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Abstract: The positional accuracy and orientation accuracy of industrial robots are crucial technical
indicators for determining their applicability in industrial scenarios. However, the majority of current
calibration methods for industrial robots only consider positional errors, neglecting the significance
of orientation accuracy. This paper presents a more accurate error model and parameter calibration
method for industrial robots based on six degrees-of-freedom position and orientation to identify
the actual structural parameters. Firstly, based on the modified Denavit–Hartenberg parameters,
the transformation errors of the tool coordinate system and measurement coordinate frame were
introduced to establish a geometric parameter error model with positional and orientation accuracy
as the optimization objectives. Secondly, to address the drawback of falling into local optima when
identifying geometric parameters simultaneously, a geometric parameter cross-identification method
based on the Levenberg–Marquardt algorithm is proposed. Lastly, the linear relationship between
the parameters was analyzed, and a scheme for not calibrating some geometric parameters under
specific conditions was given. Simulation results demonstrated that, under the premise of existing
transformation errors, the proposed geometric parameter error model can accurately identify the
actual structural parameters of industrial robots. After calibration, the positional error at the robot’s
flange end decreased from 1.9536 mm to 0.0122 mm, and the orientation error decreased from
1.46 × 10−2 rad to 1.31 × 10−4 rad. Furthermore, compared to identifying the geometric parameters
simultaneously, the proposed cross-identification method has a wider convergence range.

Keywords: industrial robot; positional accuracy; orientation accuracy; error model;
cross-identification

1. Introduction

Industrial robots are multi-mechanical-arm or multi-degree-of-freedom robots de-
signed for industrial applications that can replace humans in performing simple and
repetitive tasks in harsh environments [1–3]. Over time, the repeatability of industrial
robots can be affected by changes in the precision of the joint gear system and the resolution
of the encoder. The accuracy of robots can also be influenced by geometric factors such as
deviations in link parameters and coordinate frame definitions, as well as non-geometric
factors like temperature and deformations. These factors can lead to deviations in the
pose of the end effector of industrial robots, which can impact the quality of associated
products. On one hand, industrial robots generally have high repeatability, often reaching
the level of 0.1 mm, but their absolute positioning accuracy is usually in the millimeter
range. On the other hand, the accuracy of industrial robots gradually deteriorates with
increasing operating time, and the rate of deterioration determines their lifecycle. As
industrial robots find broader applications, meeting the repeatability requirement alone is
no longer sufficient, and the low absolute positioning accuracy becomes a bottleneck for
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further development. Therefore, improving absolute positioning accuracy has become an
urgent problem for industrial robot manufacturers.

The calibration of Industrial robots [4,5] typically involves four steps: kinematic
modeling, pose measurement, parameter identification, and error compensation. Kinematic
modeling serves as the mathematical foundation in the field of industrial robot calibration.
In the 1950s, Denavit and Hartenberg proposed the Denavit–Hartenberg model (DH) [6],
which expresses the spatial coordinate transformation between adjacent joints by defining
four parameters: link length ai, link offset di, link twist αi, and joint angle θi. The DH
model has clear physical significance, is convenient to use, and satisfies the principle
of minimization [7]. However, a wealth of research studies have demonstrated that the
DH model fails to meet the continuity requirement when the axes of adjacent joints are
parallel or nearly parallel. To address this singularity issue while maintaining the model’s
parameter minimization principle, a modified Denavit–Hartenberg model (MDH) [8,9]
was proposed by adding a parameter βi for rotation around the y-axis in parallel or nearly
parallel singular joint coordinate frames. In [10], Stone et al. redefined the rules for
establishing the link coordinate frame and proposed the S model. In the S model, each link
is described by six parameters, including three translation parameters and three rotation
parameters, but it does not satisfy the principle of minimization and contains redundant
parameters [11]. Zhuang et al. proposed the complete and parametrically continuous
model (CPC) based on the idea that a kinematic model for robot calibration needs to satisfy
both “completeness” and “parameter continuity” [12]. In [13,14], the kinematic model of
industrial robots was described as a product of a series of exponential matrices, known
as the product of the exponentials (POE) model, which does not have parameters that
mutate in terms of phenomena. To address the issue of model discontinuity commonly
encountered in the traditional DH model, Zhang et al. proposed a local product of the
exponential model [15]. To reduce the difficulty of kinematic modeling, many researchers
have considered using neural networks to depict the relationship between the end effector
error and the joint angles of industrial robots [16,17]. Maghami et al. proposed a two-step
calibration method for a master-slave collaborative robot system based on artificial neural
networks (ANNs), using joint angles and output pose errors as the training data [18]. Ma
et al. employed an incremental extreme learning machine (IELM) to predict the positioning
error of an industrial robot and improve its positioning accuracy [19]. To improve the
tracking accuracy of joint angles, Tan et al. proposed a robot-tracking error prediction
and compensation method based on time-convolutional networks (TCN) [20]. In [21], Bo
et al. used a genetic particle swarm optimization algorithm to optimize a neural network
for predicting the positioning error of an industrial robot, thus improving the positioning
accuracy of a KUKA robot.

Among all the mathematical models mentioned above, the MDH model is the most
widely used in the field of industrial robot calibration due to its features of parameter
completeness, minimization, continuity, and clear physical significance. Guo et al. estab-
lished a geometric parameter error model for SCARA robots based on the MDH model and
identified the corresponding structural parameters [22]. Song et al. derived geometric and
deformation errors based on the MDH model, combined them into a complete model, and
proposed a step-by-step compensation method [23]. In [24], a kinematic error model for
FANUC robots was established based on the MDH model, and the Levenberg-Marquardt al-
gorithm (LM) and differential evolution algorithm (DE) were used to identify and optimize
the related parameters. Chen et al. analyzed the joint motion of KUKA robots according
to the MDH model and proposed a kinematic calibration method based on an improved
beetle swarm optimization algorithm [25]. Selami et al. presented a 3DPP measurement
device and kinematic parameter identification method based on the MDH model for the
calibration of 6 degrees-of-freedom (DOF) industrial manipulators [26].

