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Abstract: Most multi-axis laser interferometers require accurate installation of the lasers and detectors
since the position and orientation installation errors of lasers and detectors bring measurement error
to the interferometer. In this paper, the multi-axis interferometer based on nonlinear computation
is proposed, which avoids the measurement error caused by installation errors by taking the laser
position and orientation as unknowns into the measurement model and discussing the solution
component uniqueness of a nonlinear equation system. The simulation results show that even when
the installation errors are close to 1 µm and 1 µrad, the proposed interferometer can still measure
the multi-degree-of-freedom displacement accurately, and the root mean standard error (RMSE) of
displacement is 1.884 nm and 5.871 × 10−7 mrad under a reading noise level of 0.1 nm.

Keywords: multi-axis laser interferometer; installation errors; solution component uniqueness

1. Introduction

With a displacement measurement resolution higher than 1 nm, the laser interferome-
ter is used in various precision and ultra-precision measurement applications. One of the
typical applications is the lithography wafer stage in semiconductor equipment, which is
used to carry the silicon wafer to achieve a series of multi-degree-of-freedom (multi-DOF)
precision motions. Since the positioning accuracy of the wafer stage directly affects the
overlay accuracy of the lithography, a high requirement for the accuracy and bandwidth of
the multi-DOF displacement measurement is put forward [1–3].

The laser interferometer is commonly used in such cases to measure displacement
based on the interference of laser beams, which measure the variation in optical path
length by detecting the laser intensity, thus realizing the precise displacement measure-
ment [4–6]. According to the laser type, the interferometers can be classified as homodyne
interferometers with a single-frequency laser source and heterodyne interferometers with a
dual-frequency laser source. To measure the multi-DOF displacement of a precision move-
ment stage by using a multi-axis interferometer, more lasers and other optical elements
need to be adopted. Additionally, it is necessary to carefully design the number and each
installation position of lasers and the multi-DOF displacement decoupling computation.
For example, five lasers are used to measure the stage surface at five different points in
the five-axis laser interferometer, and the 5-DOF displacement is computed from the in-
terferometer model [7]. In addition to the measurement scheme in [7], some researchers
used more lasers with redundant information to decrease the nonlinear error [8–11]. More-
over, some researchers built a more accurate but more complex model of the coupling
between multi-DOF displacement to improve the accuracy of the displacement computation
results [12–15].

However, these multi-axis laser interferometers mentioned above inevitably have
measurement systematical errors, which can be summarized as two reasons. First, the inter-
ferometer model is inaccurate, which is mainly caused by installation errors. For example,
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the laser beams in the model are parallel, but in practice they are not, and the installation
position and orientation of the lasers in the model are different from those in practice.
Second, the computation of the model is inaccurate. Usually, there are many nonlinear
functions such as trigonometric functions and rational fractions in the interferometer model.
To simplify the computation, these nonlinear functions are approximated linearly so that
the explicit expression of the multi-DOF displacement can be derived. Both of the above
two reasons will result in a multi-DOF displacement measurement error, which causes the
loss of accuracy.

To avoid the above two factors leading to a measurement systematical error, parame-
ters such as the laser beam angle and emitting point position should be introduced into
the model as unknowns. In addition, the nonlinear measurement model should be solved
directly without any linear approximation. However, in this way, the interferometers model
is quite complex; that is, it contains a large number of unknowns and complex nonlinear
functions, and how to solve the model accurately and quickly becomes a new problem.
Although there are the Gauss–Newton method [16], Levenberg–Marquardt (LM) method,
and other nonlinear equation system numerical algorithms [17–19], when it comes to prac-
tical engineering, due to the negative properties of the equations such as the singular Jacobi
matrix, which are caused by the huge number of unknowns and the complex nonlinear
functions, the convergence and the accuracy of the algorithm may not be ideal, which raises
the necessity for a general and comprehensive analysis.

In this paper, an interferometer model with unknown parameters, including the laser
beam angle and emitting point position, is proposed to avoid inaccurate modeling so
that the measurement result is entirely unaffected by installation errors. A solution of the
interferometer model without any linearization is proposed to avoid an inaccurate solution.
For the problem arising in the model solving that the singular Jacobi matrix leads to no
unique solution of the equations, the theory of solution component uniqueness is proposed
to obtain a unique and accurate solution of the displacement in the model. This paper
is organized as follows. In Section 2, the mathematical model of the laser interferometer
is proposed, which shows the relation between interferometer readings and multi-DOF
displacements. In Section 3, the displacement computation principle is proposed, and the
focus problem that the solution of a nonlinear equation system is not unique due to the
singular Jacobi matrix is discussed. In Section 4, the interferometer measurement and the
displacement computation are simulated. The simulation result verifies the effectiveness of
the proposed interferometer. Section 5 is the conclusion of the paper.

