

Intra-Rater and Test–Retest Reliability of Barbell Force, Velocity, and Power during the Landmine Punch Throw Test Assessed by the GymAware Linear Transducer System

Łukasz Oleksy ^{1,2}^(D), Maciej Kuchciak ³^(D), Grzegorz Bril ⁴, Anna Mika ^{5,*}^(D), Marta Przydział ³, Iwona Pazdan-Śliż ³, Renata Kielnar ⁶, Henryk Racheniuk ⁷, Olga Adamska ⁸^(D) and Michał Deszczyński ⁸

- ¹ Faculty of Health Sciences, Department of Physiotherapy, Jagiellonian University Medical College, 31-008 Kraków, Poland; loleksy@oleksy-fizjoterapia.pl
- ² Oleksy Medical & Sport Sciences, 37-100 Łańcut, Poland
- ³ Department of Physical Education, University of Rzeszow, 35-959 Rzezsów, Poland; mkuchciak@ur.edu.pl (M.K.); mprzydzial@ur.edu.pl (M.P.); ipezdan@ur.edu.pl (I.P.-Ś.)
- ⁴ Physiotherapy and Sports Centre, Rzeszow University of Technology, 35-959 Rzeszów, Poland; g.bril@prz.edu.pl
- ⁵ Institute of Clinical Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland
- ⁶ Institute of Health Sciences, Medical College of Rzeszów University, 35-315 Rzeszów, Poland; kielnarrenata@o2.pl
- ⁷ Institute of Physiotherapy, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 46-020 Opole, Poland; h.racheniuk@po.edu.pl
- ⁸ Department of Orthopaedics and Rehabilitation, Medical Faculty, Medical University of Warsaw,
- 02-091 Warsaw, Poland; olgaadam98@gmail.com (O.A.); jm.deszczynski@me.com (M.D.)
- * Correspondence: anna.mika@awf.krakow.pl

Abstract: Background: Velocity-based training (VBT) requires measurement of the velocity at which the barbell is moved in the concentric phase with regard to different resistance exercises, which provides accurate, indirect estimations of 1 RM. However, for assessing punch performance, no study has been carried out to date. The purpose of this study was to analyse the reliability of the GymAware linear transducer for the measurement of barbell velocity during the landmine push throw (LPT) test using four loads. Methods: Twenty-five healthy, physically active male students, aged 24.13 \pm 2.82 years, volunteered to take part in this study. The reliability of the LPT test was measured at two separate visits, with a 2-day interval between them. One series of the test protocol included four parts of the LPT test with progressively increasing loads (20, 25, 30, and 35 kg) and 5 min intervals for rests between loads. Results: For all four loads, excellent intra-rater and test-retest reliability was noted for the mean force variable (ICC = 0.97–0.99). Additionally, very strong and significant correlations were established between measurements (r = 0.96-0.99). Poor reliability was observed for barbell height and total work (ICC below 0.5). A trend of decreasing reliability was detected with increasing barbell load. Furthermore, measurements without the barbell throw were more reliable than those with it. Conclusions: These results support the use of the GymAware linear transducer to track barbell velocity during the LPT test. This device may have valuable practical applications for strength and conditioning coaches. Therefore, we suggest that the LPT assessed with the GymAware linear transducer may be a useful method for evaluating upper limb strength and power during boxing punches.

Keywords: reliability; GymAware linear transducer; landmine punch throw test; sport; training; punch strength

1. Introduction

Training intensity is considered a fundamental variable for the design of resistance training programmes [1–3]. The one-repetition maximum has been the most widely used method for quantifying training intensity [4,5]. However, the main drawback of this

Citation: Oleksy, Ł.; Kuchciak, M.; Bril, G.; Mika, A.; Przydział, M.; Pazdan-Śliż, I.; Kielnar, R.; Racheniuk, H.; Adamska, O.; Deszczyński, M. Intra-Rater and Test–Retest Reliability of Barbell Force, Velocity, and Power during the Landmine Punch Throw Test Assessed by the GymAware Linear Transducer System. *Appl. Sci.* **2023**, *13*, 10875. https://doi.org/10.3390/ app131910875

Academic Editor: Burkhard Poeggeler

Received: 15 August 2023 Revised: 16 September 2023 Accepted: 28 September 2023 Published: 30 September 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). approach is that it requires the performance of a maximal lift [3] or a number of repetitions with submaximal loads to failure [6,7]. Recently, many authors, based on the force–velocity relationship [8], have recommended the use of velocity feedback to quantify training loads [1,9,10]. This approach is based on a previously reported high correlation ($R_2 > 0.97$) between the load and the mean velocity at which each load is lifted [10–12]. Velocity-based training (VBT) requires measurement of the velocity at which the barbell is moved in the concentric phase with regard to different resistance exercises, which provide accurate, indirect estimations of the 1 RM without the need to perform a maximal lift [7,13,14]. It has been reported that barbell velocity during the bench press, back squat, and bench pull are highly correlated with training intensity in terms of %1RM [15–18]. It has been further underlined that controlling barbell velocity is a good way to monitor resistance training intensities [19,20].

The ability to punch with high-impact force is important for many athletes. In the case of boxers, maximal and explosive strength of the upper body are strongly related to punch impact force [21]. Due to the close similarity to punching movement patterns, some authors have reported the use of the landmine punch throw (LPT) test to assess the speed–strength component of punching [22]. During this test, an athlete pushes and throws one end of the barbell at an approximately 60° angle from the floor while the other end of the barbell is inserted into a landmine attachment on the floor [22,23].

However, there is no gold standard for assessing punch performance. A variety of assessment devices and protocols have been applied, such as pressure sensors, motion capture systems, accelerometers, force transducers, and force platforms [24–26]. Linear position transducers (LPTs) are often used for measuring velocity in resistance exercises through a vertical displacement of a cable that is attached to the barbell [27,28]. In some studies, it has been reported that LPTs seem to be the most reliable and valid tool [7,21,29,30]. Recently, the GymAware linear transducer (GYM; Kinetic Performance Technologies, Canberra, Australia) has become increasingly popular in the monitoring of resistance training and optimisation of training prescriptions [31–33]. Fernandes et al. [33] reported that it appears to be the most valid; nonetheless, its reliability was evaluated only for deadlifts and squats, but there are no studies in which it would have been assessed for upper body movement [17,18].

We hypothesised that the GymAware linear transducer may be similarly reliable when measuring barbell velocity for upper body movement during the landmine push throw test. Therefore, the purpose of this study was to analyse the reliability of the GymAware linear transducer for the measurement of barbell velocity during the landmine push throw test applying four loads.

