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Featured Application: This paper investigates the peak ground acceleration (PGA) and seismo-
genic fault characteristics of the Mw7.8 earthquake that struck Turkey on 6 February 2023. The
paper identifies the near-fault effect, the fault locking segment effect, and the trampoline effect
of the earthquake, and presents a detailed spatial distribution of PGA. The featured application
of this work is in seismic engineering and disaster prevention, where the PGA and fault charac-
teristics are essential for assessing the seismic demand and capacity of structures, as well as the
potential damage and loss induced by earthquakes. This paper also enhances the understand-
ing of the seismogenic mechanism, damage mode, characteristics, and strong earthquake law of
the Turkey earthquake, which can facilitate the improvement of the seismic design codes and
emergency response plans in Turkey and other regions with similar tectonic settings.

Abstract: A Mw7.8 earthquake struck Turkey on 6 February 2023, causing severe casualties and
economic losses. This paper investigates the characteristics of strong ground motion and seismo-
genic fault of the earthquake. We collected and processed the strong ground motion records of
379 stations using Matlab, SeismoSignal, and Surfer software: Matlab (Version R2016a), SeismoSignal
(Version 5.1.0), and Surfer (Version 23.0.15), and obtained the peak ground acceleration (PGA) contour
map. We analyzed the near-fault effect, the fault locking segment effect, and the trampoline effect of
the earthquake based on the spatial distribution of PGA, the fault geometry, and slip distribution.
We found that the earthquake generated a very strong ground motion concentration effect in the
near-fault area, with the maximum PGA exceeding 2000 cm/s2. However, the presence of fault
locking segments influenced the spatial distribution of ground motion, resulting in four significant
PGA high-value concentration areas at a local dislocation, a turning point, and the end of the East
Anatolian Fault. We also revealed for the first time the typical manifestation of the trampoline effect
in this earthquake, which was characterized by a large vertical acceleration with a positive direction
significantly larger than the negative direction. This paper provides an important reference for
understanding the seismogenic mechanism, damage mode, characteristics, and strong earthquake
law of the Turkey earthquake.

Keywords: Turkey earthquake; peak ground acceleration; seismogenic fault; near-fault effect; fault
locking segment effect; trampoline effect

1. Introduction

The term “strong motion” refers to the intense shaking experienced during an earth-
quake. It is a measure of ground acceleration, velocity, and displacement. Observing entails
the documentation of acceleration time–history curves of ground motion occurring during
earthquakes, with the purpose of studying the characteristics of ground motion and the
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response of engineering structures. The exploration of this subject matter has emerged as a
pivotal field of study within contemporary seismology and earthquake engineering.

The Anatolian Peninsula is recognized as a highly dynamic seismotectonic area, char-
acterized by a significant occurrence of destructive earthquakes throughout the last century.
To monitor such events, Turkey has deployed a substantial number of strong motion
accelerographs since 1973 [1]. At the beginning, the network initiated its activity with
67 analog accelerometers. Starting in 1993, digital accelerometers were gradually inte-
grated into the network. From 2000 to 2012, the network expanded to 500 stations that
used real-time data transmission systems. The data from these stations were also used
for disaster management purposes, such as early warning and emergency response [2].
At present, there are a total of 762 operational strong motion stations that are actively
producing approximately 20,000 strong motion records on an annual basis [2,3]. These
records provide crucial data for earthquake disaster defense and emergency response.

Scholars from various countries have conducted extensive research based on Turkey’s
seismic network and strong motion records. In their study, Akkar et al. [4] conducted
an analysis of earthquake spectral characteristics, attenuation laws, and near-field effects.
Their research aimed to gain a deeper understanding of the physical mechanisms behind
ground motion and to enhance seismic hazard assessment. Beyhan et al. [5] examined the
correlation between strong motion records and various categories of structural seismic
performance, damage patterns, and vulnerability curves. Their research aimed to gather
data and insights that could be used to evaluate structural seismic damage and develop
seismic design guidelines. Bommer et al. [6] established a shallow crustal ground motion
prediction model, offering a reliable tool and parameters for nonlinear dynamic analysis.
In addition to these studies, there are also other aspects that have been explored or can be
explored using Turkey’s strong motion data, such as site effects [7], source characteristics [8],
seismic wave propagation [9], seismic intensity [10], seismic risk mapping [11], seismic
early warning [12], seismic resilience [13], etc. These aspects are important for advancing
the scientific knowledge and practical applications of strong motion data in Turkey and
beyond. Nevertheless, in terms of research direction, there is still a lack of studies that
combine strong motion records with the relationship to seismogenic faults. Moreover, a
comprehensive analysis of the influence of various fault types, locations, and geometric
configurations on strong ground motion might be currently lacking.