2. Interferometer Measurement Model

In this section, the structure and the mathematical model of the multi-axis laser
interferometer, which avoids the two factors mentioned in Section 1, is proposed. For
simplicity, the 3-DOF displacement measurement of the X-Y stage is mainly discussed,
while the 6-DOF displacement measurement of the X-Y-Z stage is also mentioned, but is
not the focus. Nevertheless, there is no difference in the principle between the two but
there is in the computation complexity.

2.1. Single-Axis Interferometer Laser Path Model

Since the multi-axis interferometer consists of multiple regular single-axis interferom-
eters, the single interferometer model is proposed first.

The measurement principle of the single interferometer is shown in Figure 1; the
laser emits from the interferometer, reflects off the smooth surface of the stage (or the
retroreflector fixed on the stage), and returns to the interferometer. Let a fixed position
of the stage be the reference position, as shown in Figure 1a, and the reading of the
interferometer at the reference position is set to 0. Then, the reading of the interferometer
at the measurement position in Figure 1b is set as V and is equal to the variation of the
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laser path length after the stage is moved from the reference position to the measurement
position, that is

V = L1 − L0 (1)

where L0, L1 are, respectively, the laser path length at the reference and measurement
position.
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Figure 1. (a) Interferometer and stage at reference position. (b) Interferometer and stage at measure-
ment position.

Moreover, it can be obtained from Figure 1 that{
L0 = 2 cos θ0

cos 2θ0
[(x0 − xd) cos θ0 + (y0 − yd) sin θ0 − b/2]

L1 = 2 cos θ1
cos 2θ1

[(x1 − xd) cos θ1 + (y1 − yd) sin θ1 − b/2]
(2)

where (xd, yd) is the coordinate of the laser emission point, (x0, y0) and (x1, y1) are, respec-
tively, the coordinate of the stage center at the reference and measurement position, and
θ0, θ1 are, respectively, the angle of the stage at the reference and measurement position. b
and h are the length and width of the stage.

The single interferometer model proposed in Equations (1) and (2) shows the mathe-
matical relation between the interferometer readings and the position of the stage. This
model is still used in the following multi-axis interferometers.

2.2. 3-DOF Displacement Measurement Model

To avoid measurement errors caused by installation errors, the installation parameters
such as laser beam angles and emission point positions are added to the model as unknowns.
Then, it is necessary to add constraints to make the model solvable, and one way is to
increase the redundant measurement information by using more interferometers.

In this paper, a 3-DOF displacement measurement of the X-Y stage using a six-axis
interferometer is proposed. And the measurement scheme is shown in Figure 2. There are
six interferometers for measuring the two adjacent sides of the X-Y stage. Assuming that
the X-Y stage only moves in the X-O-Y plane, and all the laser beams are supposed to be in
the X-O-Y plane, the measurement scheme is also expressed in Figure 3.
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In Figure 3, the reference position of the stage is shown as the dotted line, and the
measurement position is shown as the true line; the O-XYZ axis is set so that the coor-
dinates of the stage center and the angle of the stage are both equal to 0 at the reference
position. Due to the installation errors, there is an angle of each laser beam, which is set as
αi, i = 1, 2, . . . , 6, and the unknown installation position of each interferometer is set as
(xdi, ydi), i = 1, 2, . . . , 6.

Based on the single interferometer laser path model proposed in Section 2.1, the
readings of the six interferometers can be modeled as

V1 = 2 cos(θ−α1)
cos(2θ−2α1)

[(x− xd1) cos θ + (y− yd1) sin θ − b/2] + 2 cos α1
cos 2α1

(xd1 + b/2)

V2 = 2 cos(θ−α2)
cos(2θ−2α2)

[(x− xd2) cos θ + (y− yd2) sin θ − b/2] + 2 cos α2
cos 2α2

(xd2 + b/2)

V3 = 2 cos(θ−α3)
cos(2θ−2α3)

[(x− xd3) cos θ + (y− yd3) sin θ − b/2] + 2 cos α3
cos 2α3

(xd3 + b/2)

V4 = 2 cos(θ−α4)
cos(2θ−2α4)

[(y− yd4) cos θ + (x− xd4) sin θ − h/2] + 2 cos α4
cos 2α4

(yd4 + h/2)

V5 = 2 cos(θ−α5)
cos(2θ−2α5)

[(y− yd5) cos θ + (x− xd5) sin θ − h/2] + 2 cos α5
cos 2α5

(yd5 + h/2)

V6 = 2 cos(θ−α6)
cos(2θ−2α6)

[(y− yd6) cos θ + (x− xd6) sin θ − h/2] + 2 cos α6
cos 2α6

(yd6 + h/2)

(3)

where Vi is the reading of the ith interferometer, i = 1, 2, . . . , 6, and (x, y, θ) is the 3-DOF
displacement of the stage at the measurement position since the coordinate of the stage
center is equal to 0 at the reference position.