2. Materials and Methods

2.1. Participants

Twenty-five healthy, physically active male students, aged 24.13 ± 2.82 years, with a body mass of 75.2 ± 7.4 kg and body height of 175 ± 4 cm, volunteered in this study. They all met the inclusion criteria: age between 18–30 years; not having any pain, injury, and/or disease in the upper limbs 1 year before the study; not having any systematic disease; performing sports at a recreational level for a minimum 1 h, 3 times a week and no competitive history in combat sports. The participants were recruited through advertising on university social media. They were familiarised with all measurement procedures. The familiarisation was performed after the warm-up before the tests. The subject was allowed to practice the test technique with the lower load (20 kg) using the right and left hand. After the practice trial, 15 min rest was required. Then, the test trials were performed.

The study participants were informed in detail about the research protocol. They provided their written informed consent to participate in the study. Approval of the Ethical Committee at the Regional Medical Chamber in Kraków was obtained for this study (13/KBL/OIL/2021). All procedures were performed in accordance with the 1964 Declaration of Helsinki and its later amendments.

2.2. Study Design

The trials were carried out in the morning hours at normal room temperature (22–23 °C). All the measurements were performed in the laboratory by the same rater, who was trained and had good experience with the equipment as well as the test protocol. The participants were asked to avoid vigorous physical activity during the time between both visits. Body mass (kg) and height (cm) were measured prior to testing. Body height was measured via a stadiometer (Metrisis, Thessaloniki, Greece). Body mass was determined with an octopolar analyser (Tanita MC 780 MA, Tokyo, Japan)

The reliability of the LPT test was measured on 2 separate visits with a 2-day interval between them. One series of the test protocol included 4 parts of the LPT test with progressively increasing loads (20, 25, 30, and 35 kg) with a 5 min rest between loads. For each load and for each of the 4 series of the test protocol, the subject performed 2 repetitions. For each repetition, subjects performed the concentric component in an explosive manner, with the aim of trying to produce maximum velocity.

2.2.1. Test Protocol

- 1. Measurement of right-hand punch with right leg behind without throwing the barbell (no throw—NT): 2 repetitions with each load and 5 min interval for rest between loads.
- 2. Measurement of right-hand punch with right leg behind with throwing the barbell (throw—T): 2 repetitions with each load and 5 min interval for rest between loads.
- 3. Measurement of left-hand punch with left leg behind without throwing the barbell(no throw—NT): 2 repetitions with each load and 5 min interval for rest between loads.
- 4. Measurement of left-hand punch with left leg behind with throwing the barbell (throw—T): 2 repetitions with each load and 5 min interval for rest between loads.

Visit 1: For intra-rater reliability, 2 series of the LPT test protocol were performed with 30 min dedicated to rest between them.

Visit 2: For test–retest reliability, 1 series of LPT test protocol was performed 2 days later. The reliability was calculated between the 1st measurement from Visit 1 and the measurement from Visit 2.

2.2.2. Landmine Punch Throw Test

The LPT test was used to assess the ability to produce high velocity in a movement pattern similar to a rear-hand punch. A barbell was inserted into a landmine attachment, which positioned the bar at angles between 40–60 degrees, depending on the subject's height. Subjects were instructed to produce a maximal effort in order to throw the bar as fast as possible [34] (Figure 1).

Barbell velocity during the LPT test was collected at 50 Hz via the GymAware linear position transducer (Kinetic Performance Technology, Canberra, Australia) attached to the throwing end of the barbell. GymAware was previously reported as a valid and reliable method of position encoding [35,36]. The following outcomes were measured during the concentric phase of the test: height (m), mean force (N), mean power (W), mean power (W/kg), mean velocity (m/s), peak force (N), peak power (W), peak power (W/kg), peak velocity (m/s), and total work (kJ).

2.2.3. Statistical Analysis

Statistical analysis was carried out using STATISTICA 13.0 software. Data distribution, evaluated via the Shapiro–Wilk test, was normal. The intra-rater and test–retest reliability of the variables were determined using the Intraclass Correlation Coefficients ICC (2.1) model according to Shrout and Fleiss [37]. The interpretation of the ICC agreement was performed according to Koo et al. [38]: below 0.50: poor; between 0.50 and 0.75: moderate; between 0.75 and 0.90: good; above 0.90: excellent. Variability within each data set was described using means and standard deviation (SD), coefficients of variation (CV), and standard error of measurement (SEM). Pearson's correlation coefficient (r) was calculated between measurements. The level of statistical significance was set at (p < 0.05). The

minimal sample calculation was based on Bujang and Baharum's proposal [39]. Power analysis indicated that at least 22 subjects were required to obtain a power of 0.8 at an alpha level = 0.05 with an effect size of d = 0.8 and a minimum ICC of 0.50 [17,18,33].

Figure 1. Study setup and location of the GymAware transducer on the barbell. (**a**) start position for the right hand; (**b**) end position for the right hand; (**c**) start position for the left hand; (**d**) end position for the left hand.

3. Results

3.1. Intra-Rater Reliability

For all four loads on both left and right sides, the highest (excellent) reliability was noted for the mean force variable (ICC = 0.97-0.99). Additionally, very strong and significant correlations were observed between measurements (r = 0.96-0.99). The lowest (poor) reliability was exhibited for barbell height and total work (ICC below 0.5). Furthermore, Pearson's correlation for those variables was weak to moderate and non-significant. The mean and peak force, power and velocity demonstrated good to excellent reliability. Higher reliability (ICC good to excellent, stronger, and significant correlations) was observed for measurements with a load of 20 and 25 kg compared to measurements with a load of 30 and 35 kg. For higher loads, more variables demonstrated moderate ICC and low as well as non-significant correlations. Additionally, better reliability was established for measurements without the barbell throw (NT) than those performed with a throw (T). The CV and SEM were relatively low, indicating good data consistency (Tables 1–4).

3.2. Test-Retest Reliability

The level of test–retest reliability was similar to intra-rater reliability. The trend of decreasing reliability was observed with increasing barbell load. Additionally, measurements without the barbell throw were more reliable than those with its performance. The CV and SEM were relatively low, indicating good data consistency (Tables 5–8).

Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	ICC	r
				1st		2nd				
Usisht (m)		R	0.44 ± 0.06	0.01	13	0.43 ± 0.06	0.01	15.7	0.82	0.83 *
neight (m)		L	0.43 ± 0.06	0.01	14	0.42 ± 0.06	0.01	14	0.88	0.80 *
Moon Force (NI)		R	149 ± 110	19	73	129 ± 117	23	90	0.99	0.99 *
Mean Force (IN)		L	145 ± 107	18	73	134 ± 118	23	87	0.99	0.99 *
Moon Power (W)	_	R	413 ± 131	23	31	429 ± 120	24	28	0.77	0.75 *
Wealt I Owel (W)		L	374 ± 109	19	29	404 ± 115	22	28	0.87	0.77 *
Mean Power (W/kg)		R	5.39 ± 1.26	0.22	23	5.37 ± 1.24	0.24	23	0.64	0.68 *
Weatt I Ower (W/ Kg)		L	4.88 ± 1.04	0.18	21	5.08 ± 1.23	0.24	24	0.87	0.68 *
Mean Velocity (m/s)		R	1.44 ± 0.2	0.04	15	1.46 ± 0.24	0.04	16	0.73	0.62 *
Weatt velocity (III/S)		L	1.28 ± 0.26	0.04	18	1.31 ± 0.30	0.05	17	0.90	0.82 *
Poak Forma (NI)	- NT	R	500 ± 91	16	18	542 ± 101	20	18	0.87	0.79 *
Teak Porce (IN)		L	544 ± 147	26	27	573 ± 132	23	25	0.73	0.57 *
Pool Power (M)	_	R	774 ± 237	41	30	824 ± 175	34	21	0.67	0.57 *
Teak Tower (W)		L	747 ± 245	43	32	817 ± 162	35	22	0.68	0.52 *
Poak Power (W/kg)	_	R	10.1 ± 2.4	0.42	23	10.3 ± 1.8	0.37	18	0.53	0.36
i eak i owei (w/kg)		L	9.75 ± 2.63	0.46	27	10.2 ± 2.1	0.38	19	0.61	0.43
Pools Valacity (m/s)		R	2.23 ± 0.35	0.06	16	2.30 ± 0.31	0.06	15	0.70	0.66 *
Teak velocity (III/S)		L	2.01 ± 0.36	0.06	18	2.04 ± 0.39	0.07	19	0.92	0.86 *
Total Work (kI)		R	0.18 ± 0.03	0.00	20	0.17 ± 0.04	0.00	22	0.77	0.88 *
		L	0.22 ± 0.08	0.01	31	0.19 ± 0.06	0.01	24	0.50	0.35
Height (m)		R	0.54 ± 0.08	0.01	15	0.57 ± 0.08	0.01	14	0.48	0.77 *
Height (m)		L	0.56 ± 0.07	0.02	13	0.58 ± 0.12	0.02	16	0.79	0.72 *
Maan Farra (NI)		R	132 ± 97	17	73	122 ± 106	21	87	0.97	0.99 *
Mean Force (N)		L	126 ± 96	17	70	117 ± 103	20	87	0.98	0.99 *
M D		R	328 ± 104	18	31	376 ± 129	26	34	0.53	0.55 *
Mean Power (W)		L	321 ± 96	17	30	340 ± 86	17	26	0.90	0.82 *
Maan Davian (M//lea)		R	4.32 ± 1.19	0.21	27	4.73 ± 1.49	0.30	31	0.69	0.53 *
Mean Fower (W/Kg)		L	4.22 ± 1.07	0.19	25	4.30 ± 1.00	0.19	23	0.89	0.81 *
Moon Volocity (m /c)		R	1.32 ± 0.21	0.03	16	1.42 ± 0.28	0.05	19	0.61	0.46 *
Mean velocity (III/S)		L	1.21 ± 0.28	0.05	23	1.28 ± 0.29	0.06	21	0.93	0.87 *
	— Т	R	515 ± 85	15	16	553 ± 84	17	15	0.79	0.65 *
Peak Force (IN)		L	543 ± 102	18	23	571 ± 119	23	20	0.69	0.53 *
	_	R	880 ± 258	45	25	982 ± 302	61	30	0.74	0.59 *
Peak Power (W)		L	850 ± 297	53	35	910 ± 294	67	32	0.76	0.61 *
Peak Power (W/kg)	_	R	11.5 ± 2.85	0.50	24	12.3 ± 3.45	0.70	27	0.69	0.52 *
		L	11.1 ± 3.67	0.71	31	11.4 ± 3.39	0.64	26	0.75	0.48
		R	2.41 ± 0.38	0.06	16	2.54 ± 0.44	0.09	17	0.73	0.57 *
Peak velocity (m/s)		L	2.20 ± 0.45	0.08	20	2.26 ± 0.49	0.09	21	0.92	0.77 *
		R	0.16 ± 0.05	0.01	35	0.19 ± 0.06	0.01	34	0.55	0.40
Total Work (kJ)		L	0.20 ± 0.11	0.01	41	0.23 ± 0.09	0.01	39	0.57	0.41 *

Table 1. Intra-rater reliability of landmine punch throw test with 20 kg.