The objective of this study was to gather and systematically arrange strong motion
records obtained from the Mw7.8 earthquake that took place in Turkey on 6 February
2023. The spatial distribution patterns and characteristics of strong ground motion in this
earthquake were analyzed. This report provides a summary of the correlation between
ground motion and the resulting seismic damage. Additionally, it explores the associa-
tion between strong motion records and seismogenic faults. Preliminary analyses were
conducted concerning near-fault effects, locked segment effects, and trampoline effects
based on the geometric features of seismogenic faults. The research presented offers essen-
tial insights into the seismogenic mechanism, damage patterns, and characteristics of the
earthquake under investigation. Additionally, it functions as a fundamental framework
for conducting comprehensive investigations on seismic characteristics and strong motion
patterns in Turkey.

2. Regional Tectonics and Earthquake Overview

Turkey is located at the convergence of Eurasia, on the Anatolian Plate, which is
affected by the interaction of several adjacent plates and fault zones [14], as shown in
Figure 1: The Arabian Plate squeezes the Anatolian Plate to the northwest, forming the
East Anatolian Fault Zone that is the most active fault zone in Turkey in recent years;
The African Plate, located south of Turkey, subducts northward under the Eurasian Plate,
forming the Greek Island Arc, which is the most active subduction zone in Europe; The
Eurasian Plate, located north of Turkey, compresses Turkey’s northern part southward,
forming the North Anatolian Fault Zone, which is a right-lateral strike-slip fault zone
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extending from the northwest of Turkey to the east of Georgia, and also the longest fault
zone in Turkey [15–17].
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Figure 1. Schematic diagram of the relevant plates and active faults around Turkey. (The plate
boundaries are depicted by blue dashed lines. The motion directions of the plates are indicated by
light blue thick arrows. The East Anatolian Fault (EAF) and the North Anatolian Fault (NAF) are
shown by red and orange curves, respectively. The motion of the faults is indicated by dark blue
bidirectional arrows. The seismic stations are depicted by black triangles. The figure also shows the
earthquakes with Mw 5.0 or above that occurred within and around the Anatolian Plate since 1900.
The epicenters are depicted by circles with solid dots, and the size of the circles corresponds to the
earthquake magnitude. This figure demonstrates the complex tectonic setting of Turkey and the high
seismic hazard in the region).

The exact time of this earthquake was 01:17 (UTC) on 6 February 2023, and its seismo-
genic fault was a segment of the East Anatolian Fault Zone [18]. The fault zone stretches
about 700 km from the eastern to the central-southern part of Turkey, forming a deformation-
type tectonic boundary between the Anatolian Plate and the northward-moving Arabian
Plate. The slip rate in the eastern part is 6–10 mm/year, and in the western part is
1–4 mm/year [19]. The fault can also be divided into different directions of secondary
faults, with mostly left-lateral slip, and locally showing thrust or normal faults [18].

The epicenter was located in Pazarcık district of Kahramanmaraş city in Gaziantep
province of Turkey, with a focal depth of 10 km. This earthquake caused extremely severe
disasters in southern Turkey and northern Syria and was the strongest earthquake in the
region in more than a hundred years [20]. (See Table 1 for details of the earthquake).

The earthquake caused a direct economic loss of USD 34.2 billion [21] in Turkey and
resulted in massive casualties and building damage. It killed 59,259 people, which made it
the deadliest one in Turkey since 1900 [21]. Gaziantep city was the most severely affected
city, with more than 15,000 people dead and more than 30,000 injured. The Şehitkamil
district, which was closest to the epicenter, had 12,141 buildings destroyed or severely
damaged, with a building damage rate of more than 80% [20]. The Gaziantep Castle was the
oldest building damaged in the earthquake, with a history of more than two thousand years,
and it possessed extremely precious cultural value [22]. Figure 2 shows the comparison of
the castle before and after the earthquake. The earthquake also caused serious disasters
in Hatay, Kahramanmaraş, Malatya, Adıyaman, Diyarbakır, Şanlıurfa, Mardin, and other
cities and regions. These seismic damages included building collapse (see Figure 3), surface
rupture (see Figure 4), landslide (see Figure 5), sand soil liquefaction (see Figure 6), and so
on [23–25].
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Table 1. Statistical table of the earthquake’s basic information [20,21].