According to Equation (3), after obtaining the value of Vi in practice, there are a total
of 21 unknowns including (xdi, ydi, αi), i = 1, 2, . . . , 6, and (x, y, θ) in the nonlinear equa-
tion system. Since the number of unknowns is greater than the number of constraints, it
is unrealistic to solve the displacement (x, y, θ) from Equation (3). Therefore, the num-
ber of measurements is increased to gain more redundant information; that is, all the
interferometers’ readings are recorded at every 10 distinct measurement positions for one
displacement computation. Let (xn, yn, θn) be the displacement at nth measurement posi-
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tions, n = 1, 2, . . . , 10, the six interferometers’ readings at 10 measurement positions can
be modeled as



Vn1 =
2 cos(θn−α1)
cos(2θn−2α1)

[(xn − xd1) cos θn + (yn − yd1) sin θn − b/2] + 2 cos α1
cos 2α1

(xd1 + b/2)

Vn2 =
2 cos(θn−α2)
cos(2θn−2α2)

[(xn − xd2) cos θn + (yn − yd2) sin θn − b/2] + 2 cos α2
cos 2α2

(xd2 + b/2)

Vn3 =
2 cos(θn−α3)
cos(2θn−2α3)

[(xn − xd3) cos θn + (yn − yd3) sin θn − b/2] + 2 cos α3
cos 2α3

(xd3 + b/2)

Vn4 =
2 cos(θn−α4)
cos(2θn−2α4)

[(yn − yd4) cos θn + (xn − xd4) sin θn − h/2] + 2 cos α4
cos 2α4

(yd4 + h/2)

Vn5 =
2 cos(θn−α5)
cos(2θn−2α5)

[(yn − yd5) cos θn + (xn − xd5) sin θn − h/2] + 2 cos α5
cos 2α5

(yd5 + h/2)

Vn6 =
2 cos(θn−α6)
cos(2θn−2α6)

[(yn − yd6) cos θn + (xn − xd6) sin θn − h/2] + 2 cos α6
cos 2α6

(yd6 + h/2)

(4)

where Vni is the reading of the ith interferometer at the nth measurement position,
n = 1, 2, . . . , 10, i = 1, 2, . . . , 6.

The equation system (4) is the proposed 3-DOF displacement measurement model. As
we can see, the number of equations is 60, which is larger than the number of unknowns
(48 in total, including (xn, yn, θn), n = 1, 2, . . . , 10 and (xdi, ydi, αi), i = 1, 2, . . . , 6). The
3-DOF displacement can be computed from Equation (4) by using the nonlinear equations
system algorithm, which is discussed in Section 3.

From Equation (4), it should be noted that since the installation positions and angles
(xdi, ydi, αi) are unknowns, the installation errors will not bring errors to the displacement
computation. In addition, there is no linear approximation in Equation (4), which also
makes the displacement computation result accurate.

It should also be noted that the number of interferometers and the number of mea-
surement positions in the measurement model can be varied, and their selection rule is as
follows: let the number of interferometers be M and the number of measurement positions
be N (in Equation (4), M = 6 and N = 10). According to the above analysis, there are MN
equations and (3M + 3N) unknowns in the model. To make the number of unknowns not
greater than the number of equations, there is

3M + 3N ≤ MN (5)

It can be seen from Equation (5) that M is supposed to be larger than 3, otherwise
the number of equations will never catch up with the number of unknowns. Hence,
Equation (5) can be rewritten as

N ≥ 3 +
9

M− 3
(6)

Equation (6) shows that N can be smaller with larger M. Under the restriction of
Equations (5) and (6), less MN means less computational complexity, but large MN pro-
vides enough redundant information to solve the unknowns. Therefore, it is selected that
M = 6 and N = 10 in this section.

2.3. 6-DOF Displacement Measurement Model

In the 3-DOF displacement measurement of the X-Y stage, the assumption that the
stage only moves in one plane is adopted. Although this assumption holds approximately
in the case that the assembly is ideal, there is still deviation from the actual situation. When
it comes to having sufficient computing resources, it is necessary to discuss and apply the
6-DOF displacement measurement to reduce the deviation between the model and the
actual situation.