IsiDelivHeight (m)R0.42±0.010.011.80.42±0.030.012.00.720.63*Mean Force (N)R1.77±1.312.37.3156±1.372.68.70.090.99*Mean Force (N)R1.77±1.312.37.3156±1.372.68.70.090.99*Mean Power (W/kg)R3.72±981.73.03.46±841.62.40.880.75*0	Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	ICC	r
Height (m)R0.1 ± 100.01170.42 ± 0.050.01150.860.76*Mean Force (N)I0.1 ± 1030.10.15 ± 1370.66.70.900.90*Mean Fower (W)I173 ± 1282.273156 ± 1370.66.70.900.90*Mean Power (W)I0.37 ± 107182.83.85 ± 7190.20.880.78*Man Neocity (m/s)R4.85 ± 1120.192.34.85 ± 0.990.100.70.75*Pack Force (N)R1.17 ± 0.200.011.21 ± 0.190.03170.68*0.75*Pack Force (N)R1.17 ± 0.200.011.21 ± 0.190.03170.68*0.75*Pack Force (N)R6.92 ± 5.8*1.51.75.96 ± 0.190.350.75*0.16*0.75*Pack Force (N)R6.92 ± 5.19*0.352.77.75 ± 1.130.90.9*0.8*0.7*0.7*Pack Noter (M)R6.95 ± 1.9*0.352.77.75 ± 1.130.9*0.9*0.7*0.8*0.7*Pack Noter (M)R0.95 ± 1.9*0.3*2.70.771.15*0.9*0.9*0.7*0.8*0.7*Pack Noter (M)R0.95 ± 1.9*0.3*1.70.5*0.7*0.8*0.7*0.8*0.7*0.8*0.7*0.8*0.7*Pack Noter (M)R0.95 ± 1.9*0.151.40.9*0					1st		2n				
Inegar (n) L 0.42 ± 0.07 0.01 18 0.42 ± 0.08 0.01 20 0.77 0.63 ± Mean Force (N) R 177 ± 131 22 73 156 ± 136 26 67 0.09 0.99* Mean Power (W) R 370 ± 107 18 28 385 ± 97 19 25 0.84 0.77 0.63 ± 07* Mean Power (W) R 370 ± 107 18 28 385 ± 97 19 25 0.84 0.77 0.63 ± 07* Mean Velocity (m/s) L 425 ± 0.84 0.14 19 435 ± 0.90 0.19 20 0.66 ± 0.76 0.62 ± 0.76 0.62 ± 0.76 0.62 ± 0.76 0.62 ± 0.77 0.61 ± 0.77 0.63 ± 0.77 0.62 ± 0.77 0.62 ± 0.77 0.62 ± 0.77 0.61 ± 0.77 0.68 ± 0.77 0.77 ± 0.75 ± 0.71 ± 0.75 ± 0.71 ± 0.75 ± 0.71 ± 0.75 ± 0.71 ± 0.75 ± 0.77 ± 0.75 ± 0.77 ± 0.75 ±	Height (m)		R	0.41 ± 0.10	0.01	17	0.42 ± 0.06	0.01	15	0.86	0.76 *
Mean Force (N)R177 + 132373156 + 13726870.990.99*Mean Power (W)L173 + 1282273156 + 13626870.990.99*Mean Power (W)L327 + 1981730346 ± 8416240.880.72*Mean Power (W/kg)L327 + 1981730346 ± 8416240.880.72*Mean Velocity (m/s)R4.85 ± 1.120.194.32 ± 0.730.14170.730.57*R1.27 ± 0.270.04211.31 ± 0.270.050.060.7**0.68*R8.521 ± 881517536 ± 901190.730.75*0.7**Peak Power (W)L5.75 ± 1103327750 ± 18336240.880.7**R6.92 ± 1903327750 ± 18336240.880.7**Peak Power (W/kg)L6.87 ± 1870.30188.86 ± 1.450.290.770.62*L1.88 ± 1.670.30188.96 ± 1.450.290.770.62*0.7**Peak Velocity (m/s)L6.85 ± 1.690.30219.43 ± 1260.35190.77*0.62*L1.88 ± 0.210.300.11191.96 ± 0.290.07180.850.7**Mean Force (M)L1.88 ± 0.210.00230.20 ± 0.060.01150.790.62*<	rieigin (iii)		L	0.42 ± 0.07	0.01	18	0.42 ± 0.08	0.01	20	0.77	0.63 *
Image (i) L 173 ± 128 22 73 156 ± 136 26 87 0.99 0.99* Mean Power (W) R 370 ± 107 18 28 385 ± 97 19 25 0.84 0.72* Mean Power (W/kg) L 327 ± 98 101 19 44.85 ± 0.99 0.19 20 0.76* 0.84* Mean Velocity (m/s) L 4.85 ± 1.12 0.19 23 4.85 ± 0.99 0.19 20 0.76* 0.75* R 1.21 ± 0.19 0.33 17 17 0.87 0.77* 0.87* 0.88 0.79* Peak Force (N) R 521 ± 88 15 17 536 ± 90 17 16 0.79 0.66* R 692 ± 190 33 27 775 ± 183 36 24 0.88 0.71* 0.62* R 9.95 ± 1.99 0.35 21 9.43 ± 1.82 0.35 19 0.42 0.88 0.77* 0.88 0.77* 0.82* <td>Moon Force (NI)</td> <td></td> <td>R</td> <td>177 ± 131</td> <td>23</td> <td>73</td> <td>156 ± 137</td> <td>26</td> <td>87</td> <td>0.99</td> <td>0.99 *</td>	Moon Force (NI)		R	177 ± 131	23	73	156 ± 137	26	87	0.99	0.99 *
RenR370 ± 1071828385 ± 9719250.840.72 *Mean Power (W/kg)L327 ± 981730346 ± 490.16240.880.76 *Mean Velocity (m/s)L425 ± 0.840.14194.32 ± 0.730.14170.730.57 *Peak Force (N)R1.27 ± 0.270.04211.31 ± 0.270.05200.880.79 *Peak Power (W)R1.27 ± 0.270.04211.31 ± 0.270.0517160.790.66 *1573 ± 1102521600 ± 11923190.780.66 *0.78 *0.68 *Peak Power (W/kg)R692 ± 1900.3327771 ± 19639290.770.62 *Peak Velocity (m/s)R9.05 ± 1.990.35219.43 ± 1.820.35190.720.62 *R9.05 ± 1.990.35219.43 ± 1.820.35190.720.62 *R9.05 ± 1.990.35222.03 ± 0.390.07190.82 *Peak Velocity (m/s)R0.24 ± 0.440.00230.20 ± 0.440.00240.82 *Mean Force (N)RR0.24 ± 0.440.01140.57 ± 0.050.63 *0.75 *0.63 *Mean Force (N)RR1.61 ± 11921731.44 ± 12524870.990.97 *Mean Force (N)RR4.	Mean Porce (IN)		L	173 ± 128	22	73	156 ± 136	26	87	0.99	0.99 *
Intentional (W) I 30 346 ± 84 16 24 0.88 0.78* Mean Power (W/kg) R 4.85 ± 1.2 0.19 23 4.85 ± 0.99 0.10 20 0.68 0.62* Mean Velocity (m/s) R 1.27 ± 0.27 0.04 21 1.31 ± 0.27 0.05 1.0 0.05 0.78 0.75* Peak Force (N) R 5.21 ± 88 15 17 5.36 ± 90 1.7 1.6 0.79 0.66* L 5.73 ± 110 2.5 2.1 6.00± 119 2.3 0.14 1.9 0.78 0.66* Peak Power (W/kg) R 6.92 ± 190 3.3 2.7 7.90 ± 183 3.6 2.4 0.83 0.71* 0.6* Peak Power (W/kg) R 6.92 ± 190 3.3 2.7 7.91 ± 185 0.29 0.75 0.6* 0.75* 0.6* 0.7* 0.6* 0.7* 0.6* 0.7* 0.6* 0.7* 0.6* 0.7* 0.6* 0.7* <	Moon Power (W)	_	R	370 ± 107	18	28	385 ± 97	19	25	0.84	0.72 *
Rean Power (W/kg) R 4.85 ± 1.12 0.19 23 4.85 ± 0.99 0.19 20 0.76 0.62 ± Mean Velocity (m/s) L 4.25 ± 0.84 0.14 19 4.32 ± 0.73 0.14 17 0.03 0.57* Peak Force (N) R 1.27 ± 0.27 0.04 21 1.31 ± 0.27 0.03 17 0.68 0.77* Peak Force (N) R 521 ± 88 15 17 536 ± 90 17 16 0.79 0.66* L 573 ± 110 25 21 600 ± 119 23 19 0.77 0.62* Peak Power (W/kg) L 6687 ± 187 36 27 775 ± 183 0.35 19 0.77 0.62* R 9.05 ± 1.99 0.35 21 9.43 ± 1.82 0.35 19 0.77 0.62* R 0.21 ± 0.01 0.01 14 0.89 0.21 0.35 0.77 0.62* Peak Power (W/kg) R 0.25 ± 0.03	Wealt I Owel (W)		L	327 ± 98	17	30	346 ± 84	16	24	0.88	0.78 *
Image for (i)	Mean Power (W/kg)		R	4.85 ± 1.12	0.19	23	4.85 ± 0.99	0.19	20	0.76	0.62 *
R 1.27 ± 0.27 0.04 21 1.31 ± 0.27 0.05 20 0.88 0.79* Peak Force (N) K S21 ± 88 15 17 536 ± 90 17 16 0.79 0.66* Peak Force (N) K S21 ± 88 12 536 ± 90 17 16 0.79 0.66* Peak Force (N) K 687 ± 187 36 27 775 ± 183 36 24 0.83 0.71* Peak Power (W/kg) L 687 ± 187 36 27 777 ± 195 39 29 0.77 0.62* R 9.05 ± 1.99 0.35 21 9.43 ± 1.82 0.35 19 0.35 19 0.35 19 0.35 19 0.35 19 0.35 11 9.43 ± 1.82 0.35 18 0.85 0.65* Peak Velocity (m/s) L 1.88 ± 0.21 0.01 14 0.92 ± 0.05 18 0.83 0.77* 0.62* Mean Force (N) K R </td <td>Weatt Fower (W/ Kg)</td> <td></td> <td>L</td> <td>4.25 ± 0.84</td> <td>0.14</td> <td>19</td> <td>4.32 ± 0.73</td> <td>0.14</td> <td>17</td> <td>0.73</td> <td>0.57 *</td>	Weatt Fower (W/ Kg)		L	4.25 ± 0.84	0.14	19	4.32 ± 0.73	0.14	17	0.73	0.57 *