However, the majority of the aforementioned industrial robot calibration methods
primarily focus on positional errors, neglecting the importance of orientation accuracy.
Moreover, when the calibration of the tool coordinate frame and measurement coordinate



Appl. Sci. 2023, 13, 10901 3 of 21

frame is not sufficiently accurate (i.e., when there is a significant transformation error),
the identification results based on the MDH error model often differ greatly from the
actual structural parameters of the industrial robot [27]. Additionally, industrial robot
parameter identification is susceptible to falling into local optima due to the effects of
transformation errors in the tool coordinate frame and measurement coordinate frame and
other random noise. To address these issues, this paper presents a more accurate error
model and parameter calibration method for industrial robots based on 6-DOF position
and orientation to identify the actual structural parameters. The main contributions are
as follows: (1) based on the modified Denavit–Hartenberg parameters, the transformation
errors of tool coordinate system and measurement coordinate frame were introduced
to establish a geometric parameter error model, which uses positional and orientation
accuracy as optimization objectives; (2) to overcome the problem of easily falling into local
optima when identifying geometric parameters simultaneously, a geometric parameter
cross-identification method based on the Levenberg-Marquardt algorithm is proposed;
(3) the linear relationships between the parameters of the proposed geometric error model
are investigated, and a solution for not calibrating some geometric parameters under
specific conditions is provided.

2. Industrial Robot Kinematic Analysis

Industrial robot calibration is the process of identifying the structural parameters of
the robot based on its end-effector error. It involves complex theoretical knowledge. In this
section, the definitions of coordinate frames involved in the industrial robot calibration
process are presented. Additionally, the practical significance of DH parameters and the
MDH model are explained. Finally, the forward kinematics equation of industrial robots,
the transformation matrix representing the tool coordinate frame relative to the flange
coordinate frame, and the transformation matrix representing the base coordinate frame
relative to the measurement coordinate frame are provided.

2.1. Definitions of Coordinate Frames

The industrial robot parameter identification system involves the following coordinate
frames: measurement coordinate frame (MCF), base coordinate frame (BCF), joint coor-
dinate frame (JCF), flange coordinate frame (FCF), and tool coordinate frame (TCF). The
definitions of the above coordinate frames are shown in Figure 1. The BCF is established
on the robot’s base. The transformation from the BCF to the MCF is defined as 0

mT , which
needs to be calibrated before performing parameter identification. The TCF is fixed at the
robot’s flange, and its origin is at the center of the tool. The transformation from the TCF to
the FCF is defined as t

n T , which also needs to be calibrated before parameter identification.
The transformation from the FCF to the BCF is defined as n

0 T and is obtained by multiplying
the transformation of adjacent joint coordinate frames in the order. The transformation
from the TCF to the MCF is defined as t

m T , which represents the position of the TCF relative
to the MCF. The reference coordinate frame selected in this article is the MCF.

2.2. Kinematic Model

The prerequisite for the calibration work of industrial robots is to establish an appro-
priate kinematic model to describe the relationship between the end pose of the industrial
robot and its structural parameters, such as link lengths and joint angles. In 1955, Denavit
and Hartenberg proposed a method based on matrix transformations to describe the motion
of link mechanisms, as shown in Figure 2. Here, ai represents the link length, di represents
the link offset, θi represents the joint angle, and αi represents the joint twist.
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However, when the axes of two adjacent joints are parallel or nearly parallel, a small
deviation, in the end, the pose of the industrial robot will cause the structural parame-
ters related to the parallel joints to change abruptly (i.e., the theoretical DH model has
singularities). Therefore, this paper selected the MDH model proposed in [8] to establish
the error model of industrial robots. When the axes of adjacent joints are parallel, an
additional rotation angle βi around the y-axis is added to the theoretical DH model. Then,
the transformation matrix between adjacent joint coordinate frames is defined as follows:

i
i−1T = Rot(z, θi)·tran(z, di)·tran(x, ai)·Rot(x, αi)·Rot(y, βi)

=


cθicβi − sαisθisβi
sθicβi + sαicθisβi
−cαisβi

0

−cαisθi
cαicθi
sαi
0

cθisβi + sαisθicβi
sθisβi − sαicθicβi

cαicβi
0

aicθi
aisθi
di
1

 (1)

where s denotes the sine function, and c denotes the cosine function.
Based on Equation (1), for an n-DOF industrial robot, its forward kinematic equation

can be expressed as follows:

n
0 T = 1

0T2
1T · · · nn−1T =


nx ox
ny oy

ax px
ay py

nz oz
0 0

az pz
0 1

 (2)

During the installation process, it is typically required that the TCF and the FCF only
have a translational relationship. However, due to limitations in manual operations, there
may still be certain rotational relationships between the TCF and the FCF. Similarly, there
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are translation and rotation relationships between the BCF and the MCF. The transformation
matrix that includes both rotation and translation is generally represented as follows:

T(α, β, γ, x, y, z) =


cαcβ cαsβsγ− sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ− cαsγ
−sβ

0
cβsγ

0
cβcγ

0

x
y
z
1

 (3)

where [x, y, z] is the translation transformation, α is the yaw angle around the z-axis, β is
the pitch angle around the y-axis, and γ is the roll angle around the x-axis.