Basic Facts

Date and Time 6 February 2023, 01:17 (UTC)

Location Pazarcık

Latitude (◦) 37.288

Longitude (◦) 37.043

Earthquake magnitude Mw7.8

Seismogenic Structure

Hypocentral depth (km) 10

Fault East Anatolian Fault

Rupture Length (km) 70

Peak Value

PGA (cm/s2) 2039.20

PGV (cm/s) 186.78

PGD (cm) 142.08

Damage Loss
Direct physical damages (USD) 34.2 Billion

Casualty 59,259
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Figure 2. Comparison of Gaziantep Castle before (left) and after (right) the earthquake, showing the
damage to the walls and towers. The images were obtained from Google Earth Pro, with the lat long
coordinates of 37◦04′ N, 37◦23′ E.
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Figure 3. Comparison of Trend Garden Residence Hotel before (left) and after (right) the earthquake,
showing the collapse of the building. The images were obtained from Google Earth Pro, with the lat
long coordinates of 38◦20′ N, 38◦17′ E.
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Figure 4. Comparison of surface rupture before (left) and after (right) the earthquake, showing the
displacement and cracking of the soil along a fault line. The images were obtained from Google Earth
Pro, with the lat long coordinates of 38◦20′ N, 38◦17′ E and the date of 5 August 2022 (before) and 15
February 2023.
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Pro, with the lat long coordinates of 37◦00′ N, 36◦35′ E and the date of 27 December 2022 (before) and
7 February 2023.
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Figure 6. Comparison of site liquefaction before (left) and after (right) the earthquake, showing the
formation and expulsion of water and sand on a flat area. The images were obtained from Google
Earth Pro, with the lat long coordinates of 36◦15′ N, 36◦14′ E and the date of 22 December 2022
(before) and 14 February 2023.

3. Materials and Methods
3.1. Data Sources

The strong motion data utilized in this study were acquired from Turkey’s Disaster
and Emergency Management Authority (AFAD). The AFAD operates the National Strong
Motion Network that consists of 762 stations distributed all over Turkey. The network
records the ground acceleration during earthquakes with magnitudes greater than 3.0.
The data are stored and transmitted in a MiniSEED format, which contains the waveform
samples, the station metadata, and the timing information. Following the occurrence of the
earthquake, the aforementioned agency promptly disseminated pertinent strong motion
record data on its official website. Subsequently, the data underwent several calibrations
and updates [26]. The data used in this study are from the version published on 1 June 2023,
comprising records from 379 stations. The distribution of peak ground acceleration (PGA)
and station locations is shown in Figure 7. The strong motion instruments and sensor
models for each station are listed below. There are a total of 87 stations that are equipped
with the GEOSIG GMS AC-73 seismic instrument. Additionally, there are 140 stations that
utilize the Guralp CMG-5T instrument. Furthermore, there are 107 stations that make use
of the SARA ACEBOX sa10 instrument. Lastly, there are 45 stations that employ various
other seismic instruments [27]. Table 2 presents a compilation of strong motion records
acquired from the earthquake under consideration. The table includes relevant details such
as station numbers, latitude and longitude coordinates, peak ground acceleration (PGA)
values, epicentral distances, fault distances, and station locations. This information has
been included in the table due to spatial constraints.
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Table 2. Compilation table of seismic recording data.

Station District Lon. Lat. Repi. (km) Rrup. (km) PGA_E
(km)

PGA_N
(km)

PGA_U
(km)

0208 Gölbaşı 37.653 37.787 77.255 1.67 14.00 30.20 16.97
0214 Çelikhan 38.226 38.028 132.738 2.91 54.38 61.68 69.91
2712 Nurdağı 36.732 37.184 29.85 1.10 592.35 555.59 313.75
2718 İslahiye 36.627 37.008 48.33 1.45 630.31 654.43 592.28
3123 Hatay 36.160 36.214 142.92 1.72 593.94 655.57 867.58
3125 Hatay 36.133 36.238 142.09 5.15 1121.95 822.62 1151.56
3129 Defne 36.134 36.191 146.39 2.42 1198.74 1351.50 716.94
3134 Dörtyol 36.205 36.828 90.39 28.95 203.91 246.11 141.51
3135 Arsuz 35.883 36.409 142.23 33.44 1372.07 740.97 588.97
3137 Hatay 36.489 36.693 82.46 0.39 670.17 428.37 448.37
4614 Kahramanmaraş 37.298 37.485 31.42 6.81 2039.20 2016.99 1582.62
4615 Kahramanmaraş 37.138 37.387 13.82 11.28 556.65 584.65 656.68
4626 Onikişubat 36.915 37.575 33.84 16.15 223.09 108.81 112.27
4702 Midyat 41.357 37.417 381.59 248.63 21.33 0.38 15.82
7901 Kilis 37.112 36.709 64.57 50.92 16.55 53.11 50.14
8002 Osmaniye 36.562 37.192 44.01 14.19 202.89 242.95 336.56
8004 Kadirli 36.100 37.380 181.86 168.43 181.86 168.42 71.780

