), achieving these objectives has become more sophisticated, owing to the availability of
more precise analytics. The device manufacturing industry relies on expensive equipment
for production. In a rapidly changing economy, one wants to reduce possible investments in
expensive equipment and maximize the effectiveness of production. Therefore, improving
manufacturing environments and increasing productivity are essential. If the results of
productivity improvement initiatives can predict the capacity of future factories, guide
equipment procurement, and support facility expansion, it is possible to minimize equip-
ment investments and prepare for future productivity improvements based on actual
performance. Hence, even though there are various productivity improvement activi-
ties, quantifying productivity gains in terms of production time is crucial for equipment
capacity predictions.

Production time, as a quantifiable result of productivity improvement, serves as a
valuable indicator. In manufacturing, reducing production time directly contributes to
productivity enhancement. We attempted to calculate the productivity improvement rate
for production time, aiming to use it for predicting future production capacity based on
production volume classification. Productivity improvement activities can be accomplished
in the following ways:

• Improving process efficiency: How to improve the process efficiency of your instruc-
tion line (analyzing work processes, improving bottlenecks, eliminating waste, etc.).

• Automation: How to introduce automation technology into your production system
to automate production processes, increase sales hours, reduce unnecessary labor, and
enable batch production.

• Staff training: How to keep employees updated on the latest manufacturing informa-
tion and techniques.

• Performance evaluation: A method for how to continuously identify and promote pro-
ductivity improvement tasks by monitoring productivity and reflecting and managing
improvement results in productivity management standards.

In this study, we calculated the “Improvement ratio for production Lead Time (L/T)
reduction” as a measure of productivity improvement.

This paper is organized as follows: Section 2 presents a discussion on the related work,
such as advanced planning and scheduling (APS), productivity improvement activities,
types of production time measurement, and an average calculation method. Section 3
presents the overall structure for calculating the productivity improvement rate and the
main features of each step. Section 4 presents the results of the study, utilizing the exper-
imental environment and results. Finally, Section 5 discusses the results and concludes
the paper.
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2. Related Work
2.1. APS

Smart manufacturing is at the heart of the Industry 4.0 concept, and production plan-
ning and control (PPC) must play a key role in Industry 4.0 activities [9]. The goal of
production planning and control (PPC) activities in manufacturing companies is to define
what, how much, and when to produce, purchase, and deliver in order to meet customer
demands [10]. PPC activities operate as a process that generates value in operational and
strategic environments, adapting continuously to complex customer requirements and new
supply chain opportunities [11,12]. The rapid changes in the industrial environment empha-
size the evolution of PPC functions [13,14]. PPC activities include tasks, such as material
requirement planning (MRP), enterprise resource planning (ERP), just-in-time manufactur-
ing, collaborative planning, forecasting, and replenishment [15,16]. With the advancements
in information and communication technology (ICT), PPC functions also support planning
and control of key aspects of production in the area known as supply chain management
(SCM). This includes activities, such as demand forecasting, sales and operations planning
(S&OP), MRP, master production scheduling (MPS), and production scheduling [17]. The
systems used in this SCM area are sometimes referred to as APS systems.

Industrial engineering encompasses a range of mathematical and logical techniques
that find application in a company’s production operations. When these methods are
implemented as software systems, they are referred to as production operation systems.
Global software developers play a significant role in creating these information systems.
One particular category of production operation systems is based on MRP techniques, a
field of study dating back to the 1980s. These systems gained widespread use in traditional
manufacturing industries in the 1990s. After their success in these industries, they were
further developed and actively applied in areas such as SCM, which experienced high
demand from the 2000s onward, and in the production operation of the FAB industry.
These systems are notable for employing various temporal models and computational
engines driven by heuristic algorithms. The associated research behind this technology has
found its place in both academic and industrial circles. Numerous software development,
solutions, and consulting companies have integrated it into comprehensive SCM solutions,
often referred to as APS systems [18], as depicted in Figure 1.

Figure 1. APS system organization and production operations area.

An APS is a production planning system that executes automated production planning
and related labor and resource planning with the following core functions [19,20].

• Demand forecasting: Forecasts short- and long-term demand and uses it to manage
volatility and targets.
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• Production planning: APS systems create plans aimed at minimizing inventory and
production costs. They achieve this by optimizing the use of facilities and labor,
creating efficient production schedules and executing them effectively.