If 0
mT is set to T(α, β, γ, x, y, z) and t

n T is set to T(α’, β’, γ’, x’, y’, z’), then the pose of
the TCF relative to MCF is as follows:

t
m T = 0

mT ·n0 T · t
n T (4)

3. Error Model and Cross-Identification Algorithm

There are several factors that contribute to the errors of industrial robot end effectors,
including assembly and installation errors during the robot manufacturing process, wear
and tear errors over extended use, deformations due to loads, and more. These factors
collectively result in deviations in the pose of the robot end effector. In fact, the above errors
can be categorized into three types: geometric errors, non-geometric errors, and random
errors. Among these, geometric errors primarily refer to deviations in link parameters
caused by inaccurate manufacturing and installation. Non-geometric errors mainly denote
elastic deformation deviations due to temperature and loads, while random errors are
induced by electromagnetic interference and collisions. Motta et al. have indicated that
approximately 95% of errors are caused by geometric parameter deviations [28]. Therefore,
this paper focused on compensating for industrial robot end effector errors caused by
geometric parameter deviations. This section first establishes an industrial robot geometric
parameter error model (TM-MDH) based on modified Denavit–Hartenberg parameters
and the transformation errors of the tool coordinate frame and measurement coordinate
frame. Secondly, to address the disadvantage of easily falling into local optimization
when identifying geometric parameters simultaneously, a geometric parameter cross-
identification method (C-LM) based on the Levenberg–Marquardt algorithm is proposed.

3.1. Geometric Parameter Error Model

Differential motion is commonly used to describe the relationship between two small
variables corresponding to joint space and the end effectors of industrial robots. Two
forms of differential motion are translation transformation and rotation transformation.
According to [29], the representation of differential motion is as follows:

dT = δT·T =


0
δx
−δy

0

−δx
0
δz
0

δy
−δz
0
0

dx
dy
dz
1

·T (5)

where
[
δz, δy, δx

]
represents differential rotation,

[
dx, dy, dz

]
represents differential transla-

tion, and δT represents differential transformation matrix.

3.1.1. Differential Transformation Matrix δn
0 T

Let the parameter deviations of joint i be [∆θi, ∆αi, ∆βi, ∆ai, ∆di]. Then, the errors be-
tween the actual and nominal transformation matrix of adjacent joints can be approximated
as a linear combination of the link parameter deviations:

d i
i−1T =

∂ i
i−1T
∂θi

∆θi +
∂ i

i−1T
∂αi

∆αi +
∂ i

i−1T
∂βi

∆βi +
∂ i

i−1T
∂ai

∆ai +
∂ i

i−1T
∂di

∆di (6)
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Since the nominal βi is equal to 0, the partial derivative of Equation (1) with respect to
θi is as follows:

∂ i
i−1T
∂θi

=


−sθi
cθi
0
0

−cαicθi
−cαisθi

0
0

sαicθi
sαisθi

0
0

−aisθi
aicθi
0
0

 = Dθ · i
i−1T (7)

where

Dθ =


0
1
0
0

−1
0
0
0

0
0
0
0

0
0
0
0

 (8)

Similarly, taking the derivative of Equation (1) with respect to αi, βi, ai, di, we can
obtain Dαi , Dβi , Dai , Ddi

, as shown in Table 1. Thus, Equation (6) can be rewritten as

d i
i−1T =

(
Dθi ∆θi + Dαi ∆αi + Dβi ∆βi + Dai ∆ai + Ddi

∆di
)
· i
i−1T = δ i

i−1T · i
i−1T (9)

where δ i
i−1T is the differential transformation matrix between adjacent joint coordinate frames.

When there are deviations in the link parameters, ignoring the higher-order terms, the
pose of the FCF relative to the BCF can be expressed as follows:

n
0 T + dn

0 T =
n

∏
i=1

(
i

i−1T + d i
i−1T

)
≈ n

0 T +
n

∑
i=1

i−1
0Tδ i

i−1T i−1
0T
−1·0nT (10)

Thus, the differential transformation matrix from the TCF to the BCF is as follows:

δ0
nT =

n
∑

i=1

i−1
0T ·δ i

i−1T ·i−1
0T
−1

=
n
∑

i=1

i−1
0T ·
(

Dθi ∆θi + Dαi ∆αi + Dβi ∆βi + Dai ∆ai + Ddi
∆di
)
·i−1

0T
−1

=
n
∑

i=1
∑
wi

i−1
0T ·Dwi ·

i−1
0T
−1·∆wi

(11)

where wi ∈ {θi, di, ai, αi, βi}.
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Table 1. The values of Dθi , Dαi , Dβi , Dai , and Ddi
.

Dθi
Ddi

Dai Dαi Dβi0
1
0
0

−1
0
0
0

0
0
0
0

0
0
0
0


0

0
0
0

0
0
0
0

0
0
0
0

0
0
1
0


0

0
0
0

0
0
0
0

0
0
0
0

cθi
sθi
0
0


 0

0
−sθi

0

0
0

cθi
0

sθi
−cθi

0
0

−disθi
dicθi

0
0


 0

sαi
−cθicαi

0

−sαi
0

−sθicαi
0

cθicαi
sθicαi

0
0

aisθisαi − dicθicαi
−aicθisαi − disθicαi

aicαi
0
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3.1.2. Differential Transformation Matrices δ 0
mT and δ t

n T

The pose of the BCF relative to the MCF can be divided into translation [x, y, z] and
rotation [α, β, γ]. Its matrix form is shown in Equation (3). When its calibration is not
accurate enough, the error between its actual and nominal value is as follows:

d 0
mT =

∂ 0
mT
∂x

∆x +
∂ 0

mT
∂y

∆y +
∂ 0

mT
∂z

∆z +
∂ 0

mT
∂α

∆α +
∂ 0

mT
∂β

∆β +
∂ 0

mT
∂γ

∆γ (12)

where ∆u = [∆x, ∆y, ∆z, ∆α, ∆β, ∆γ] represents the translation and orientation errors of the
BCF relative to the MCF.