3.2. Strong Motion Record Screening and Processing

During the initial screening of the raw data, the study observed a phenomenon in
which a small number of station records displayed ‘truncated’ characteristics. For instance,
at Station 0208 (as shown in Table 2), despite being only 1.67 km away from the fault, the
recorded PGA was only around 30 cm/s2 (significantly lower than the average acceleration
within 5 km of the fault, which exceeds 500 cm/s2). The record had a duration of fewer than
8 s. Station 0214 demonstrated analogous behavior, as it was located at a distance of 2.91 km
from the fault and experienced a peak acceleration below 70 cm/s2. Nineteen stations
in the acquired strong-motion records displayed the previously mentioned ‘truncated’
characteristics. Further analysis revealed that most of these stations were located closer
to the fault or epicenter. Additionally, it should be noted that station 4702 exhibited a
deficiency in its seismic motion records. Specifically, this station only captured seismic
motion along the east–west and vertical axes, while lacking data for the north–south
direction. The recorded magnitudes were approximately 15 cm/s2 for the east–west and
vertical directions, whereas the north–south direction only registered a magnitude of
0.4 cm/s2. To ensure data accuracy, this study excluded the aforementioned 20 records that
potentially had anomalous data.
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The strong motion data are subject to various issues that can affect their accuracy and
consistency, such as instrument errors, baseline drift, and digitization distortion. To avoid
such problems, we have followed the standard procedures and methods for processing
and correcting our data, such as applying filters, removing outliers, interpolating missing
values, etc. Moreover, we have verified our data with other sources, such as seismic stations,
satellite images, etc., to ensure their validity and usefulness.

We processed the acceleration data in two steps, using two different software pro-
grams. First, we used MATLAB Software (Version R2016a) to perform batch processing
of the raw data from all stations, which included converting the data format, extracting
the time and amplitude values, and synchronizing the time stamps. Second, we used
SeismoSignal software (Version 5.1.0) to perform further processing of the selected records
that showed significant PGA values or interesting features, such as station 4614. This
involved performing a baseline correction to remove any drift or offset in the data and
applying Butterworth high-pass filtering to eliminate any low-frequency noise or artifacts
in the data.

3.3. Preliminary Analysis of the Characteristics of PGA Distribution

According to Table 2, the earthquake’s highest Peak Ground Acceleration (PGA) values
were recorded at station 4614, which is situated in Kahramanmaraş City. Its PGA values in
all three directions were the largest among all stations (north–south: 2039.20 cm/s2, east–
west: 2016.99 cm/s2, vertical: 1582.62 cm/s2). We used SeismoSignal software (Version
5.1.0) to replot the data from station 4614, using a smoothing spline function to reduce noise
and enhance clarity. Figure 8 displays the PGA time–history curve pertaining to station
4614. The PGA value of 1372.07 cm/s2, which ranks as the second-largest in the east–west
direction, was documented at station 3135 in Arsuz. This measurement was obtained at
a fault distance of 33.44 km. The second-largest north–south PGA value (1351.50 cm/s2)
was recorded at station 3129 in Defne, with a fault distance of 2.42 km. The second-largest
vertical PGA value (1151.56 cm/s2) was recorded at station 3129 in Hatay, with a fault
distance of 5.15 km.
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Furthermore, it has been observed that certain north–south peak ground acceleration
(PGA) values exhibited a notable disparity when compared to the east–west PGA values in
the context of this earthquake. Station 7901, situated in Kilis, exhibited a north–south peak
acceleration of 53.11 cm/s2, which is 3.2 times greater than the east–west peak acceleration
of 16.55 cm/s2. Similarly, for some stations, the east–west peak acceleration was notably
larger than the north–south component. For instance, station 4626 in Onikişubat had an east–
west peak acceleration of 223.09 cm/s2, which is 2.05 times that of the north–south peak
acceleration (108.81 cm/s2). Instances were observed where the vertical peak acceleration
surpassed the magnitude of acceleration in the horizontal direction. An example of this
can be seen at station 3123 in Hatay, where the vertical peak acceleration measured was
867.58 cm/s2. This value is 1.46 times higher than the east–west peak acceleration recorded
at 593.94 cm/s2.