The 6-DOF displacement measurement scheme of the X-Y-Z stage using a nine-axis
interferometer is proposed and shown in Figure 4. There are three interferometers that
measure each one of the three adjacent surfaces of the stage. Similar to the 3-DOF displace-
ment measurement of the X-Y stage, the mathematical model of the readings of the nine
interferometers can be deduced, which is too complex because it needs to calculate the laser
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path in 3-dimensional space. Since the 6-DOF model is only more complex than the 3-DOF
model, and there is no difference in the modeling principle, the detailed expression of the
6-DOF model is not given in this section, but the function heading is given.
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The same as in the 3-DOF measurement, the O-XYZ coordinate axis is set to ensure that
the origin coincides with the center of the stage at the reference position. Let (x, y, z, θ, ϕ, ω)
be the 6-DOF displacement, then the readings of interferometers at the measurement
position are

Vi = Vi(x, y, z, θ, ϕ, ω, xdi, ydi, zdi, αi, βi), i = 1, 2, . . . , 9 (7)

where Vi is the reading of the ith interferometer, Vi(·) is the function of the length variation
of laser path from the reference position to the measurement position, (xdi, ydi, zdi) is the
installation position of the ith interferometer, and (αi, βi) is the angle of the ith laser beam.

Also, to make the model solvable, the number of equations is supposed to
be larger than the number of unknowns. Hence, all the interferometers’ readings are
recorded at every 20 distinct measurement positions for one displacement computation. Let
(xn, yn, zn, θn, ϕn, ωn) be the displacement at the nth measurement positions, n = 1, 2, . . . , 20,
the nine interferometers’ reading at 20 measurement positions are

Vni = Vni(xn, yn, zn, θn, ϕn, ωn, xdi, ydi, zdi, αi, βi), n = 1, 2, . . . , 20, i = 1, 2, . . . , 9 (8)

where Vni is the reading of the ith interferometer at the nth measurement position,
n = 1, 2, . . . , 20, i = 1, 2, . . . , 9.

Since there are a total of 180 equations and 165 unknowns in Equation (8), the 6-DOF
displacement measurement model (8) is also theoretically solvable. Similar to the analysis
in Section 2.2, the installation errors do not affect the displacement computation, and the
nonlinear model without any approximation provides high accuracy.

As we can see, both the 3-DOF model and the 6-DOF model are nonlinear equation
systems with a large number of unknowns. In this case, the existence and uniqueness of
the solution, as well as the solution algorithm, are all key factors affecting the accurate
displacement computation, which are discussed in Section 3.

3. Multi-DOF Displacement Computation

The solution and the algorithm of the multi-axis interferometer measurement model
are discussed. For simplicity, only the solution of the 3-DOF displacement measurement
model (4) is discussed, and the solution principle of the 6-DOF model (8) is the same.

3.1. Problem of Solving Nonlinear Equation System

Rewriting the nonlinear equation system (4) as

F(X) = 0 (9)
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where X is the variable consisting of the 48 unknowns; F(·) is the equation function of
Equation (4).

The classical algorithm of the nonlinear equation system (9) is the Gauss–Newton
method [16], in which the iteration formula is

X(k+1) = X(k) −
[
JT
(

X(k)
)

J
(

X(k)
)]−1

JT
(

X(k)
)

F
(

X(k)
)

(10)

where k is the number of iterations and J(·) is the Jacobi matrix of F(·).
The problem is that in the computation process of solving (4) in the form of Equation (9)

by using Equation (10), J
(

X(k)
)

is always going to be singular and JT
(

X(k)
)

J
(

X(k)
)

is not
invertible due to its huge condition number, which makes it impossible to continue the
iteration. In fact, for a nonlinear equation system with a singular Jacobi matrix, it is proven
that the solution is not unique, and both the Newton method and Gauss–Newton method
lose their convergence [16]. Hence, the improved algorithm needs to be applied. As it is
proven that the solution of a nonlinear equation system with a singular Jacobi matrix is a
set with at least one dimension and the Levenberg–Marquardt method (LM method) can
be used to converge to a solution on the solution set [20], the iteration formula is

X(k+1) = X(k) −
[
JT
(

X(k)
)

J
(

X(k)
)
+ µI

]−1
JT
(

X(k)
)

F
(

X(k)
)

(11)

where I is the identity matrix and µ is the steepest descent factor.
However, although there are improved algorithms such as the LM method and Newton

method based on the MP inverse mentioned in [21] for solving nonlinear equations with a
singular Jacobi matrix, and since the solution of Equation (4) is not unique and the iteration
varies with the initial iterate, there is still a deviation between the computation result
of the 48 unknowns and their true value. As an illustration, the computation of solving
Equation (4) with the Newton method is simulated: a set of true values of unknowns is
given, and 10 different initial values are randomly generated. In contrast, the iterations of
x1 and xd1 using the 10 initial values are shown in Figure 5. The detail of Figure 5 is drawn
as Figure 6 to observe the convergence results.
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From Figure 5, the iterations of x1 and xd1 both converge; however, from Figure 6,
the convergence of xd1 changes with initial values. Hence, the convergence accuracy
of x1 and xd1 are different, which means that the accuracy of each component of the
equation system solution is different. Since we only care about the solution of displacement
(xn, yn, θn), n = 1, 2, . . . , 10, can it be proven that all the displacement unknowns can be
accurately solved? The answer is yes, and the proof is given in the following sections.