Taking the derivative of Equation (3) with respect to x, we can obtain the following:

∂ 0
mT
∂x

=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 = Cx· 0
mT (13)

where

Cx =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 (14)

Similarly, by taking the derivative of Equation (3) with respect to y, z, α, β, γ, we
can obtain Cy, Cz, Cα, Cβ, Cγ, as shown in Table 2. Thus, Equation (12) can be rewritten
as follows:

d 0
mT =

(
Cx∆x + Cy∆y + Cz∆z + Cα∆α + Cβ∆β + Cγ∆γ

)
· 0
mT = δ 0

mT · 0
mT (15)

Therefore, the differential transformation matrix from the BCF to the MCF is as follows:

δ 0
mT = ∑

u
Cu∆u, u ∈ {x, y, z, α, β, γ} (16)

Similarly, the differential transformation matrix from the TCF to the FCF is similar to
δ 0

mT and is given by

δ t
n T = ∑

v
Cv∆v, v ∈

{
x′, y′, z′, α′, β′, γ′

}
(17)

where ∆v = [∆x′, ∆y′, ∆z′, ∆α′, ∆β′, ∆γ′] represents the translation and orientation errors
of the TCF relative to the FCF.
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Table 2. The values of Cx, Cy, Cz, Cα, Cβ, and Cγ.

Cx Cy Cz Cα Cβ Cγ0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


0 0 0 0

0 0 0 1
0 0 0 0
0 0 0 0


0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0


 0 −1 0

1 0 0
0
0

0
0

0
0

y
−x
0
0


 0 0 cα

0 0 sα
−cα

0
−sα

0
0
0

−zcα
−zsα
ysα
0


 0 sβ sαcβ
−sβ 0 −cαcβ
−sαcβ

0
cαcβ

0
0
0

−ysβ− zsαcβ
xsβ + zcαcβ

−cβ(ycα− xsα)
0
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3.1.3. Differential Transformation Matrix δ t
m T

For an n-DOF industrial robot, when there are deviations in the link parameters and
transformation errors between the BCF and the MCF, as well as between the TCF and the
FCF, the pose of the TCF in the MCF can be expressed as follows:

t
m T + d t

m T =
( 0

mT + d 0
mT
)(n

0 T + dn
0 T
)( t

n T + d t
n T
)

≈ t
m T + d 0

mT ·t0T + 0
mT ·dn

0 T · t
n T + n

mT ·d t
n T

= t
m T +

(
δ 0

mT + 0
mT ·δn

0 T · 0
mT−1

+ n
mT ·δ t

n T ·nmT−1
)
· t
m T

= t
m T + δ t

m T · t
m T

(18)

According to Equations (11), (16) and (17), the differential transformation matrix of
the TCF relative to the MCF is as follows:

δ t
m T = δ 0

mT + n
mT ·δ t

n T ·nmT−1 + 0
mT ·δn

0 T · 0
mT−1

= ∑
u

Cu∆u + ∑
v

n
mTCv

n
mT−1∆v +

n
∑

i=1
∑
wi

0
mTDwi

0
mT−1∆wi

= ∑
u

Cu∆u + ∑
v

C′v∆v +
n
∑

i=1
∑
wi

D′wi
∆wi

(19)

where u ∈ {x, y, z, α, β, γ}, v ∈ {x′, y′, z′, α′, β′, γ′}, and wi ∈ {θi, di, ai, αi, βi}, which are
the parameters to be identified in the calibration process. C′v and D′wi

are as follows:

C′v = n
mT ·Cv·nmT−1 (20)

D′wi
= 0

mT ·Dwi ·
0

mT
−1

(21)

3.1.4. TM-MDH Error Model

In Equation (19), Cu, C′v and D′wi
follow the form of Equation (5). Similarly, δ t

m T also
follows the same form, specifically:

δ t
m T =


0
t

m δx
− t

m δy
0

− t
m δx
0

t
m δz

0

t
m δy
− t

m δz
0
0

t
m dx

t
m dy
t

m dz
0

 (22)

where t
m d is equal to

[
t

m dx, t
m dy, t

m dy

]T
,which represents the differential translation of the

TCF relative to the MCF. t
m δ is equal to

[
t

m δz, t
m δy, t

m δx

]T
, which represents the differential

rotation of the TCF relative to the MCF.
Set the errors of the link parameters as ∆θ =

[
∆θ1 · · · ∆θn

]T, ∆d =
[
d1 · · · dn

]T,

∆a =
[
a1 · · · an

]T, ∆α =
[
α1 · · · αn

]T, and ∆β =
[
β1 · · · βn

]T. Based on Equation (19),
the geometric parameters error model (TM-MDH) can be established as follows:

[ t
m d

t
m δ

]
=

[
Mθ

M′θ

Md
M′d

Ma
M′a

Mα

M′α

Mβ

M′β
Eu
E′u

Fv
F′v

]


∆θ
∆d
∆a
∆α
∆β
∆u
∆v


(23)
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Mw =
[
D′w1

(t), · · · , D′wn(t)
]

M′w =
[
D′w1

(r), · · · , D′wn(r)
]

Eu =
[
Cx(t), Cy(t), Cz(t), Cα(t), Cβ(t), Cγ(t)

]
E′u =

[
Cx(r), Cy(r), Cz(r), Cα(r), Cβ(r), Cγ(r)

]
Fv =

[
C′x′(t), C′y′(t), C′z′(t), C′α′(t), C′β′(t), C′γ′(t)

]
F′v =

[
C′x′(r), C′y′(r), C′z′(r), C′α′(r), C′β′(r), C′γ′(r)

]
(24)

where w ∈ {θ, d, a, α, β}. t is the column vector composed of the elements of the corre-
sponding matrix at (1, 4), (2, 4), and (3, 4). r is the column vector composed of the elements
of the corresponding matrix at (1, 2), (1, 3), and (2, 3). Mw and M′w are 3 × n matrices. Eu,
E′u, Fv, and F′v are 3 × 6 matrices.