The recorded data comprises information gathered from multiple stations, with a
specific focus on strategically positioning some of these stations near the East Anatolian
Fault. The nearest station to the fault is station 3139, located at a distance of only 0.06 km.
There are additional stations in close proximity to station 3137, such as station 3123 which
is located 1.72 km away. There are a total of 22 stations located within a 10 km radius of the
fault, while 49 stations are situated within a 50 km radius. The acquisition of near-fault
seismic records is of utmost importance in order to gain a comprehensive understanding
of near-field seismic characteristics. These records play a vital role in establishing precise
attenuation relationships and revealing the scale and faulting characteristics of seismic
faults [28,29].

Using Surfer Software (Version 23.0.15), we employed the Kriging interpolation to
generate contour maps of the PGA values for three directions (north–south, east–west, and
vertical) based on the collected strong motion data. Figure 9 depicts the spatial distribution
of Peak Ground Acceleration (PGA) values observed in the earthquake event, which shows
a clear correlation with the fault geometry and rupture pattern. In the subsequent sections,
we conduct a more detailed analysis and discussion of the seismic effects, building upon
the examination of Figure 9.
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Figure 9. Isoline Map of PGA for the 2023 Turkey Earthquake (Mw7.8). (This map illustrates the
distribution of peak ground acceleration observed in this earthquake with a contour interval of
100 mm/s2. (a–c) are the isopleth maps of peak ground acceleration corresponding to the east–west
component, the north–south component, and the vertical component, respectively. The blue lines
represent the segments of the East Anatolian fault that ruptured during the earthquake, as well as
some adjacent segments that did not rupture but are considered active. The surface rupture is taken
from AFAD (2023) “Preliminary Evaluation Report on 6 February 2023 Pazarcik (Kahramanmaraş)
Mw 7.7 Elbistan (Kahramanmaraş) Mw 7.6 Earthquakes”).

4. Discussion
4.1. Discussion on Concentration of Near-Fault Strong Ground Motions

The presence of ample seismic damage data suggests that regions located near fault
lines tend to experience the most extensive and severe damage [30]. Research conducted on
significant earthquakes, such as the Chi-Chi Earthquake, Chilean Earthquake, Wenchuan
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Earthquake, Hanshin Earthquake, and New Zealand Earthquake [31,32] have consistently
demonstrated that both strong motion observations and numerical simulations indicate a
concentration of intense ground motions within a narrow annular region that is centered
on the surface projection of the fault [33]. The concentration of strong ground motion is
primarily attributed to the geometric attenuation of seismic wave energy radiated from
the fault slip source [34]. Analyzing Figure 9, it is evident that the strong ground motions
along the fault rupture of this earthquake in Turkey exhibit a clear concentration effect. The
distribution of contour lines along the East Anatolian Fault rupture zone exhibits a belt-like
pattern, which is consistently observed for peak accelerations in all three directions.

The presence of high levels of ground motion in close proximity to active faults
indicates a consistent distribution pattern that reflects the characteristics of the fault zone
and its seismic activity. The investigation of the correlation between the distribution region
of intense ground motion and parameters such as earthquake magnitude, fault depth, fault
type, and the rupture process of the fault is of utmost importance in the field of near-fault
ground motion research, because it can reveal the spatial variation and complexity of
ground motion along a fault zone. In this study, we focus on the East Anatolian Fault Zone
(EAFZ), which is a major left-lateral strike-slip fault system in Turkey that has experienced
several large earthquakes in history. The EAFZ consists of several segments with different
geometries, slip rates, and rupture lengths. The EAFZ also exhibits various types of surface
ruptures, such as distributed cracks, en echelon fractures, pull-apart basins, and slope
failures. These features influence the propagation and amplification of seismic waves along
the fault zone.