3.2. Solution Component Uniqueness Theory

As shown in Figure 6, the convergence of each variable of the nonlinear equation
system with a singular Jacobi matrix is different, which is proven to be related to the unique-
ness of the solution component in this section. To prove the solvability of displacement
in the interferometer measurement model, the solution component uniqueness theory is
proposed.

Without loss of generality, consider the nonlinear equation system

F(X) = 0 (12)

where X ∈ RN , F : RN → RM is a continuously differentiable nonlinear function.
Equation (12) is said to be a singular nonlinear equation system (SNES) if it has a

singular Jacobi matrix. Let X = [x1, . . . , xN ]
T be any one in the solution set of Equation (12),

the solution component xn is said to be unique or with uniqueness if there is only one value
for it, where n ∈ N, 1 ≤ n ≤ N.

Let X∗ =
[
x∗1 , . . . , x∗N

]T be the true value of the unknowns in Equation (12). If
we look at the interferometer model (4), X∗ is the true value of the 48 unknowns. Let
X̂ = [x̂1, . . . , x̂N ]

T be the solution computed by any improved algorithm. For the case that
Equation (12) is SNES, as mentioned in Section 2, X̂ varies with the initial iterate, and the
solution of Equation (12) is a set with at least one dimension. X∗ and X̂ both belong to the
solution set, but there is no evidence that X∗ = X̂ holds. The following Theorem 1 shows
that the distance between x∗n and x̂n depends on the solution component uniqueness.

Theorem 1. For n ∈ N, 1 ≤ n ≤ N, x̂n = x∗n holds if x̂n is unique. Otherwise, x̂n = x∗n might
not hold.

Proof. For the condition that x̂n is unique, there is only one value for the solution of xn.
Since both X* and X̂ are the solution of (12), it is easy to check that x̂n = x*

n holds. In
contrast, for the condition that x̂n is not unique, there are two distinct solutions of (12) set as
XA and XB with two distinct nth components set as xnA and xnB. Without loss of generality,
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suppose that X* = XA and X̂ = XB, then we have x*
n = xnA and x̂n = xnB, which indicate

that x̂n 6= x*
n holds. Thus, the proof is finished.

Theorem 1 implies that only for the solution component with uniqueness, the result
computed by the algorithm always converges to the true value. Therefore, for the aim to
solve the 30 displacement unknowns in Equation (4), the uniqueness of the corresponding
30 solution components must be verified. The following Theorem 2 provides the basis to
help verify the solution component uniqueness.

Lemma 1. All the components of solution X are unique if J
(

X*
)

has full column rank.

Proof. For the J
(

X*
)

with full column rank, it follows from the continuity of F(X) that there

exists the neighborhood of X* as B
(

X*, r
)

with r > 0 such that rank[J(X)] = rank
[
J
(

X*
)]

holds for all the X ∈ B
(

X*, r
)

., i.e., for all the X ∈ B
(

X*, r
)

, J(X) has full column rank.

Thus, it follows from the Newton method [22] that X(k) converges to the unique solution X*.
Therefore, all the components of X converge to the unique solution, the proof is finished.

Theorem 2. Let J
(

X*
)
= [p1, . . . ,pN], where pn ∈ RM×1 for n = 1, 2, . . . , N. Then, xn is not

unique if rank [p1, . . . ,pN] = rank
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
holds. Otherwise, xn is unique.

Proof. According to the definition of the Jacobi matrix, the total differential of (12) at X* is

N

∑
j=1

pj∆xj=0 (13)

If rank[p1, . . . ,pN] = rank
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
holds, there is

pn =
N

∑
j=1,j 6=n

αjpj (14)

where αj ∈ R.
Substituting Equation (14) into Equation (13), then we have

N

∑
j=1,j 6=n

pj
(
∆xj + αj∆xn

)
=0 (15)

Let

yl =

{
xl + αl xn, 1 ≤ l < n

xl+1 + αl+1xn, n ≤ l ≤ N − 1
(16)

Substituting Equation (16) into Equation (15), there is[
p1, . . . , pn−1, pn+1, . . . , pN

]
· [∆y1, . . . , ∆yN−1]

T=0 (17)

Taking (17) as the total differential of the equation system, F(Y) = 0 where
Y =

[
y1, . . . , yN−1

]T, for which the Jacobi matrix is
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
.