3.2. Cross-Identification Method Based on LM Algorithm

The classical industrial robot parameter identification algorithms include the least
square algorithm (LS) [30], the extended Kalman filter (EKF) [31], and the Levenberg-
Marquardt algorithm (LM) [32]. Among them, the LM algorithm combines the steepest
descent method and the Newton method, and can quickly complete the identification task.
It has excellent performance in terms of local convergence and anti-disturbance and is most
commonly used.

3.2.1. LM Algorithm

Equation (23) establishes the linear transformation relationship between the pose error
of the TCF in the MCF and the geometric parameter error. Obviously, as long as there
are enough sets of tool end pose data, an overdetermined linear equation system can be
constructed to represent the tool end pose error and geometric parameter error, and then
the calibration of robot parameters can be achieved. Assuming that there are h sets of tool
end poses, according to Formula (23), we have the following:

t
m d1

t
m δ

1

t
m d2

t
m δ

2

...
t

m dh

t
m δ

h


=



Mθ
1 Md

1 Ma
1 Mα

1 Mβ
1 Eu

1 Fv
1

M′θ
1 M′d

1 M′a
1 M′α

1 M′β
1 E′u

1 F′v
1

Mθ
2 Md

2 Ma
2 Mα

2 Mβ
2 Eu

2 Fv
2

M′θ
2 M′d

2 M′a
2 M′α

2 M′β
2 E′u

2 F′v
2

...
Mθ

h Md
h Ma

h Mα
h Mβ

h Eu
h Fv

h

M′θ
h M′d

h M′a
h M′α

h M′β
h E′u

h F′v
h





∆θ
∆d
∆a
∆α
∆β
∆u
∆v


(25)

Equation (25) can be simplified as follows:

∆P = J·∆ρ (26)

Thus, the industrial robot geometric parameter identification problem is transformed
into a linear equation system solving the problem. The LM algorithm can solve the above
problem, and its iteration steps at the k-th iteration are as follows:

Step 1: Calculate the Jacobian matrix J(ρk) based on the industrial robot structural
parameters [θi, di, ai, αi, βi] and the transformation parameters [u, v].

Step 2: Calculate the geometric parameter error vector ∆ρk according to the follow-
ing equation:

∆ρk = −
[

J(ρk)
T J(ρk) + µk I

]−1
J(ρk)

T∆P(ρk) (27)
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where µk is the damping coefficient, which can be calculated as follows:
µ0 = 0.001

µk+1 =

{
0.001λ, ‖ ∆P(ρk+1) ‖ ≥ ‖ ∆P(ρk) ‖
0.001

λ , ‖ ∆P(ρk+1) ‖ ≤ ‖ ∆P(ρk) ‖
2.5 ≤ λ ≤ 10

(28)

Step 3: Update the geometric parameters based on ρk+1 = ρk + ∆ρk.

3.2.2. C-LM Algorithm

In Equation (23), since the first column of the Mθ is zero, the joint angle θ1 cannot be
identified when the optimization objective is solely the differential translation t

m d. Similarly,
due to M′d and M′a being zero, and the first three columns of E′u and F′v also being zero,
the parameters such as link length ai, link offset di, translation [x, y, z] between the BCF
and the MCF, and translation [x′, y′, z′] between the TCF and the FCF cannot be identified
when the optimization objective is solely the differential rotation t

m δ. Furthermore, when
attempting to simultaneously identify all geometric parameters using Equation (25) and
the LM algorithm, the results are prone to becoming trapped in local optima.

To address the aforementioned issues, this paper proposes a geometric parameter
cross-identification method based on the LM algorithm. The specific steps are as follows:

Step 1: Considering only the differential rotation δ as the optimization objective,
use the LM algorithm to solve the pose part of the linear Equation (25). This step aims
to identify the nonlinear parameters related to angles, which include

[
∆θ1 · · · ∆θn

]T ,[
∆α1 · · · ∆αn

]T ,
[
∆β1 · · · ∆βn

]T , [α, β, γ], and [α′, β′, γ′].
Step 2: Using the identified angular parameters from the previous step as the initial val-

ues, with the position error ∆p and differential rotation δ as the optimization targets, iden-
tify all linear and nonlinear parameters, where the linear parameters are

[
d1 · · · dn

]T ,[
a1 · · · an

]T , [x, y, z], and [x′, y′, z′]. Note that the position error ∆p and the differential
translation d differ by a rotation matrix R.

Step 3: Repeat the above two steps until the iteration termination condition is met.
The proposed C-LM algorithm identifies the nonlinear parameters related to the angles

according to the differential rotation δ, and then uses it as the initial value to identify all
the parameters to be sought. This solves the local optimal problem caused by the mutual
interference of linear and nonlinear parameters when identifying geometric parameters
simultaneously. Therefore, compared to the strategy of simultaneously identifying all
parameters, the proposed C-LM algorithm is more likely to escape local minima, has a
wider convergence range, and achieves higher identification accuracy. The flowchart of the
geometric parameter cross-identification algorithm based on the LM algorithm is shown in
Figure 3.
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4. Simulation Analysis

To validate the effectiveness and correctness of the proposed TM-MDH error model
and C-LM identification algorithm, numerical simulations were conducted using MATLAB
R2016A software in this section. First, the source of the industrial robot tool end pose data
in the simulation experiment is introduced. Secondly, according to the TM-MDH model
proposed in Section 3.1 and the C-LM algorithm proposed in Section 3.2, all geometric
parameters are identified, and their linear relationship is analyzed by observing the differ-
ence between them and the actual structural parameters of the industrial robot, and then a
scheme for not identifying some geometric parameters under specific conditions is given.
Lastly, the convergence of the proposed C-LM algorithm is analyzed, and measurement
noise is introduced to evaluate the actual compensation effect of the TM-MDH model on
pose accuracy.