• Resource planning: These systems help in planning for the optimal utilization of
production resources, including equipment and labor.

• Materials planning: APS systems facilitate the planning and procurement of raw
materials and components. This minimizes production inventory and ensures the
timely delivery of products.

Companies use this technology to achieve efficient production, minimize inventory
and costs, increase productivity, and improve customer service.

2.2. Productivity Improvement Activities

Productivity improvement activities can be categorized into three key elements: labor,
equipment, and raw materials. These initiatives play a pivotal role in reducing operational
costs and boosting profits for manufacturing companies, prompting them to engage in
continuous efforts for improvement.

As part of their broader business transformation strategies, companies quantify and
harness the results of ongoing productivity improvement activities to achieve five funda-
mental goals:

• Avoid wastage in a quickly changing economic environment.
• Produce goods without reducing the product quality.
• Reduce cost.
• Produce a low batch quantity at the earliest possible time.
• Goods sent to the customers must be non-defective.

To achieve these objectives, manufacturing companies often adopt the concept of
TPM [21], as outlined in Table 1, to drive productivity improvement.

Table 1. Total productive maintenance (TPM).

TPM

Object Equipment (input and cause)
Means of attaining goal Employee participation and equipment oriented

Target Elimination of losses and waste

TPM aims to reduce the need for additional capital investment by enhancing the avail-
ability of existing equipment [22]. It seeks to increase the availability and effectiveness of
existing equipment by optimizing maintenance practices and investing in human resources
to lower the equipment’s life cycle cost [23]. TPM’s goals include extending the equipment
lifespan, minimizing breakdowns, eliminating slow operations or minor stops, and achiev-
ing zero defects and incidents while actively involving operators [24]. Additionally, there
are six primary production losses targeted by TPM, as illustrated in Figure 2.

TPM describes the eight main pillars for reducing the six major production losses.
The eight main pillars in TPM include autonomous maintenance (AM), planned mainte-
nance, quality maintenance, focused improvement, equipment management, training and
education, environmental health and safety, and administration [25].

• AM involves workers performing simple machine maintenance activities, such as
cleaning, lubricating, adjusting, tightening, and checking. It also instills a sense of
ownership among workers for the machinery and equipment they operate.

• Continuous improvement (Kaizen): The Plan, Do, Check, Act (PDCA) process is well
practiced, continuously improving the efficiency and effectiveness of the system by
identifying and systematically eliminating various types of losses.

• Planned maintenance, along with preventive, predictive, and corrective maintenance,
is meticulously scheduled. All maintenance activities are carried out regularly. The
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maintenance program aims to optimize the engine’s mean time between failures
(MTBF) and the mean time to repair (MTTR); however, this still requires validation.

• Quality maintenance and zero-defect objectives are implemented, with a focus on
identifying the causes of quality problems. Machinery, materials, and operators are
prepared to achieve peak performance.

• Education, training, and human resource capabilities align with organizational goals.
A balanced workforce is developed to achieve organizational objectives. Additionally,
human resources are evaluated, and employee skills are regularly updated.

• Safety, health, and environment (SHE): Standard SHE operating procedures (SOPs),
safe and healthy working environments, and proper sewage treatment facilities are not
fully operational as they are still under development and require significant investment.

• In the office area: Office TPM (support) is in place, with the implementation of the 5S
program, the minimization of work procedures/bureaucracy, and the effort to build
synergy between departments. However, further improvements are needed.

• Development management focuses on minimizing problems during the installation of
new equipment, leveraging experience in repairing existing equipment and systems,
and enhancing equipment maintenance systems.

Figure 2. Overall equipment effectiveness and the six main losses.

TPM enhancement should be a company-wide goal because activities to increase
equipment availability require a change in the organizational culture and existing behavior
of all employees and operators [26].

Maximizing the results of a company’s productivity improvement activities and
achieving the desired level of performance in the shortest time possible are key objectives
for any competitive organization [27]. To attain these core goals, objectives have been
established using an imperative hypothesis concept methodology [28].

• A decision of what should be changed.
• A decision of what it ought to be changed to.
• A decision with respect to how to bring about that change.