Without loss of generality, suppose that
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
has full rank, oth-

erwise we can repeat the above process to cut down the column elements. Then, it follows
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from Lemma 1 that all the solutions of yl are unique. Let y*
l be the unique solution of yl, it

follows from (16) that

1 α1
. . .

...
1 αn−1

αn+1 1
...

. . .
αN 1


(N−1)×N


x1
x2
...

xN

=


y∗1
y∗2
...

y∗N−1

 (18)

holds, which is the linear equation system of [x1, . . . , xN]
T. Notice that the blanks in the

matrix in (18) are all 0.
It is easy to check that xn in (18) has infinitely many solutions, which means xn is not

unique. The proof of the first half of the statement is finished.
As for the other condition that rank[p1, . . . ,pN] > rank

[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
, the

discussion is divided into the following two cases: For the case that
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
has full column rank, [p1, . . . ,pN] must have full column rank since its rank is larger than[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
. Then, it follows from Lemma 1 that xn is unique. For the other

case that
[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
has no full column rank, let

[
p1, . . . ,pn−1, pn+1, . . . ,pN

]
= [q1, . . . ,qW] after cutting down all the linearly dependent columns by taking the steps
same as (14)–(17), where [q1, . . . ,qW] has full column rank and W < N− 1. Then, the new
Jacobi matrix becomes

[
pn, q1, . . . ,qW

]
, which has full column rank. Hence, according to

Lemma 1, xn is unique. The proof of the second half of the statement is finished.
From Theorem 2, the uniqueness of the solution component can be determined by

computing whether the corresponding column in the Jacobi matrix is independent. There-
fore, to verify the uniqueness of the displacement solution in the interferometer model, the
columns dependence computation methods are discussed in the following.

Although there are Gaussian elimination, determinant computation, and other nu-
merical algorithms used to compute the dependence of vectors [23], since the numerical
error exists in the Jacobi matrix computation, the dependence computation result might
go wrong if the tolerance of the algorithms is improper (tolerance can only be selected
according to empirical methods, without means of debugging or correction due to the lack
of appropriate feedback). To make the dependence computation more accurate, a numerical
algorithm for dependence computation based on principle component analysis (PCA) is
proposed.

For the given Jacobi matrix JM×N = [p1, . . . ,pN ], normalizing by

A = [p1 −mean(p1), . . . , pN −mean(pN)] (19)

The covariance matrix of A is

C = ATA/M (20)

Computing the eigenvalue decomposition

C = VDVT (21)

where V = [v1, . . . , vN ] is the eigenvector matrix with v ∈ RN×1
[−1,1], D = diag(σ1, . . . ,σN) is

a diagonal matrix whose diagonal elements are eigenvalues in descending order.
According to PCA, after setting the threshold THσ and r with that σ1 > · · · > σr >

THσ > σr+1 > · · · > σN , we have
Jprin = J ·Vr (22)

for dimensionality reduction of J, where Vr = [v1, . . . , vr].
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If pn in J is strongly dependent, which indicates that it carries less information, we
believe that it contributes less to Jprin so that the weight of pn in Equation (22) is smaller.

Suppose that Vr = [w1, . . . , wN ]
T , w ∈ Rr×1, then the weight of pn is wn. Thus, taking the

infinite norm of wn as the independent factor (IDF), that is

IDFn = ‖wn‖∞ (23)

There is IDFn ∈ [0, 1] since v ∈ RN×1
[−1,1]. The closer IDFn is to 0, which indicates that pn

has weaker independence and stronger dependence in J, it follows from Theorem 2 that xn
is more likely to be not unique; on the contrary, with stronger independence and weaker
dependence of pn, xn is more likely to be unique.

According to the above, the IDF shows the possibility of whether a solution component
is unique. After computing the IDFs of all the vectors in the Jacobi matrix, some simple
classification algorithms such as the k-nearest neighbor algorithm [24] can be used to
classify all the components into two categories according to the size of their IDFs, so
as to determine the components’ uniqueness. A simple approach is setting a threshold
THIDF ∈ (0, 1), there is

xn

{
is not unique, IDFn < THIDF

is unique, IDFn > THIDF
(24)

The brief process of the solution component uniqueness algorithm proposed above is
summarized as follows.

So far, by using Theorem 1, Theorem 2, and Algorithm 1, it can be determined whether
each unknown in the SNES can be solved accurately. Also, the solvability of the displace-
ment in the interferometer model can be verified, which is discussed in the following
Section 3.3.

Algorithm 1: Solution component uniqueness algorithm.