4.1. Data Generation

In the simulation experiments, the nominal structural parameters are based on the
BRTIRUS0707A robot, as shown in Table 3. The schematic diagram of the joint coordinate
frames for the robot is shown in Figure 4. The structural parameter deviations for the
BRTIRUS0707A robot are given in Table 4. The nominal transformation matrix 0

mT between
the BCF and the MCF, as well as the nominal transformation matrix t

n T between the TCF
and the FCF, are set to the identity matrix E, with deviations shown in Table 5.

Table 3. Nominal structural parameters of the BRTIRUS0707A robot.

Joints θi/rad di/mm ai/mm αi/rad βi/rad Limits/rad

1 θ1 444.5 50 −π/2 / −3.0369~3.0369
2 θ2 0 350 0 0 −2.1817~2.1817
3 θ3 0 41 −π/2 / −1.0472~3.0543
4 θ4 364 0 π/2 / −3.1416~3.1416
5 θ5 0 0 −π/2 / −2.0944~2.0944
6 θ6 117 0 0 / −6.2832~6.2832

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

frames for the robot is shown in Figure 4. The structural parameter deviations for the 
BRTIRUS0707A robot are given in Table 4. The nominal transformation matrix 𝑇𝑇𝑚𝑚0  be-
tween the BCF and the MCF, as well as the nominal transformation matrix 𝑇𝑇𝑛𝑛𝑡𝑡  between 
the TCF and the FCF, are set to the identity matrix 𝐸𝐸, with deviations shown in Table 5. 

Table 3. Nominal structural parameters of the BRTIRUS0707A robot. 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝜽𝜽𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 𝒅𝒅𝒊𝒊/𝐦𝐦𝐦𝐦 𝒂𝒂𝒊𝒊/𝐦𝐦𝐦𝐦 𝜶𝜶𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 𝜷𝜷𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 𝐋𝐋𝐉𝐉𝐦𝐦𝐉𝐉𝐉𝐉𝐉𝐉/𝐫𝐫𝐫𝐫𝐫𝐫 
1 𝜃𝜃1 444.5 50 −𝜋𝜋/2 / −3.0369~3.0369 
2 𝜃𝜃2 0 350 0 0 −2.1817~2.1817 
3 𝜃𝜃3 0 41 −𝜋𝜋/2 / −1.0472~3.0543 
4 𝜃𝜃4 364 0 𝜋𝜋/2 / −3.1416~3.1416 
5 𝜃𝜃5 0 0 −𝜋𝜋/2 / −2.0944~2.0944 
6 𝜃𝜃6 117 0 0 / −6.2832~6.2832 

 
Figure 4. Schematic diagram of the joint coordinate frames of the BRTIRUS0707A robot. 

Table 4. Preset deviations ∆𝜃𝜃𝑖𝑖 ,∆𝑑𝑑𝑖𝑖 ,∆𝑎𝑎𝑖𝑖 ,∆𝛼𝛼𝑖𝑖 , and ∆𝛽𝛽𝑖𝑖. 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 ∆𝜽𝜽𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 ∆𝒅𝒅𝒊𝒊/𝐦𝐦𝐦𝐦 ∆𝒂𝒂𝒊𝒊/𝐦𝐦𝐦𝐦 ∆𝜶𝜶𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 ∆𝜷𝜷𝒊𝒊/𝐫𝐫𝐫𝐫𝐫𝐫 
1 −0.0035 0.02 −0.7 0 / 
2 0.002 −0.05 −0.4 0.0035 0.001 
3 0.001 0.03 0.5 0.0014 / 
4 0.004 −0.04 0.5 −0.0014 / 
5 0.0035 0.01 −0.1 0.0087 / 
6 −0.008 −0.06 −0.2 −0.001 / 

Table 5. Preset deviations ∆𝑢𝑢 and ∆𝑣𝑣. 

𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 ∆𝒙𝒙/𝐦𝐦𝐦𝐦 ∆𝒚𝒚/𝐦𝐦𝐦𝐦 ∆𝒛𝒛/𝐦𝐦𝐦𝐦 ∆𝜶𝜶/𝐫𝐫𝐫𝐫𝐫𝐫 ∆𝜷𝜷/𝐫𝐫𝐫𝐫𝐫𝐫 ∆𝜸𝜸/𝐫𝐫𝐫𝐫𝐫𝐫 
∆𝑢𝑢 0.05 0.07 0 0 0.001 0.005 
∆𝑣𝑣 0 0.02 0 0 0.006 0 

The cross-identification process for the geometric parameters of the industrial robot 
is shown in Figure 3. Since the industrial robot has 6 degrees of freedom, it is necessary to 
identify 25 structural parameters [𝜃𝜃𝑖𝑖,𝑑𝑑𝑖𝑖 , 𝑎𝑎𝑖𝑖 ,𝛼𝛼𝑖𝑖 ,𝛽𝛽2] , 12 transformation parameters [𝑢𝑢, 𝑣𝑣] , 
giving a total of 37 geometric parameters. Each set of poses can construct six equations, so 
at least seven sets of nominal and actual poses of the TCF are required. In fact, the more 

Figure 4. Schematic diagram of the joint coordinate frames of the BRTIRUS0707A robot.



Appl. Sci. 2023, 13, 10901 14 of 21

Table 4. Preset deviations ∆θi, ∆di, ∆ai, ∆αi, and ∆βi.