To decide what needs to be changed, a thorough process analysis of the production
floor must be conducted to identify waste [29]. Goals are set by determining what needs
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improvement, how waste can be reduced, and which methods should be employed. The TPS
is widely recognized for its effectiveness in identifying waste in manufacturing companies
and is utilized by many manufacturing organizations.

Waste does not add value to the processes or products. From a TPS perspective, it is
crucial to identify the sources of waste and reduce or eliminate them to enhance the overall
process or system. Eliminating waste directly contributes to a company’s profitability [30].

The seven largest sources of waste on the production floor, as organized by Toyota
Motor Corporation, can be applied to any manufacturing organization. Manufacturing
companies are relentless in their efforts to reduce waste. The seven waste factors are defined
as follows [31].

• Overproduction: This lean principle involves producing according to the pull system
or products ordered by customers. Anything produced in excess (e.g., buffer or safety
stock and work-in-process inventory) wastes valuable labor, ties up resources, and
can mask other organizational problems.

• Inventory: Excessive inventory beyond customer demand negatively affects cash flow
and consumes valuable floor space. Implementing lean principles often leads to the
elimination or postponement of warehouse expansions.

• Transportation: Materials must be shipped to the place of use. The lean approach
involves shipping materials directly from the supplier to the assembly line, avoiding
unnecessary transportation steps.

• Waiting: Waiting waste occurs when products or materials are not transported or
processed, interrupting the process flow.

• Overprocessing: The most common example is reworking (the product or service
should have been done correctly the first time), deburring (parts should have been
produced burr-free using appropriately designed and maintained tooling), and inspec-
tion (parts should have been produced using statistical process control techniques to
eliminate or minimize the amount of inspection required). A technique called value
stream mapping is often used to identify non-value-added steps in the process. This
applies to manufacturers and service organizations.

• Defects: Production defects and service errors waste resources in four ways. First,
materials are consumed. Second, the labor used to produce (or service) the part in the
first place is lost. The labor used to produce the part (or provide the service) in the
first place cannot be recovered. Third, the product must be reworked (or the service
redone). Fourth, labor is needed to address customer complaints that may arise in the
future.

• Behavior: This waste encompasses ergonomic and health issues related to workers
and their work. Activities causing stress to workers and equipment, such as excessive
walking, bending, stretching, and lifting, should be carefully reviewed and redesigned
to reduce the burden on workers.

The results of the improvement efforts on the aforementioned seven wastes are also
measured. It can be measured in three aspects: labor productivity, equipment productivity,
and raw material productivity.

Labor productivity =
output

labor input
(1)

Facility productivity =
output

f acility input
(2)

Raw material productivity =
output

rawmaterial input
(3)

The results of the improvement activities can be quantified by measuring the out-
comes of productivity improvement initiatives. In this study, we quantify the reduction in
production time attributed to productivity improvement activities and devise a method to
utilize these results as reference information for future capacity forecasting using APS.
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2.3. Production Time

The production lead time (L/T) represents the average time a part spends in the system,
whether it is being processed or waiting for processing [32]. For manufacturing firms,
the primary objective of productivity improvement is to reduce production L/T [33,34].
One effective approach to achieving this reduction is by eliminating waste, such as by
balancing the assembly line to enhance capacity utilization [35,36]. Shortening the L/T
involves considering various types of L/T, which is why it is crucial to accurately analyze
the L/T and its components, aligning with the specific manufacturing characteristics of
the company.

Various terms are used to describe production time, including wit, cycle, standard,
and lead times. The choice of terminology may depend on the context in which the work
is being performed. However, all these terms essentially refer to the time required for
production. The units of time required for production can be aggregated in various ways,
such as seconds, minutes, hours, days, etc.

In this study, we refer to L/T as the time required to produce a product from start to
finish (the sum of L/T for each process), or the time required to execute a process, as shown
in Figure 3.

Figure 3. The sum of the L/T for each process.

2.4. Average

Considering the substantial volume of data, the average stands as one of the most
frequently employed statistics for summarizing data. Mathematically, the mean represents
the sum of uniformly distributed numbers divided by the total count of numbers, typically
referred to as the average. The term “average” encompasses various types of averages, with
the mean being one of them, also known as the median in statistics, and used to describe
central tendencies. Among the different types of averages, we define the most commonly
used ones: arithmetic, geometric, and harmonic means.