	Mean Velocity (m/s)		R	1.27 ± 0.27	0.04	21	1.31 ± 0.27	0.05	20	0.88	0.79 *
Peak Force (N) NT R 521 ± 88 15 17 536 ± 90 17 16 0.99 0.66* Peak Power (W) I I 573 ± 110 25 21 600 ± 119 23 19 0.78 0.68* Peak Power (W/kg) IR 687 ± 187 36 27 773 ± 183 36 9 9 0.77 0.62* Peak Power (W/kg) I 685 ± 167 0.30 18 8.96 ± 145 0.33 19 0.77 0.62* Peak Velocity (m/s) I 1.93 ± 0.42 0.07 22 0.23 ± 0.32 0.07 18 0.85 0.77* Total Work (k) I 0.20 ± 0.03 0.01 23 0.20 ± 0.03 0.01 23 0.20 ± 0.03 0.01 25 0.83 0.77 0.83 Height (m) R 0.23 ± 0.07 0.01 14 0.58 ± 0.10 0.02 18 0.79 0.98* Mean Power (W/kg) R 0.15 ± 1.18 0.20	Weatt velocity (III/3)		L	1.17 ± 0.20	0.03	19	1.21 ± 0.19	0.03	17	0.87	0.77 *
Iter Force (N) L 573 ± 110 25 21 600 ± 119 23 19 0.78 0.68* Peak Power (W) R 692 ± 190 33 27 750 ± 183 36 24 0.83 0.71* Peak Power (W/kg) L 687 ± 187 36 27 771 ± 195 39 29 0.77 0.62* Peak Power (W/kg) L 8.85 ± 1.67 0.30 18 8.96 ± 1.45 0.29 17 0.84 0.78* Peak Velocity (m/s) L 1.88 ± 0.21 0.04 19 1.96 ± 0.29 0.05 18 0.85 0.77* 0.82* L 0.24 ± 0.04 0.00 23 0.20 ± 0.03 0.01 24 0.22 0.05 18 0.85 0.77* 0.62* L 0.23 ± 0.07 0.01 14 0.58 ± 0.10 0.01 15 0.77 0.62* Mean Force (N) R 161 ± 119 21 73 144 ± 125 24 87 0.99 </td <td>Poak Force (NI)</td> <td>NT</td> <td>R</td> <td>521 ± 88</td> <td>15</td> <td>17</td> <td>536 ± 90</td> <td>17</td> <td>16</td> <td>0.79</td> <td>0.66 *</td>	Poak Force (NI)	NT	R	521 ± 88	15	17	536 ± 90	17	16	0.79	0.66 *
Peak Power (W) R 692 ± 190 33 27 750 ± 183 36 24 0.83 0.71^* Peak Power (W/kg) L 687 ± 187 36 27 717 ± 195 39 29 0.77 0.62^* Peak Velocity (m/s) L 8.85 ± 1.67 0.30 18 8.96 ± 1.45 0.29 17 0.84 0.77 0.62^* Peak Velocity (m/s) L 8.85 ± 1.67 0.30 18 8.96 ± 1.45 0.29 0.7 19 0.90 0.82^* L 1.88 ± 0.21 0.04 19 1.96 ± 0.29 0.05 18 0.85 0.74^* Total Work (k) R 0.24 ± 0.04 0.00 23 0.20 ± 0.04 0.00 24 0.85 0.74^* Height (m) R 0.55 ± 0.08 0.01 14 0.55 ± 0.06 0.02 18 0.77 0.82^* Mean Force (N) R 161 ± 119 21	Teak Force (IN)	_	L	573 ± 110	25	21	600 ± 119	23	19	0.78	0.68 *
I 687±187 36 27 717±195 39 29 0.77 0.62* Peak Power (W/kg) R 9.05±1.99 0.35 21 9.43±1.82 0.35 19 0.77 0.62* Peak Velocity (m/s) I 8.85±1.67 0.30 18 8.96±1.45 0.29 17 0.84 0.78* Peak Velocity (m/s) I 1.93±0.42 0.07 22 2.03±0.39 0.07 19 0.90 0.82* Total Work (k) I 1.88±0.21 0.04 19 1.96±0.29 0.05 18 0.85 0.74* L 0.20±0.03 0.01 24 0.22±0.06 0.01 25 0.83 0.70* Height (m) R 0.55±0.08 0.01 16 0.57±0.09 0.01 15 0.77 0.62* Mean Force (N) R 142±120 23 87 139±126 25 0.03 0.5* Mean Power (W/kg) L 290±66 11	Poak Power (W)		R	692 ± 190	33	27	750 ± 183	36	24	0.83	0.71 *
Peak Power (W/kg)R9.05 ± 1.990.35219.43 ± 1.820.35190.770.62*L8.85 ± 1.670.30188.96 ± 1.450.29170.840.78*Peak Velocity (m/s)R1.93 ± 0.420.07222.03 ± 0.390.07190.900.82*Total Work (kj)L1.88 ± 0.210.04100230.02 ± 0.040.00250.850.74*Height (m)L0.20 ± 0.040.00240.22 ± 0.060.01250.820.74*Mean Force (N)R0.55 ± 0.080.01140.58 ± 0.100.02180.770.82*Mean Power (W/kg)R161 ± 1192173144 ± 12524870.990.99*Mean Power (W/kg)R111 ± 22231524870.990.98*Mean Power (W/kg)R1.18 ± 0.290.05251.26 ± 0.240.15190.67*0.68*Mean Velocity (m/s)R1.18 ± 0.290.05251.26 ± 0.240.04190.820.69*Mean Velocity (m/s)R1.82 ± 2.144228866 ± 2.44300.690.68*Mean Velocity (m/s)R1.82 ± 2.144228866 ± 2.4443250.680.74*Mean Velocity (m/s)R8.21 ± 2.051.641.22 ± 0.5714180.78*0.68*Mean Velocity (m/s)R <td>I eak I Owel (W)</td> <td></td> <td>L</td> <td>687 ± 187</td> <td>36</td> <td>27</td> <td>717 ± 195</td> <td>39</td> <td>29</td> <td>0.77</td> <td>0.62 *</td>	I eak I Owel (W)		L	687 ± 187	36	27	717 ± 195	39	29	0.77	0.62 *
$ \begin{array}{ c c c c c c c c } eq:linear_lin$	Peak Power (W/kg)	_	R	9.05 ± 1.99	0.35	21	9.43 ± 1.82	0.35	19	0.77	0.62 *
Peak Velocity (m/s)	1 eak 1 ower (w/ kg)		L	8.85 ± 1.67	0.30	18	8.96 ± 1.45	0.29	17	0.84	0.78 *
$ \frac{1}{12} \operatorname{Fack}\operatorname{Felch}(\operatorname{Fi}(\operatorname{Fi})) = \frac{1}{12} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	Paals Valagity (m/g)		R	1.93 ± 0.42	0.07	22	2.03 ± 0.39	0.07	19	0.90	0.82 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Teak velocity (III/S)		L	1.88 ± 0.21	0.04	19	1.96 ± 0.29	0.05	18	0.85	0.75 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Work (kl)		R	0.24 ± 0.04	0.00	23	0.20 ± 0.04	0.00	24	0.85	0.74 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iotal Work (KJ)		L	0.20 ± 0.03	0.01	24	0.22 ± 0.06	0.01	25	0.83	0.70 *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hoight (m)		R	0.55 ± 0.08	0.01	16	0.57 ± 0.09	0.01	15	0.77	0.62 *
Mean Force (N)R 161 ± 119 21 73 144 ± 125 24 87 0.99 0.99^* Mean Power (W)L 142 ± 120 23 87 139 ± 126 25 90 0.97 0.98^* Mean Power (W/kg)R 317 ± 89 19 34 325 ± 80 15 24 0.79 0.68^* Mean Power (W/kg)R 4.15 ± 1.18 0.20 28 4.11 ± 0.80 0.15 19 0.72 0.58^* Mean Velocity (m/s)R 1.18 ± 0.29 0.05 25 1.26 ± 0.24 0.04 19 0.82 0.69^* Peak Force (N)R 1.18 ± 0.29 0.04 18 1.23 ± 0.20 0.04 17 0.91 0.85^* Peak Power (W)R 526 ± 95 16 18 560 ± 78 15 14 0.82 0.69^* Peak Power (W)R 832 ± 214 42 28 886 ± 224 43 25 0.86 0.76^* Peak Power (W/kg)R 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 0.63^* Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81 R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 0.74 Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81 <td>riegni (iii)</td> <td></td> <td>L</td> <td>0.53 ± 0.07</td> <td>0.01</td> <td>14</td> <td>0.58 ± 0.10</td> <td>0.02</td> <td>18</td> <td>0.77</td> <td>0.82 *</td>	riegni (iii)		L	0.53 ± 0.07	0.01	14	0.58 ± 0.10	0.02	18	0.77	0.82 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Moon Fores (NI)		R	161 ± 119	21	73	144 ± 125	24	87	0.99	0.99 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean Force (IN)		L	142 ± 120	23	87	139 ± 126	25	90	0.97	0.98 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maan Dawar (M)		R	317 ± 89	19	34	325 ± 80	15	24	0.79	0.68 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean rower (W)		L	290 ± 66	11	22	321 ± 75	15	23	0.73	0.57 *