Joints ∆θi/rad ∆di/mm ∆ai/mm ∆αi/rad ∆βi/rad

1 −0.0035 0.02 −0.7 0 /
2 0.002 −0.05 −0.4 0.0035 0.001
3 0.001 0.03 0.5 0.0014 /
4 0.004 −0.04 0.5 −0.0014 /
5 0.0035 0.01 −0.1 0.0087 /
6 −0.008 −0.06 −0.2 −0.001 /

Table 5. Preset deviations ∆u and ∆v.

Joints ∆x/mm ∆y/mm ∆z/mm ∆α/rad ∆β/rad ∆γ/rad

∆u 0.05 0.07 0 0 0.001 0.005
∆v 0 0.02 0 0 0.006 0

The cross-identification process for the geometric parameters of the industrial robot
is shown in Figure 3. Since the industrial robot has 6 degrees of freedom, it is necessary
to identify 25 structural parameters [θi, di, ai, αi, β2], 12 transformation parameters [u, v],
giving a total of 37 geometric parameters. Each set of poses can construct six equations, so
at least seven sets of nominal and actual poses of the TCF are required. In fact, the more
sets of poses provided, the higher the identification accuracy of the geometric parameter
deviation and the compensation accuracy of the end pose. In this paper, 100 sets of poses
were randomly selected within the working space of the industrial robot.

4.2. Linear Relationship Analysis

Based on Tables 3–5, 100 sets of nominal poses and actual poses of the industrial
robot were generated. Here, the actual poses do not include noise and are obtained solely
from contaminated geometric parameters and forward kinematic equations. Assuming
the C-LM algorithm is iterated 20 times, the cross-identification results of the TM-MDH
model are shown in Tables 6 and 7. It was found that 14 parameter identification results
were anomalous. In this paper, the definition of parameter anomaly is as follows: if the
relative error between the identified deviation of a parameter and its given theoretical value
exceeds 2%, the identification result of that parameter is considered anomalous.

Table 6. ∆θ, ∆d, ∆a, ∆α, and ∆β identification results without noise (the values in bold font indicate
anomalies).

Joints ∆θi/rad ∆di/mm ∆ai/mm ∆αi/rad ∆βi/rad

1 −0.0022 0.0104 −0.7 0 /
2 0.002 −0.0104 −0.4 0.0035 0.001
3 0.001 −0.0096 0.5 0.0014 /
4 0.004 −0.04 0.5 −0.0014 /
5 0.0035 0.01 −0.1 0.00087 /
6 −0.0044 −0.03 −0.01 −0.0011 /

Table 7. ∆u and ∆v identification results without noise (the values in bold font indicate anomalies).

Parameters ∆x/mm ∆y/mm ∆z/mm ∆α/rad ∆β/rad ∆γ/rad

∆u 0.0509 0.0695 0.0095 −0.0013 0.001 0.005
∆v −0.01 0.0207 −0.03 −0.0035 0.006 0.0001

Analyzing the anomalous data of d2 and d3 in Table 6 and observing Figure 4, it can
be concluded that as long as they satisfy Equation (29), their anomalies will not affect
the actual pose of the industrial robot’s end effector. In other words, for the same pose,
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there exist an infinite number of sets of inverse solutions for d2 and d3, indicating that the
solution exhibits singularity.

f (d2, d3) = ∆dr
2 + ∆dr

3 − (∆dc
2 + ∆dc

3) = 0 (29)

Here, ∆dr
2 and ∆dr

3 are the identification results of the deviations for parameters d2
and d3. ∆dc

2 and ∆dc
3 are the preset theoretical values for the deviations of parameters d2

and d3.
Based on the above analysis, the preliminary results showed that there is a linear

relationship between d2 and d3, as their deviations sum up to a constant value equal to the
sum of the preset deviations. Similarly, it can be inferred that there are linear relationships
between d1 and z; d6 and z′; a6 and x′; θ1 and α; θ6 and α′; and α6 and γ′. To further validate
these judgments, while keeping the other geometric parameters constant, we continuously
adjusted the preset deviations of d2 and d3, and observed the value of f (d2, d3), as shown
in Figure 5a. Upon observation, it was found that, for different preset deviations ∆dc

2 and
∆dc

3, the value of f (d2, d3) consistently remained at zero. This demonstrates that there
exists a linear relationship between the link offsets d2 and d3 for the BRTIRUS0707A robot.
Similarly, Figure 5 can also be used to determine the linear relationships between d1 and z;
d6 and z′; a6 and x′; θ1 and α; θ6 and α′; and α6 and γ′.
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During the parameter identification process of the industrial robot, it was observed
that there exists a linear relationship between d1 and z (i.e., z can be expressed in terms of
d1). This indicates the presence of parameter redundancy, suggesting that the introduction
of the transformation parameter z would affect the identification of the actual structural
parameter d1. To minimize the influence of introduced transformation parameters u, v
on the identification of actual structural parameters, in practical applications, if it can be
ensured that the calibration of TCP and MCF is relatively accurate, the six transformation
parameters [z, α, x′, z′, α′, γ′] can be excluded from identification.

4.3. Algorithm Verification and Compensation Result Analysis

This paper proposes a C-LM algorithm to solve the problem of easily falling into local
optima when identifying geometric parameters simultaneously. To verify the sensitivity of
the C-LM algorithm to the initial parameter values, convergence analysis was performed
using different calibration algorithms on the TM-MDH model with different preset pa-
rameters (θ1 and α2). A deviation vector [∆θ1, ∆α2] was added to the nominal parameters,
where ∆θ1 and ∆α2 varied from −3.1 rad to 3.1 rad with equal intervals. Under 63*63 sets
of initial parameter conditions, different algorithms were used to validate the convergence
of these cases.