2.4.1. Arithmetic Mean

In practice, when we mention “average”, we generally refer to the arithmetic mean.
The arithmetic mean is calculated by summing all data values Xi and dividing this sum
by the total number of data values, denoted as “n”. This method is widely employed for
computing representative values in datasets. It proves particularly effective when dealing
with data distributions that exhibit a bell-shaped pattern, characterized by a large number
of values concentrated around the center and smaller values at the extremes.

x̄ =
1
n
·

N

∑
i=1

Xi (4)
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2.4.2. Geometric Mean

The geometric mean is used to determine the average rate of change over an interval
based on the continuous rate of change data, such as population growth, inflation, and
economic growth. The geometric mean is the square root of n and the number of data
values after multiplying all Xi data values by the rate of change.

G = n

√
n

∏
i=1

xi = (x1 × . . . × xn)
1/n (5)

2.4.3. Harmonic Mean

The harmonic mean is determined by taking the reciprocal of each data value, which
yields the arithmetic mean, and then taking the reciprocal once more. This technique is
particularly useful for calculating the average speed over an entire segment based on data
for average segment speeds.

H =
1

1
n · ∑ 1

xi

=
1
n
· 1
( 1

x1
+ . . . + 1

xn
)

(6)

The following is a simple example of the calculation of each average. Generally, the
arithmetic average represents the absolute values of the data, while the geometric average
is based on ratios. The arithmetic average is valued for its simplicity and the direct influence
of each data point on the average. However, it may not be a suitable indicator for datasets
with exceptionally large values. For instance, consider the numbers 2, 4, 3, 6, 5, 9, 8, 13, and
85. The arithmetic average of these numbers is 15, primarily influenced by the presence of
the value 85. In such cases, 15 does not adequately represent the dataset. Conversely, the
geometric average for these numbers is 7.3, providing a relative concentration index that
makes more sense [37].

In specific scenarios involving rates and ratios, the harmonic mean offers the appro-
priate average. For example, if a vehicle travels a distance “d” outbound at speed “x”
(e.g., 60 km/h) and returns the same distance at speed “y” (e.g., 20 km/h), the vehicle’s
average speed is the harmonic mean of “x” and “y” (30 km/h), not the arithmetic mean
(40 km/h). This demonstrates that the harmonic mean is the correct measure in cases where
rates or ratios are involved. In this example, the total travel time is the same as if the vehicle
had covered the entire distance at the average speed.

3. Production Improvement Rate with Time Series Data
3.1. Overall Structure

In the context of utilizing APS to forecast the necessary capacity for future mass
production, our aim is to consolidate the productivity improvement rate based on historical
and current performance data. We intend to employ this rate in forecasting capacity, taking
into account the productivity improvements expected in future product manufacturing.

To generate product-specific improvement rate data from historical records, we ini-
tiated the process by calculating the total lead time (L/T) for production. This involved
summing the performance L/T for each individual process. Subsequently, we calculated
the monthly average L/T from this cumulative data. The monthly L/T values were then
utilized to establish the monthly production time improvement rate data. For these product-
specific improvement rates, we conducted a study to harmonize the monthly improvement
rates for products with similar production volumes. Our primary objective is to quantify
productivity enhancements occurring on the production floor, with a focus on creating
universally applicable information that serves as reference data for forecasting production
capacity and equipment utilization using APS.

To provide an overview of this study’s procedures, refer to Figure 4.
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Figure 4. Procedure for calculating production lead time improvement rate.

Step1 is to define the production-volume bands. Step2 is to calculate the production
lead times and improvement rates. Finally, Step3 is to analyze the time series production
lead time improvement percentages based on the production volume bands, as depicted in
Figure 5.

3.2. Production Improvement Procedures

Initially, to prioritize improvements for products that contribute significantly to pro-
duction and ensure the information’s universality, we opted to categorize them based on
the production volume. In this study, we determined the production volume criteria using
monthly or yearly figures, creating three categories: small, medium, and large. These size
judgments were based on Table 2 below, as shown in Figure 6.
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Figure 5. L/T improvement rate and utilization based on production volume.

Table 2. Defining bins for production planning patterns.