To support our argument that the intensity of near-fault ground motion decreases
notably with increasing fault distance, we cite studies by Inoue et al. [33] and Liu et al. [34]
who utilized dynamic and kinematic source models to investigate the relationship between
strong ground motion distribution and parameters such as fault distance and reported
consistent results. The statistical analysis in this study focuses on the three-component
peak ground acceleration (PGA) data located within a 30 km radius of the fault. The
specific details can be found in Table 3. Based on the findings, it can be concluded that the
average peak acceleration within a 10 km radius of the fault surpasses 500 cm/s2. Similarly,
within a 20 km radius, the average peak acceleration exceeds 200 cm/s2, while within a
30 km radius, it surpasses 100 cm/s2. The study also investigates the relationship between
peak acceleration and fault distance, as depicted in Figure 10. Clear trends show that peak
acceleration significantly attenuates with increasing fault distance. These statistical findings
support the conclusions from numerical simulation studies.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16 
 

The presence of high levels of ground motion in close proximity to active faults indi-
cates a consistent distribution paĴern that reflects the characteristics of the fault zone and 
its seismic activity. The investigation of the correlation between the distribution region of 
intense ground motion and parameters such as earthquake magnitude, fault depth, fault 
type, and the rupture process of the fault is of utmost importance in the field of near-fault 
ground motion research, because it can reveal the spatial variation and complexity of 
ground motion along a fault zone. In this study, we focus on the East Anatolian Fault Zone 
(EAFZ), which is a major left-lateral strike-slip fault system in Turkey that has experienced 
several large earthquakes in history. The EAFZ consists of several segments with different 
geometries, slip rates, and rupture lengths. The EAFZ also exhibits various types of sur-
face ruptures, such as distributed cracks, en echelon fractures, pull-apart basins, and slope 
failures. These features influence the propagation and amplification of seismic waves 
along the fault zone. 

To support our argument that the intensity of near-fault ground motion decreases 
notably with increasing fault distance, we cite studies by Inoue et al. [33] and Liu et al. 
[34] who utilized dynamic and kinematic source models to investigate the relationship 
between strong ground motion distribution and parameters such as fault distance and 
reported consistent results. The statistical analysis in this study focuses on the three-com-
ponent peak ground acceleration (PGA) data located within a 30 km radius of the fault. 
The specific details can be found in Table 3. Based on the findings, it can be concluded that 
the average peak acceleration within a 10 km radius of the fault surpasses 500 cm/s2. Sim-
ilarly, within a 20 km radius, the average peak acceleration exceeds 200 cm/s2, while 
within a 30 km radius, it surpasses 100 cm/s2. The study also investigates the relationship 
between peak acceleration and fault distance, as depicted in Figure 10. Clear trends show 
that peak acceleration significantly aĴenuates with increasing fault distance. These statis-
tical findings support the conclusions from numerical simulation studies. 

Table 3. Statistics of PGA for near-fault (the radial distance < 30 km) seismic records. 

Fault Distance (km) 0--5 5--10 10--15 15--20 20--25 25--30 

Mean PGA 
(cm/s2) 

Horizontal 692.49 614.25 314.92 244.64 122.81 135.90 
North–South 674.19 614.40 375.94 250.61 138.02 104.94 
Vertical 561.37 539.45 283.61 172.11 102.38 69.21 

 
Figure 10. ScaĴer plot of PGA against fault distance. 

4.2. Discussion on Locked Segment Effect 
Locked segments are defined as the areas of non-uniform contact between two fault 

planes. Additionally, they encompass sections of the fault that have not yet experienced 

Figure 10. Scatter plot of PGA against fault distance.



Appl. Sci. 2023, 13, 10896 11 of 17

Table 3. Statistics of PGA for near-fault (the radial distance < 30 km) seismic records.

Fault Distance (km) 0--5 5--10 10--15 15--20 20--25 25--30

Mean PGA
(cm/s2)

Horizontal 692.49 614.25 314.92 244.64 122.81 135.90
North–South 674.19 614.40 375.94 250.61 138.02 104.94
Vertical 561.37 539.45 283.61 172.11 102.38 69.21

4.2. Discussion on Locked Segment Effect

Locked segments are defined as the areas of non-uniform contact between two fault
planes. Additionally, they encompass sections of the fault that have not yet experienced
rupture [35]. Existing research suggests that the movement mode and seismic activity of a
fault are influenced by locked segments, and breakthroughs in these locked segments lead
to the concentrated release of seismic energy [36]. Prior studies by Qin et al. (2010) [37]
and Yang et al. (2017) [38] have validated the locked segment rupture theory through the
retrospective analysis of typical large earthquakes.