International forward (W/ kg)L 3.78 ± 0.68 0.12 19 4.02 ± 0.69 0.13 17 0.75 0.67^* Mean Velocity (m/s)R 1.18 ± 0.29 0.05 25 1.26 ± 0.24 0.04 19 0.82 0.69^* Peak Force (N)R 526 ± 95 1618 560 ± 78 1514 0.82 0.68^* Peak Power (W)R 526 ± 95 1618 560 ± 78 1514 0.82 0.69^* Peak Power (W)R 832 ± 214 42 28 886 ± 224 43 25 0.86 0.76^* Peak Power (W/kg)R 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 0.63^* Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81^* Total Work (kJ)L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 0.78^* L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46^*	Moon Power (W//kg)		R	4.15 ± 1.18	0.20	28	4.11 ± 0.80	0.15	19	0.72	0.58 *
Mean Velocity (m/s)R 1.18 ± 0.29 0.05 25 1.26 ± 0.24 0.04 19 0.82 0.69^* Peak Force (N)R 526 ± 95 16 18 1.23 ± 0.20 0.04 17 0.91 0.85^* Peak Power (W)R 526 ± 95 16 18 560 ± 78 15 14 0.82 0.69^* Peak Power (W)R 832 ± 214 42 28 886 ± 224 43 25 0.86 0.76^* Peak Power (W/kg)L 821 ± 230 43 27 798 ± 242 48 30 0.69 0.62^* Peak Velocity (m/s)R 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 0.63^* Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81^* Potal Work (kJ)L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.64^*	Wealt I Ower (W/Kg)		L	3.78 ± 0.68	0.12	19	4.02 ± 0.69	0.13	17	0.75	0.67 *
Index velocity (iii / s)L 1.22 ± 0.19 0.04 18 1.23 ± 0.20 0.04 17 0.91 $0.85 *$ Peak Force (N)TR 526 ± 95 16 18 560 ± 78 15 14 0.82 $0.68 *$ L 590 ± 88 21 20 540 ± 75 14 18 0.78 $0.69 *$ Peak Power (W)Peak Power (W)L 832 ± 214 42 28 886 ± 224 43 25 0.86 $0.76 *$ L 821 ± 230 43 27 798 ± 242 48 30 0.69 $0.62 *$ Peak Power (W/kg)L 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 $0.63 *$ Peak Velocity (m/s)L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 $0.67 *$ R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 $0.81 *$ L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 $0.78 *$ Total Work (kJ)L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 $0.46 *$	Moon Volocity (m/s)		R	1.18 ± 0.29	0.05	25	1.26 ± 0.24	0.04	19	0.82	0.69 *
Peak Force (N)TR 526 ± 95 1618 560 ± 78 1514 0.82 $0.68 *$ Peak Power (W)L 590 ± 88 2120 540 ± 75 1418 0.78 $0.69 *$ Peak Power (W)R 832 ± 214 4228 886 ± 224 4325 0.86 $0.76 *$ Peak Power (W/kg)L 821 ± 230 4327 798 ± 242 4830 0.69 $0.62 *$ Peak Power (W/kg)L 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 $0.63 *$ Peak Velocity (m/s)L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 $0.67 *$ R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 $0.81 *$ L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 $0.78 *$ Total Work (kJ)L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 $0.46 *$	Weatt velocity (III/S)		L	1.22 ± 0.19	0.04	18	1.23 ± 0.20	0.04	17	0.91	0.85 *
L 590 ± 88 21 20 540 ± 75 14 18 0.78 $0.69*$ Peak Power (W)R 832 ± 214 42 28 886 ± 224 43 25 0.86 $0.76*$ Peak Power (W/kg)L 821 ± 230 43 27 798 ± 242 48 30 0.69 $0.62*$ Peak Power (W/kg)L 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 $0.63*$ Peak Velocity (m/s)L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 $0.67*$ R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 $0.81*$ L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 $0.78*$ Total Work (kJ)L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 $0.46*$		T	R	526 ± 95	16	18	560 ± 78	15	14	0.82	0.68 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak Force (IN)		L	590 ± 88	21	20	540 ± 75	14	18	0.78	0.69 *
L 821 ± 230 43 27 798 ± 242 48 30 0.69 0.62^* Peak Power (W/kg)R 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 0.63^* L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 0.67^* Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81^* L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 0.78^* R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 0.74^* L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46^*	D1. D (M/)	_	R	832 ± 214	42	28	886 ± 224	43	25	0.86	0.76 *
Peak Power (W/kg)R 10.9 ± 2.67 0.49 24 11.2 ± 2.35 0.46 20 0.77 $0.63 *$ Peak Velocity (m/s)L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 $0.67 *$ R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 $0.81 *$ L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 $0.78 *$ R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 $0.74 *$ L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 $0.46 *$	reak rower (W)		L	821 ± 230	43	27	798 ± 242	48	30	0.69	0.62 *
L 10.5 ± 2.85 0.51 25 10.9 ± 2.62 0.42 21 0.77 0.67 *Peak Velocity (m/s)R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81 *L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 0.78 *R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 0.74 *L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46 *	Peak Power (W/kg)	_	R	10.9 ± 2.67	0.49	24	11.2 ± 2.35	0.46	20	0.77	0.63 *
R 2.12 ± 0.51 0.09 21 2.26 ± 0.41 0.08 18 0.90 0.81 * L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 0.78 * R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 0.74 * L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46 *			L	10.5 ± 2.85	0.51	25	10.9 ± 2.62	0.42	21	0.77	0.67 *
L 1.88 ± 0.36 0.06 19 1.78 ± 0.37 0.07 21 0.81 $0.78 *$ Total Work (kJ) R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 $0.74 *$ L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 $0.46 *$	D1- V-1- '' ()		R	2.12 ± 0.51	0.09	21	2.26 ± 0.41	0.08	18	0.90	0.81 *
R 0.20 ± 0.10 0.01 44 0.24 ± 0.09 0.01 37 0.83 0.74 * L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46 *	Peak Velocity (m/s)		L	1.88 ± 0.36	0.06	19	1.78 ± 0.37	0.07	21	0.81	0.78 *
L 0.23 ± 0.09 0.01 39 0.26 ± 0.12 0.04 42 0.63 0.46*	T-1-1 147 1 (1 T)		R	0.20 ± 0.10	0.01	44	0.24 ± 0.09	0.01	37	0.83	0.74 *
	Iotal work (kJ)		L	0.23 ± 0.09	0.01	39	0.26 ± 0.12	0.04	42	0.63	0.46 *