Distinguish
Monthly

Production
(Units)

Yearly
Production

(Units)
Note

Low 0 to 500 Under 5000

Medium
Over 500

to Under 10,000
Over 5000

to Under 100,000

High Over 10,000 Over 100,000

Of the two divisions of production,
yearly production is preferred

Figure 6. Defining bins for production planning patterns. (Example of monthly production variation
for low volume products in green, Medium volume products in red, and high volume products in
blue).

Through the analysis of the production volume, it was discovered that similar pro-
duction volumes exhibit similar production patterns. This finding aligns with the objective
of our study, which aims to apply production improvement rates to future production
products with similar production plans.

Second, rather than calculating the L/T improvement individually for each process,
we aggregated the L/T for each product, resulting in what we term the total L/T. To clarify,
if a product involves five processes, we sum the L/T values from these five processes. It
is important to emphasize that the total L/T should only be calculated when the same
product is produced and aggregated, as shown in Figure 3.
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In the third step, we used a straightforward average to compute the monthly L/T. For
the total L/T, which is the summation of the L/T values from the second step’s processes,
an initial aggregation was performed. In this first aggregation, we calculated the average
value of the total monthly L/T ratio.

In the fourth step, the procedure calculated the monthly improvement rate for the
total L/T derived in the third step. This rate was determined using the following equation:
(Monthly Improvement Rate (%) = [(Total L/T of the Previous Month − Total L/T of the
Current Month)/Total L/T of the Previous Month] × 100).

Fifth, we compiled the total L/T improvement rates by product on a monthly basis,
based on the production volume bins established in the first step. Subsequently, we com-
puted the monthly averages of these aggregated improvement rates corresponding to the
same ranges (M+1, M+2, etc.).

As part of our related research, we explored various types of averages and their
applications. The geometric mean, a statistical method used to calculate the average change
rate of a variable over a period of time, particularly for continuous change rate data like
population growth, inflation, and economic growth, was examined. However, in this study,
we did not utilize the geometric mean as our aim was to calculate the average monthly
productivity improvement rate for multiple products within the same production band,
over the same production interval. Therefore, we employed the harmonic mean to calculate
the average monthly improvement rate for all the products within the same production
volume category.

Our study differs from previous research in three ways.
Previous studies either calculated the production improvement rate of similar products

or calculated the improvement rate of individual products. This study calculated the
production improvement rates for products with similar production volumes. Previous
studies used the following formula for the monthly production improvement rate based on
the yearly target value for production improvement.

1 month production improvement rate =
annual target improvement rate

12 months
(7)

This study calculated the production improvement rate from the beginning to the
end of the mass production of products that were produced in the past or are currently
being produced and used a harmonized average to calculate a productivity improvement
rate that is representative of products with similar production volumes. Previous studies
calculated production improvement rates to set targets or used as KPIs.

In this study, the production improvement rate was applied to products to be produced
in the future to generate time series information on the production time and to generate
baseline information for predicting possible production and overcapacity using the APS
system.

4. Implementation and Results
4.1. Experiment Environments

For the production improvement rate implementation environment, the program
development was performed on a notebook PC, and the hardware environment used a
database (DB) server. The hardware environment of the DB server is presented in Table 3.

The hardware and software environments of the Notebook PC that implemented the
production improvement rate calculation program are listed in Tables 4 and 5.

Table 3. DB server hardware environment.

Hardware Performance

CPU Intel Xeon Gold 5220 @ 2.20 GHz
RAM 512 GB

STORAGE 50 TB (SSD)
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Table 4. Notebook hardware environment.

Hardware Performance

CPU Intel i7-6700 @ 3.40 GHz
RAM 32 GB

STORAGE 256 GB (SSD)

Table 5. Notebook development environment.

Type

OS Windows 11 Home 22H2
DBMS Oracle 19 Client

Development Languages Oracle PL/SQL
Development Tools SQL Developer

4.2. Data Processing

The data used in the experiments in this paper were collected from a semiconductor
manufacturing line. It is production time data measured in units of product (unique lot
number)/process/equipment for the last three years. The semiconductor manufacturing
data are secure data, so we did not show detailed data, and we mainly explained the data
processing process, focusing on the methodology to reach conclusions with simple sample
data to evaluate the excellence of the experiment.