1 : Initialization: Given THσ > 0, THIDF ∈ (0, 1), X is a solution in the solution set of (12)
2 : [p1, . . . ,pN ] = J(X)
3 : A = [p1 −mean(p1), . . . ,pN −mean(pN)]

4 : C = ATA/M
5 : Eigen decomposition C = VDVT , where V = [v1, . . . , vN ], D = diag(σ1, . . . , σN)
6 : Find r satisfies σ1 > · · · > σr > THσ > σr+1 > · · · > σN
7 : [w1, . . . , wN ]T = [v1, . . . , vN ]
8 : [IDF1, . . . , IDFN ] = [‖w1‖∞, . . . , ‖wN‖∞]
9: Compute the uniqueness of each component by Equation (24)

3.3. Principle of Displacement Computation

In this Subsection, the algorithm of the displacement computation of the interferometer
measurement model is proposed, and the high accuracy of the displacement computation
result is verified.

Since the classic Gauss–Newton method is not applicable to SNES, the Newton method
with MP inverse is proposed to solve the displacement from the interferometer model (4).
The linear expansion approximation of the equation system (12) at the given iteration X(k) is

F(X(k)) + J(X(k))(X− X(k)) = 0 (25)

In the Newton method, the solution of X in (25) is taken as the next step X(k+1) in
the iteration. In the case that J

(
X(k)

)
is not a square matrix, the Gauss–Newton method

solves X(k+1) by multiplying Equation (25) by [JT
(

X(k)
)

J
(

X(k)
)
]−1JT

(
X(k)

)
, which fails
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when JT
(

X(k)
)

J
(

X(k)
)

is singular. In this paper, let Equation (25) be the inconsistent linear

equation system of
(

X− X(k)
)

, then the minimum 2-norm solution is

X− X(k) = J†(X(k))[−F(X(k))] (26)

where J†
(

X(k)
)

is the MP inverse of J
(

X(k)
)

, which is calculated by singular value decom-
position

J†(X(k)) = V1S−1
1 UT

1 (27)

where V1, S1, U1 satisfy

J(X(k)) = USVT =

[
U1
U2

]T[S1 0
0 0

][
V1
V2

]
(28)

where S is the diagonal matrix, whose diagonal elements are singular values in descend-
ing order.

Therefore, according to Equation (26), the iteration formula is

X(k+1) = X(k) + J†(X(k))[−F(X(k))] (29)

The brief process of the proposed Newton method with MP inverse is summarized
as follows.

Since the convergence of the Newton method with MP inverse is discussed [22],
Algorithm 2 can be used to solve the interferometer model (4). However, the solution
component uniqueness needs to be verified.

Algorithm 2: Newton method with MP inverse.

1 : Initialization: Given kmax, X(0), k:= 0
2 : While k < kmaxdo
3 : Singular Value Decomposition J

(
X(k)

)
= USVT

4 : Find V1, S1, U1 satisfy (28)

5 : J†
(

X(k)
)
= V1S−1

1 UT
1

6 : X(k+1) = X(k) + J†
(

X(k)
)[
−F
(

X(k)
)]

7: k = k +1
8: end while

Algorithm 1 is used to compute the solution uniqueness of the 48 unknowns in
Equation (4). Number the 48 unknowns as

X = [xd1, xd2, . . . , xd6, x1, x2, . . . , x10,
yd1, yd2, . . . , yd6, y1, y2, . . . , y10,

α1, α2, . . . , α6, θ1, θ2, . . . , θ10]
(30)

Then, the eigenvalues [σ1, . . . , σ48] in Equation (21) are shown in Figure 7a, and the
IDFs of the 48 vectors in the Jacobi matrix are shown in Figure 7b. It is easy to check from
Figure 7b that the IDF of the vectors whose numbers are 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16,
and 17 are much lower than the others. The corresponding solution components are not
unique for the threshold, which is taken as THIDF = 0.3. Thus, the convergence results of
these unknowns are not accurate, which means that the computation of the interferometers’
installation position (xd, yd) is not accurate. On the contrary, the other 36 unknowns,
including the 3-DOF displacement, are solved with high accuracy. The solvability of the
displacement in the interferometer model is proven.
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4. Simulation Results

The 3-DOF displacement measurement of the proposed interferometer is simulated to
verify the high accuracy. To verify the advantage that there is no measurement error caused
by installation errors, the deviation between the nominal value and the true value of the
interferometers’ installation positions and orientations is set as shown in Table 1.

Table 1. Installation errors of lasers.