Table 2. Intra-rater reliability of landmine punch throw test with 25 kg.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
L 0.48 ± 0.12 0.02 39 0.38 ± 0.13 0.02 35 0.40 0.33 Mean Force (N) R 182 ± 159 31 87 161 ± 159 31 87 0.99 0.99^* Mean Power (W) L 180 ± 157 30 87 181 ± 158 31 87 0.96 0.98^* Mean Power (W) L 337 ± 75 14 22 334 ± 75 14 26 0.92 0.86^* Mean Power (W/kg) L 337 ± 75 14 22 334 ± 75 14 26 0.92 0.86^* Mean Power (W/kg) L 4.23 ± 0.62 0.12 14 4.21 ± 0.70 0.13 21 0.62 0.69^* Mean Velocity (m/s) R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.88 0.77^* Mean Velocity (m/s) R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* R <
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Image Power (W) L 180 ± 157 30 87 181 ± 158 31 87 0.96 0.98^* Mean Power (W) L 399 ± 110 23 27 370 ± 102 20 27 0.95 0.86^* Mean Power (W/kg) L 337 ± 75 14 22 334 ± 75 14 26 0.92 0.85^* Mean Power (W/kg) R 5.05 ± 0.87 0.21 20 4.65 ± 0.94 0.18 20 0.85 0.72^* Mean Velocity (m/s) R 5.05 ± 0.87 0.21 20 4.65 ± 0.94 0.18 20 0.85 0.72^* Mean Velocity (m/s) R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.88 0.79^* Peak Force (N) R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* Peak Power (W) R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* Peak Powe
Mean Power (W) R 399 ± 110 23 27 370 ± 102 20 27 0.95 0.86^* Mean Power (W/kg) L 337 ± 75 14 22 334 ± 75 14 26 0.92 0.85^* Mean Power (W/kg) R 5.05 ± 0.87 0.21 20 4.65 ± 0.94 0.18 20 0.85 0.72^* Mean Velocity (m/s) L 4.23 ± 0.62 0.12 14 4.21 ± 0.70 0.13 21 0.82 0.69^* Mean Velocity (m/s) R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.89 0.75^* L 1.20 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.88 0.79^* Peak Force (N) R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W/kg) L 666 ± 120 <td< td=""></td<>
L 337 ± 75 14 22 334 ± 75 14 26 0.92 0.85^* Mean Power (W/kg) R 5.05 ± 0.87 0.21 20 4.65 ± 0.94 0.18 20 0.85 0.72^* Mean Velocity (m/s) L 4.23 ± 0.62 0.12 14 4.21 ± 0.70 0.13 21 0.82 0.69^* R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.88 0.79^* L 1.20 ± 0.22 0.04 18 1.12 ± 0.21 0.04 20 0.88 0.79^* Peak Force (N) R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W) L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg) L 8.31 ± 1.77 0.39 23 8.93 ± 1.9
Mean Power (W/kg)R 5.05 ± 0.87 0.21 20 4.65 ± 0.94 0.18 20 0.85 0.72^* Mean Velocity (m/s)L 4.23 ± 0.62 0.12 14 4.21 ± 0.70 0.13 21 0.82 0.69^* Mean Velocity (m/s)R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.89 0.75^* Deak Force (N)L 1.20 ± 0.22 0.04 18 1.12 ± 0.21 0.04 20 0.88 0.79^* Peak Power (W)R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W)R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* Peak Power (W/kg)L 666 ± 120 24 33 729 ± 144 29 30 0.79^* 0.70^* Peak Velocity (m/s)R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
Mean Yelocity (m/s)L 4.23 ± 0.62 0.12 14 4.21 ± 0.70 0.13 21 0.82 0.69^* Mean Velocity (m/s)R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.89 0.75^* Peak Force (N)R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* Peak Power (W)R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* Peak Power (W)L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W/kg)L 666 ± 120 24 33 729 ± 144 29 30 0.79^* 0.70^* Peak Velocity (m/s)R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
Mean Velocity (m/s)R 1.14 ± 0.22 0.04 19 1.14 ± 0.23 0.04 20 0.89 0.75^* Peak Force (N)NTR 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* Peak Power (W)L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W)L 666 ± 120 24 33 729 ± 144 29 30 0.79^* 0.70^* Peak Power (W/kg)L 8.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* Peak Velocity (m/s)R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
L 1.20 ± 0.22 0.04 18 1.12 ± 0.21 0.04 20 0.88 0.79^* Peak Force (N)R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W)R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg)R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s)R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
Peak Force (N) NT R 603 ± 90 24 21 567 ± 89 17 15 0.77 0.66^* Peak Force (N) L 608 ± 101 19 22 602 ± 91 18 17 0.73 0.67^* Peak Power (W) R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg) R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s) R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
L 608 ± 101 19 22 602 ± 91 18 17 073 0.67^* Peak Power (W)R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg)R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s)R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
R 721 ± 209 36 25 712 ± 202 39 28 0.82 0.67^* L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg) R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s) R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
L 666 ± 120 24 33 729 ± 144 29 30 0.79 0.70^* Peak Power (W/kg) R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76^* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s) R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
R 9.61 ± 1.77 0.39 23 8.93 ± 1.96 0.38 21 0.80 0.76* L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73 * Peak Velocity (m/s) R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68 *
L 8.31 ± 1.73 0.33 20 8.61 ± 1.44 0.35 21 0.78 0.73^* Peak Velocity (m/s) R 1.80 ± 0.36 0.07 23 1.76 ± 0.36 0.07 20 0.81 0.68^*
Peak Velocity (m/s) $\frac{R}{1.80 \pm 0.36} = 0.07 + 23 = 1.76 \pm 0.36 = 0.07 + 20 = 0.81 = 0.68 * 0.07 =$
Total Work (k) $R = 0.27 \pm 0.10 = 0.01 = 35 = 0.23 \pm 0.06 = 0.01 = 27 = 0.61 = 0.55 * 0.01 =$
$\frac{1}{L} \qquad 0.25 \pm 0.05 \qquad 0.01 \qquad 21 \qquad 0.28 \pm 0.07 \qquad 0.01 \qquad 27 \qquad 0.60 \qquad 0.55 \ *$
Height (m) $R = 0.54 \pm 0.11 = 0.02 = 22 = 0.55 \pm 0.08 = 0.01 = 15 = 0.61 = 0.43 *$
L 0.54 ± 0.08 0.01 19 0.52 ± 0.07 0.02 16 0.79 0.69*
Mean Force (N) $R 178 \pm 148 29 83 172 \pm 150 29 87 0.99 0.99*$
L 171 ± 149 30 81 166 ± 150 30 80 0.96 0.97*
Mean Power (M) R 307 ± 71 15 23 312 ± 72 14 23 0.88 $0.79*$
L 297 ± 53 10 17 299 ± 64 12 20 0.89 0.80*
Mean Power (W/kg) R 3.90 ± 0.76 0.15 21 3.95 ± 0.75 0.14 19 0.82 0.68 *
L 3.74 ± 0.49 0.09 13 3.85 ± 0.67 0.11 15 0.84 0.73 *
R 1.04 ± 0.19 0.03 19 1.07 ± 0.20 0.04 19 0.86 $0.75 *$
L 0.92 ± 0.16 0.03 16 0.99 ± 0.16 0.03 18 0.91 0.84*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{L} \qquad 641 \pm 104 \qquad 25 \qquad 23 \qquad 598 \pm 99 \qquad 22 \qquad 18 \qquad 0.71 \qquad 0.71 \ *$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\frac{1}{L} \qquad 825 \pm 176 \qquad 30 \qquad 22 \qquad 891 \pm 184 \qquad 34 \qquad 25 \qquad 0.84 \qquad 0.78 \ *$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
L 10.05 ± 2.21 0.47 26 8.72 ± 1.81 0.32 27 0.68 0.59*
R 1.92 ± 0.38 0.07 20 1.97 ± 0.36 0.07 18 0.90 0.83 *
L 1.70 ± 0.30 0.06 18 1.89 ± 0.31 0.06 19 0.81 0.73 *
R 0.25 ± 0.17 0.02 41 0.28 ± 0.10 0.01 38 0.62 0.44
$I_{L} = 0.22 \pm 0.12 = 0.02 = 31 = 0.29 \pm 0.16 = 0.02 = 41 = 0.39 = 0.57 *$