Information on the production time was obtained from the L/T information aggre-
gated by product/process/day in the Manufacturing Execution System (MES). The prod-
uct/process/day L/T was summed into the product/day L/T. The average was calculated
as the product/month L/T for the aggregated L/T. The monthly L/T improvement rate
was calculated for the product/month L/T, and the data processing was carried out to
collect the L/T improvement rates of the products with similar production volumes and to
calculate the monthly L/T improvement rate for each unit of production volume, as shown
in Figure 7.

Figure 7. Lead time improvement rate calculation data processing.

4.3. Aggregation of Production Time

The information about the production time for each process in the product is the result
of the data collection and data cleansing processes in Figure 7. Data collection is the step of
collecting data from the machines. Data cleansing involves removing outliers for the statis-
tical processing of the collected data. The production time information aggregated through
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this process was stored in the MES. By utilizing the aggregated daily product/process/lead
time information, the process time can be summed up to the finished product-by-process.
The L/T was calculated by summing the time spent on each process from start to finish
based on the date on which the finished product was produced. This L/T information was
then averaged over a month to calculate the monthly L/T. This process corresponds to
“Data Informatization” in Figure 7.

4.4. Calculation of Production Time Improvement Rate

Figures 8 and 9 represent the production time by product and the production time
improvement rate by product.

Figure 8. Production time by product.

Figure 9. Production time improvement rate by product.

Table 6 shows the average monthly production time by product and Table 7 shows
the average monthly production time improvement rate by product for mass-produced
products A through F and the harmonic mean production improvement rate for products A
through F with similar production volumes. The production improvement rate information
is calculated as the monthly average by product in Table 6.

The formula for the improvement rate of the production time is as follows:

ImprovementRate(%) =
(T(M + i)− T(M + i + 1))

T(M + i)
× 100 (8)

The steps taken thus far are encapsulated in the “Data Informatization” process, as
indicated in Figure 7.

The primary objective of this study is to compute the production improvement rate
and then apply this information to future product production, enabling the generation
of data that can be employed for forecasting future production capacity and establishing
targets for production improvement. This aligns with the data processing depicted in
Figure 7.

We calculated the production time improvement rate using products with the same
production volumn, employing the harmonic mean (Product-A, . . . , F) of the monthly
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improvement rates for products sharing the same production bin definition, as shown in
Figures 10 and 11 and Table 7.

Table 6. Products A, B, C, D, E, F production time.

Production Time
Month Product-A Product-B Product-C Product-D Product-E Product-F

M+0 2.970 2.359 3.045 3.321 2.024 2.064

M+1 2.960 2.309 3.023 3.259 2.016 2.046

M+2 2.895 2.211 2.945 3.236 1.978 2.004

M+3 2.823 1.663 2.624 3.114 1.858 1.972

M+4 2.777 1.497 2.581 2.962 1.812 1.954

M+5 2.750 1.708 2.486 3.130 1.799 1.933

M+6 2.770 1.532 2.344 3.013 1.793 1.876

M+7 2.760 1.532 2.250 3.004 1.791 1.848

M+8 2.785 1.541 2.285 2.994 1.785 1.834

M+9 2.710 1.526 2.279 2.976 1.7838 1.813

M+10 2.720 1.542 2.261 3.049 1.782 1.827

M+11 2.740 1.543 2.246 3.0152 1.782 1.823

Table 7. Products A, B, C, D, E, F production time improvement rate.

Improvement Rate (%) for Products with Similar Production Volumes (High Volume)

Month Product-A Product-B Product-C Product-D Product-E Product-F Products A∼F
(Harmonic Mean)

M+1 0.337 2.120 0.732 1.855 0.366 0.858 0.648

M+2 2.196 4.224 2.581 0.724 1.880 2.076 1.727

M+3 2.504 24.785 10.884 3.764 6.061 1.590 3.771

M+4 1.594 9.982 1.631 4.862 2.518 0.898 1.963

M+5 0.990 −14.061 3.692 −5.671 0.718 1.087 0.000

M+6 −0.727 10.307 5.708 3.757 0.339 2.930 0.000

M+7 0.361 0.000 4.010 0.289 0.100 1.509 0.000

M+8 −0.906 −0.588 −1.533 0.350 0.307 0.766 0.000

M+9 2.693 0.935 0.228 0.575 0.080 1.158 0.287

M+10 −0.369 −1.042 0.798 −2.432 0.122 −0.781 0.000

M+11 −0.735 −0.032 0.681 1.102 0.000 0.194 0.000

Figure 10. Production time improvement rate for products with similar production volumes (high volume).
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Figure 11. Improvement rate (harmonic mean).