Table 8 presents a comparison of the convergence indicators of the LM algorithm and
the C-LM algorithm under different initial conditions. The criteria include run time and
convergence ratio. From Table 8, it can be observed that both the LM algorithm and the
C-LM algorithm had cases where the results did not converge, even after reaching the
maximum number of iterations. However, the C-LM algorithm exhibited a higher global
convergence ratio of 53.16%. The specific convergence conditions of the LM algorithm and
C-LM algorithm are shown in Figure 6, which displays three-dimensional color maps of the
final orientation error and position error of the cases with different initial values [∆θ1, ∆α2].
It can be concluded that when the norm of the bias vector is relatively small, the algorithms
tend to converge to the global optimum, as reflected by the large flat blue region in the
middle of the three-dimensional color map. Clearly, the proposed C-LM algorithm has a
broader global convergence range. That is to say, The C-LM algorithm is insensitive to the
initial values of the parameters to be identified.

Table 8. Comparison of convergence indicators for different algorithms under different initial values.

Criteria C-LM LM

Run time/s 2.295 0.4747
Convergence ratio 53.16% 22.45%

Table 9 gives the identification results of the industrial robot’s structural parameters
based on the C-LM algorithm, with and without introducing transformation parameters u
and v. In this experiment, the true pose data of the TCP included Gaussian measurement
noise with standard deviations of 0.02 mm for position noise and 0.002 rad for orientation
noise. The position errors of the FCP relative to the BCF and the deviations along each axis
are shown in Figure 7, while the orientation errors and the deviations around each axis are
shown in Figure 8. The statistical results (mean, minimum, and maximum) are presented
in Tables 10 and 11.

According to Table 9, it can be observed that when there were transformation errors,
the structural parameters of industrial robots identified according to the traditional MDH
model were significantly different from their actual values. In contrast, the proposed
TM-MDH model, which is not affected by transformation errors, can effectively identify
the actual structural parameters of the industrial robot. Based on Figures 7 and 8, and
Tables 10 and 11, the following conclusions can be drawn: when transformation errors
are present, the compensation effect of the TM-MDH model is excellent. After calibration
using the C-LM algorithm, the position error of the FCF relative to the BCF decreased
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from 1.9536 mm to 0.0122 mm, and the orientation error decreased from 1.46 × 10−2 rad to
1.31 × 10−4 rad.
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Table 9. Identification results of ∆θ, ∆d, ∆a, ∆α, and ∆β under different error models with Gaus-
sian noise.

Error Model Joints ∆θi/rad ∆di/mm ∆ai/mm ∆αi/rad ∆βi/rad

MDH

1 −0.0046 −0.0020 −0.6024 −0.001 /
2 0.0012 −0.1938 −0.6105 0.006 0.0016
3 −0.0003 −0.1941 −0.3667 0.0014 /
4 0.0048 0.154 0.0102 0.0063 /
5 0.0017 0.1931 0.0399 0.0069 /
6 −0.0086 0.2208 −0.3939 −0.0006 /

TM-MDH

1 −0.0035 0.0156 −0.7051 0 /
2 0.002 −0.007 −0.3996 0.0035 0.0010
3 0.001 −0.0074 0.4901 0.0014 /
4 0.004 −0.04 0.4939 −0.0013 /
5 0.0034 0.062 −0.1028 0.0083 /
6 −0.008 −0.0575 −0.2029 −0.0009 /
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Table 10. The position accuracy for different error models (mm).

Error Model Mean Max Min

Before compensation 1.9536 4.1821 0.1847
MDH 0.9292 2.2057 0.2764

TM-MDH 0.0122 0.0228 0.0045

Table 11. The orientation accuracy for different error models (rad).

Error Model Mean Max Min

Before compensation 1.46 × 10−2 3.16 × 10−2 3.61 × 10−3

MDH 9.50 × 10−3 3.70 × 10−2 3.47 × 10−3

TM-MDH 1.31 × 10−4 1.36 × 10−3 4.74 × 10−5

5. Conclusions

This paper proposes a TM-MDH error model and a C-LM algorithm for identifying the
actual structural parameters of industrial robots. The simulation results indicate that the
proposed C-LM algorithm overcomes the drawback of easily falling into local optima when
identifying geometric parameters simultaneously and exhibits a wider convergence range.
Furthermore, the proposed TM-MDH model accurately describes the relationship between
geometric errors and end-effector pose errors. After calibration by the C-LM algorithm,
the positional error of the industrial robot’s flange end was reduced by 0.0122 mm from
1.9536 mm, and the orientation error was reduced by 1.31 × 10−4 rad from 1.46 × 10−2 rad.

This study is an initial exploration of error models for calibrating industrial robots,
considering only geometric parameters such as joint angles. Further research can incor-
porate motor gear ratios, coupling ratios, and link deformation parameters into the robot
error model. It is worth noting that, besides geometric errors, there are other non-geometric
errors and random errors. Therefore, establishing an end-effector accuracy compensation
model for industrial robots using neural networks is an interesting research direction. Lastly,
considering intelligent optimization algorithms such as differential evolution and genetic
algorithms for identifying the structural parameters of industrial robots is also meaningful.
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Abbreviations

DH Denavit–Hartenberg Model
MDH Modified Denavit–Hartenberg Model
CPC Complete and Parametrically Continuous model
POE Product of Exponentials Model
ANNs Artificial Neural Networks
IELM Incremental Extreme Learning Machine
TCN Time Convolutional Networks
LM Levenberg–Marquardt Algorithm
DE Differential Evolution Algorithm
DOF Degrees-of-Freedom
MCF Measurement Coordinate Frame
BCF Base Coordinate Frame
JCF Joint Coordinate Frame
FCF Flange Coordinate Frame,
TCF Tool Coordinate Frame
C-LM Cross-Identification Method

TM-MDH
An Error Model Based on Modified Denavit–Hartenberg Parameters and the
Transformation Errors of Tool Coordinate Frame and Measurement Coordinate Frame
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