According to the illustration presented in Figure 11, the East Anatolian Main Fault ex-
hibits a division into nine secondary sub-faults. These sub-faults encompass the Amanos FS
Segment and the Pazarcik Segment. Every individual sub-fault demonstrates distinct char-
acteristics, including the occurrence of folding and overlapping. Duman et al. (2013) [39],
based on active fault mapping and utilizing seismic data from Turkey, confirmed the
discontinuous segmented structure of the East Anatolian Fault Zone. Additionally, the
authors provided further details regarding the geometric segmentation, intermittent nature
of activity, and regional characteristics associated with induced earthquakes.
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Figure 11. Schematic diagram of surface rupture segments and earthquake of the East Anatolian
Fault and its sub-segments [39].

According to the illustration presented in Figure 11, the East Anatolian Main Fault ex-
hibits a division into nine secondary sub-faults. These sub-faults encompass the Amanos FS
Segment and the Pazarcik Segment. Every individual sub-fault demonstrates distinct char-
acteristics, including the occurrence of folding and overlapping. Duman et al. (2013) [39],
based on active fault mapping and utilizing seismic data from Turkey, confirmed the dis-
continuous segmented structure of the East Anatolian Fault Zone and inferred that each
segment has a different slip rate, rupture length, and recurrence interval. Additionally, the
authors provided further details regarding the geometric segmentation, intermittent nature
of activity, and regional characteristics associated with induced earthquakes and suggested
that these factors affect the seismic hazard assessment of the region. These inferences are
important for our research work because they help us understand the spatial distribution
and variation in ground motion along the East Anatolian Fault Zone and its sub-faults.

Upon further examination of Figure 9, it is evident that the distribution of peak ground
motion is not continuous. Instead, it is concentrated within specific fault segments, in-
cluding the Pazarcik Segment, the Maras Fault Zone, the Amanos FS Segment, and the
Islahiye releasing bend. This concentration is observed in addition to the band-like concen-
tration along the fault rupture. Figure 12 delineates four distinct regions characterized by
significant ground motion peaks, as outlined below.
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Region A is located in close proximity to the boundary between the Pazarcik Segment,
which is a primary segment of the East Anatolian Main Fault, and the Maras Fault Zone,
which is a secondary sub-fault of the East Anatolian Fault. Centered around station 4614
in Kahramanmaraş city (coordinates 37.485◦ N, 37.298◦ E), the peak acceleration reaches
2039.20 cm/s2 at a distance of 31.42 km from the epicenter.

Region B is located at the southwestern end of the Amanos FS Segment, which is a
primary segment of the East Anatolian Main Fault. This region serves as the southernmost
boundary of the Anatolian Fault. Centered around station 2718 in İslahiye city (coordinates
37.008◦ N, 36.627◦ E), the peak acceleration is 693.81 cm/s2 at a distance of 48.30 km from
the epicenter.

Region C is situated in close proximity to the bending point of the Amanos FS Segment,
more specifically known as the Islahiye releasing bend. Centered around station 3137 in
Hatay city (coordinates 36.489◦ N, 36.693◦ E), the peak acceleration is 670.17 cm/s2 at a
distance of 82.46 km from the epicenter.

Region D is near the left-lateral faulting area of the Amanos FS Segment, known as
the Demrek restraining stepover. Centered around station 3129 in Defne city (coordinates
36.191◦ N, 36.134◦ E), the peak acceleration reaches 1351.50 cm/s2 at a distance of 146.39 km
from the epicenter.

The four regions are situated in close proximity to local overlaps, bends, or termi-
nations of the East Anatolian Fault. These areas frequently exhibit concentrated stress
patterns and experience multiple reflections and refractions of seismic waves, which are
further influenced by inertia forces. This combination of factors makes these regions prone
to experience elevated ground motion [37,40,41]. The concentrated distribution of peak
ground motion in these four regions signifies the locked segment effects and suggests
higher ground motion intensity and severe seismic damage near these segments.

4.3. Discussion on the Trampoline Effect

In seismic design, the influence of vertical ground motion on structural responses
may need to be considered, and this influence is often specified by a certain ratio of
horizontal ground motion [40]. Generally, the vertical acceleration is about 1/2 to 2/3 of
the horizontal one [41]. With the development of strong motion technology, the number of
strong motion stations has increased rapidly, and more near-field strong motion records
have been obtained, giving people a deeper and more comprehensive understanding of
strong motion records. Especially in recent years, more and more earthquake records with
larger vertical peak accelerations have drawn people’s attention.
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The trampoline effect refers to the phenomenon that when seismic waves reach the
ground surface, the surface layer will be compressed and bounced up, just like a trampoline.
When the surface layer recovers its elasticity, it will produce an upward reaction force,
which will increase the ground acceleration (as shown in Figure 13). The trampoline effect
was first observed in the 2008 Mw6.9 Iwate-Miyagi earthquake in Japan [42], and later
reported in other earthquakes, such as the 2010 Mw7.2 El Mayor-Cucapah earthquake
in Mexico [43], and the 2016 Mw7.8 Kaikoura earthquake in New Zealand [44]. In these
earthquakes, it was observed that the vertical acceleration was significantly larger than
(or even several times larger than) the horizontal acceleration, and the vertical upward
acceleration was significantly larger than the downward acceleration. Aoi S. et al. studied
the 3866 cm/s2 vertical acceleration produced by the Mw6.9 Iwate-Miyagi earthquake on
14 June 2008 and found that the vertical ground acceleration showed a clear asymmetry,
with the peak value in the upward direction being about 1.6 times that in the downward
direction.
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Figure 13. Schematic diagram of the trampoline effect [42].