4.5. Leverage Production Time Improvement Rate

The production time improvement rates thus generated can be applied to products of
the same production plan type to be produced in the future to generate time series produc-
tion time information for predicting possible future production and capacity overruns, as
shown in Table 8.

Table 8. Utilizing improvement rate results.

Time Series Production Time Information

Month Improvement Rate Production Time

M+0 0.000% 4.000

M+1 0.648% 3.974

M+2 1.727% 3.905

M+3 3.771% 3.758

M+4 1.963% 3.684

M+5 0.000% 3.684

M+6 0.000% 3.684

M+7 0.000% 3.684

M+8 0.000% 3.684

M+9 0.287% 3.674

M+10 0.000% 3.674

M+11 0.000% 3.674

Let us consider a future scenario where you have a product labeled AA, which re-
quires 4 min of lead time (L/T) for production in process A. It is noteworthy that the
production plan type for this product aligns with the one that generated the production
time improvement rate illustrated in this study. By applying the data from the production
time improvement rate, we can ascertain that the L/T for process A in the case of product
AA stands at 4 min. Furthermore, as production periods accumulate, it becomes evident
that the L/T for this process progressively decreases. This transformation of the production
time for process A in the context of product AA into time series data effectively encapsu-
lates the productivity improvement rate. These data can serve as a foundational resource
within an APS system, enabling the forecasting of potential production and overcapacity.
Moreover, they can also serve as valuable reference information for evaluating past and
present improvement rates when shaping future productivity enhancement objectives.

4.6. Evaluation of The Experimental Method

Product-A1 is a derivative of product-A, and the production volumes of products
A and A1 are different: high volume and low volume. We calculated the production
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improvement rate of products A and A1 and calculated the production improvement rate
among the derived products using the same method as the one used in this paper.

Table 9 shows the production improvement rates of product-A and product-A1 with
the same base product, and Table 10 shows the harmonized average of the production
improvement rates of product-A and product-A1. Figure 12 is a graph of the production
improvement rate of product-A and product-A1, and Figure 13 is a graph of the harmonized
average of the improvement rate of product-A and product-A1. In the previous experiment,
the production improvement rate calculation method for products with the same base
product often did not calculate the improvement rate by the harmonic average calculation
method, so it was not possible to know the trend of the products for the improvement
rate, and it was not suitable for the monthly production improvement rate calculation
method because the production cycle of the products is different even if the base product is
the same. On the other hand, the current research method of calculating the production
improvement rate among products with similar production volume reflects the trend of
the improvement rate of the products reflected in the harmonized average improvement
rate calculation. In addition, it can be seen that there are many improvement activities for
products with high production volume in productivity improvement.

Table 9. Previous experiment products A, A1 production time improvement rate.

Product-A Product-A1

Month Production Time Improvement Rate Production Time Improvement Rate

M+0 2.97 0.624

M+1 2.96 0.377% 0.616 1.282%

M+2 2.895 2.196% 0.617 −0.162%

M+3 2.8225 2.504% 0.617 0.000%

M+4 2.7775 1.594% 0.620 −0.486%

M+5 2.75 0.990% 0.629 −1.452%

M+6 2.77 −0.727% 0.625 0.636%

M+7 2.76 0.361% 0.618 1.120%

M+8 2.785 −0.906% 0.611 1.133%

M+9 2.71 2.693% 0.610 0.164%

M+10 2.72 −0.369% 0.611 −0.164%

M+11 2.74 −0.735% 0.620 −1.473%

Figure 12. Production time improvement rate for the same base product.
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Figure 13. Product-A, A1 improvement rate (harmonic mean).

Table 10. Previous experiment production time harmonic mean improvement rate.