Laser Number 1 2 3 4 5 6

xd(×10−3 mm) −0.96 0.61 −1.40 0.67 1.10 −0.74
yd(×10−3 mm) −0.21 0.23 −1.10 2.60 −0.48 0.38
α(×10−3 mrad) 0.51 −1.20 0.09 −1.70 −1.00 0.91

The simulation scheme is shown in Figure 8. A total of 10 groups of 3-DOF dis-
placement in the range of the interferometer are randomly selected as the true values. By
substituting the true values of displacements and the true values of installation parameters
into the interferometer model (4), the readings of the six interferometers are simulated.
Then, substituting the readings into Equation (4) and taking the displacements and the
installation parameters as unknowns, the displacement computation is simulated by using
the proposed method in Section 3. In solving Equation (4) with Algorithm 2, the nominal
value of the installation parameters is taken as the initial iteration, and the initial iteration
of the displacements is the computation result in the last time step.
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As the simulation results, the iteration error curves of the 48 unknowns are shown in
Figures 9–12, where Figures 9 and 10 are the iteration error curves of the installation position
(xd, yd) and orientation α of the 6 interferometers; Figures 11 and 12 are the iteration error
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curves of the 10 sets of displacement (x, y, θ). It is easy to check from Figures 9–12 that
the 3-DOF displacement (x, y, θ) converges to the true value while the laser installation
position (xd, yd) does not. Hence, the solvability of the displacement is verified.
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Further, the error reduction ratio (ERR) is defined as follows to verify the conclusion in
Section 3.3 that only the unknowns with high IDF can be solved accurately: for the general
nonlinear equation system F(X) = 0 where X = [x1, . . . , xN ]

T , the ratio of the variable error
after iteration to the variable error before iteration is defined as ERR

ERRn = −20 log

∣∣∣∣∣ x̂n − x∗n
x(0)n − x∗n

∣∣∣∣∣ (31)

where ERRn is the ERR of xn, x∗n is the true value, x(0)n is the initial iteration, and x̂n is the
convergence solution.

For 3-DOF displacement computation, namely the solution of Equation (4), there are a
total of 48 unknowns including displacements and installation parameters. Arrange the
48 unknowns as Equation (30), the ERR of each unknown is shown in Figure 13. It can
be seen from Figure 13 that the magnitude of ERRs corresponds to the IDFs shown in
Figure 7b, which verifies that only the iteration of unknowns with a high IDF can converge
to the true value.
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To test the numerical accuracy of the proposed algorithm, 200 displacement measure-
ments are simulated for the case that there is noise in the readings of interferometers, and
the root mean square (RMS) of noise is set as 0.1 nm to simulate the practical engineering.
The measurement error of displacement is shown in Figure 14, from which the mean and
the standard deviation (STD) of displacement x error are 0.155 nm and 1.884 nm, and the
mean and STD of displacement θ error are 3.549 × 10−8 mrad and 5.871 × 10−7 mrad.



Appl. Sci. 2023, 13, 10887 16 of 18

According to the above, the simulation results show the unbiasedness, low uncertainty, and
high convergence speed of the displacement computation.
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It should be noted that according to Algorithm 2 in Section 3.3, the amount of compu-
tation is proportional to the number of iterations, equations, and unknowns, which depend
on the number of interferometers and measurement positions. Therefore, compared with
traditional linear multi-axis interferometer models, the proposed iterative-based modeling
and solving algorithm has a greater computational complexity. Nevertheless, in practi-
cal engineering, the computational time can be decreased by adopting a high-efficiency
processing unit such as the FPGA with a parallel computing mode.

5. Conclusions

In this paper, a multi-axis laser interferometer is proposed, whose measurement is
not affected by the installation errors. The interferometer measurement model shows that
there is no need for the accurate installation of lasers, and the displacement computation
shows the irrelevance between high measurement accuracy and installation errors, which
is proven by the proposed solution component uniqueness theory for nonlinear equation
systems. The simulation shows that even with installation errors close to 1 µm and 1 µrad,
the interferometer is still able to measure the multi-DOF displacement accurately. For the
case of where there is reading noise with RMS=0.1 nm, the STD of the displacement error is
1.884 nm and 5.871 × 10−7 mrad.

This paper provides a novel way for the design and development of multi-axis interfer-
ometers, that is, with today’s more and more developed computer processing ability, using
a high-performance numerical computation to compensate for the lack of low mechanical
manufacturing and assembly level, so that the measurement accuracy approaches the
theoretical limit. The modeling method proposed is not limited to the topology of the
interferometer in the paper, but can also be applied to other types of multi-axis interference
systems. It is only necessary to take the installation parameters such as the laser angle as
unknowns into the optical path model, and then the nonlinear computation method can be
used to solve the model to obtain accurate displacement measurement results.

In the future, experiments will be designed to verify the measurement performance of
the proposed interferometer. The optimized iteration algorithms with a lower complexity
and higher speed will also be studied.
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