The main factors that affect the trampoline effect are the seismic wave characteristics,
the ground properties, and the topography. The seismic wave characteristics include the
frequency content, amplitude, duration, and incidence angle of the seismic waves. Some
site conditions may enhance or reduce the trampoline effect. For example, soft soils with
low stiffness and high damping may amplify seismic waves more than hard rocks with
high stiffness and low damping. Layered grounds with impedance contrasts may reflect or
refract seismic waves more than homogeneous grounds.

This paper calculates the ratio of vertical ground motion to horizontal ground motion
peak acceleration (V/H) and its relationship with the number of stations, as shown in
Figure 14. The analysis shows that there were 172 stations with a vertical-to-horizontal
acceleration ratio greater than 2/3 in this earthquake motion, accounting for 48% of the total
number of records. By further analyzing typical vertical and horizontal acceleration records,
the paper finds that station 3123 located in Hatay city (coordinates 36.160◦ E, 36.214◦ N, fault
distance 1.72 km) has a vertical peak acceleration of 867.58 cm/s2, which was 1.46 times
that of the north–south direction (593.94 cm/s2); more importantly, its vertical upward
peak acceleration of 867.58 cm/s2 was much larger than its downward peak acceleration
of 470.46 cm/s2 (the upward direction was 1.84 times that of the downward direction),
as shown in Figure 15, is was a typical manifestation of the trampoline effect in this
earthquake.
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5. Conclusions

Turkey is a seismic hotspot due to its location at the boundary between the Eurasian
and Arabian tectonic plates, and is characterized by complex interactions between various
tectonic plates and fault systems. The Mw7.8 earthquake that occurred on 6 February 2023
was the most devastating earthquake in Turkey since 1900. This study examines the aspects
of severe ground motion and their relevance to the fault rupture from a number of different
angles, based on information from the Turkish Disaster and Emergency Management
Authority (AFAD) and the geometric features of the rupture fault. The primary findings
derived from this study can be summarized as follows:

The earthquake resulted in a substantial amount of strong motion record data, with a
total of 379 stations capturing the earthquake’s effects. Station 4614 recorded the highest
peak acceleration ever recorded in Turkey, measuring 2039.20 cm/s2 in the north–south
direction. The acquisition of near-fault seismic records is of great importance in enhancing
our understanding of near-field ground motion and providing insights into the size and
slip characteristics of seismic faults.

The phenomenon of the concentration effect of strong ground motion near active faults
is readily observable. The distribution of peak accelerations along the near-fault area shows
a band-like pattern, with a noticeable trend of decreasing acceleration as the fault distance
increases.

The distribution of high-value ground motion was influenced by locked segment
effects. The concentration of strong ground motion is observed in four distinct regions
along the East Anatolian Fault Zone, which correspond to some special features of the fault
geometry and slip distribution.

This earthquake also manifested the trampoline effect. The vertical-to-horizontal ac-
celeration ratio of 172 stations was greater than 2/3, accounting for 48% of the total number
of records. Station 3123, located in Hatay city, had a vertical upward peak acceleration of
867.58 cm/s2, which was much larger than its downward peak acceleration of 470.46 cm/s2.

This study provides significant contributions regarding the seismic characteristics,
strong motion patterns, and subsequent detailed investigations related to the destruction
pattern, characteristics, and seismogenic mechanisms of this particular earthquake.
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This paper ignores the influence of permanent ground displacement (residual dis-
placement) in the strong motion data processing, which may exist in some near-source
stations due to instrument displacement, tilt, or site liquefaction and other seismic damage
phenomena. Because of the lack of reliable data on permanent displacement, this paper
excludes these residual displacements, which require further and detailed discussion in
future research.
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