Production Time Improvement Rate
for Products with Different Production Volumes (Low and High Volume)

Month Product-A
Improvement Rate

Product-A1
Improvement Rate

Improvement Rate
(Harmonic Mean)

M+1 0.377% 1.282% 0.533%

M+2 2.196% −0.162% 0.000%

M+3 2.504% 0.000% 0.000%

M+4 1.594% −0.486% 0.000%

M+5 0.990% −1.452% 0.000%

M+6 −0.727% 0.636% 0.000%

M+7 0.361% 1.120% 0.546%

M+8 −0.906% 1.133% 0.000%

M+9 2.693% 0.164% 0.309%

M+10 −0.369% −0.164% 0.000%

M+11 −0.735% −1.473% 0.000%

For further evaluation, we prepared the actual production time of product-G, which
had a similar production volume to product-A, . . . , F. As described in Section 4.5 on utilizing
production time improvement rates, we applied the products A, B, C, D, E, and F production
improvement rates to product-G’s production starting in month M+0 to produce a time
series forecast1 for product-G’s production time. Similarly, we applied the products A and
A1 production improvement rates to product-G to produce another time series forecast2
for product-G’s production time. The correlation coefficients and R-squared values were
calculated for the actual production time of product-G from M+0 to M+11 and the results
of predictions 1 and 2, respectively. Table 11 shows the correlation coefficients between
the actual production time of product-G and predictions 1 and 2. From the correlation
coefficients, we can see that the production improvement rate resulting from prediction 1
is more similar to the actual rate. Figure 14 plots the R-squared values of the product-G
actual and prediction 1 rates, and Figure 15 plots the R-squared values of the product-G
actual and prediction 2 rates. From the R-squared values, it can be seen that the results of
prediction 1, which is based on the production improvement rate of products with similar
production volumes, are more similar to the actual results.
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Figure 14. R-squared values for product-G and prediction 1.

Figure 15. R-squared values for product-G and prediction 2.

Table 11. Correlation coefficient between actual production time and predicted value.

Month

Product-G
Actual

Production
Time

Products A∼F
Improvement

Rate

Product-G
Predictions 1

Products A, A1
Improvement

Rate

Product-G
Predictions 2

M+0 1.962 0.000% 1.962 0.000% 1.962

M+1 1.953 0.648% 1.949 0.533% 1.952

M+2 1.941 1.727% 1.916 0.000% 1.952

M+3 1.917 3.771% 1.843 0.000% 1.952

M+4 1.872 1.963% 1.807 0.000% 1.952

M+5 1.848 0.000% 1.807 0.000% 1.952

M+6 1.851 0.000% 1.807 0.000% 1.952

M+7 1.851 0.000% 1.807 0.546% 1.941

M+8 1.861 0.000% 1.807 0.000% 1.941

M+9 1.887 0.287% 1.802 0.309% 1.935

M+10 1.875 0.000% 1.802 0.000% 1.935

M+11 1.854 0.000% 1.802 0.000% 1.935

Prediction 1
correlation
coefficient

0.936
Prediction 2
correlation
coefficient

0.564
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5. Conclusions

This study aimed to calculate the impact of productivity improvement in terms of
production time based on historical data and apply it to future production planning. To
account for the unique circumstances of each manufacturing plant and the possibility of
redefined production volumes, we categorized production volumes into specific intervals
and computed future predictions based on these volumes. This approach allows us to
use baseline information generated by an APS for future production volume forecasts,
aligning with projected demand. By incorporating improvements in production time into
these productivity predictions, we can simulate future production capacity forecasts. While
these forecasts may not be entirely accurate for future mass-produced products, they
offer valuable insights for preparing for future factory operations and setting productiv-
ity improvement targets based on past performance. This methodology is particularly
beneficial for manufacturing companies in equipment-based industries or those involv-
ing equipment-intensive processes when making decisions about expensive equipment
purchases or factory expansions.

In this study, we calculated the production improvement rate for products with similar
production volumes and analyzed the production improvement rate for products with the
same base product. Productivity improvement activities are centered on products with high
production volumes, and in order to measure the production improvement rate and use the
current production improvement rate for future products to predict possible production
volumes and capacity shortages, the production improvement rate of products with similar
production volumes should be calculated and used.

In order to predict the future based on historical data, the goal is to identify models
where the past and present situations are very similar, such as the similarity of process
diagrams or production plans. Utilizing AI-based analytics in conjunction with big data
can increase the similarity between reality and future predictions.
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