Table 3. Intra-rater reliability of landmine punch throw test with 30 kg.

Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$Mean \pm SD$	SEM	CV	ICC	r
				1st		2nd				
Height (m)		R	0.46 ± 0.10	0.02	22	0.41 ± 0.06	0.01	16	0.58	0.59 *
Tieight (III)		L	0.40 ± 0.05	0.01	14	0.46 ± 0.06	0.01	17	0.57	0.61 *
Moon Force (NI)		R	211 ± 184	36	87	210 ± 183	38	87	0.99	0.99 *
Weatt Force (IN)		L	205 ± 179	35	83	203 ± 180	36	86	0.98	0.99 *
Moon Power (W)	_	R	368 ± 133	26	36	359 ± 124	24	34	0.80	0.73 *
Wealt I Owel (W)		L	331 ± 102	20	30	345 ± 123	23	34	0.80	0.74 *
Mean Power (W/kg)		R	4.63 ± 1.56	0.37	41	4.58 ± 1.67	0.32	38	0.72	0.65 *
Mean Tower (W/ Kg)	_	L	4.12 ± 1.22	0.23	30	4.44 ± 1.55	0.30	32	0.75	0.73 *
Moan Valacity (m/s)		R	1.10 ± 0.26	0.06	24	1.06 ± 0.27	0.05	25	0.74	0.58 *
Wealt velocity (III/S)	_	L	1.04 ± 0.20	0.04	22	1.03 ± 0.19	0.03	21	0.87	0.79 *
Poak Force (NI)	NT	R	613 ± 137	26	22	598 ± 107	21	17	0.71	0.66 *
I eak Poice (IN)	_	L	658 ± 112	25	20	615 ± 100	20	16	0.72	0.78 *
Peak Power (W)		R	696 ± 241	47	34	882 ± 255	50	37	0.75	0.69 *
reak rower (w)	_	L	678 ± 231	44	31	860 ± 224	45	34	0.77	0.80 *
Peak Power (W/kg)		R	8.76 ± 2.87	0.56	32	8.61 ± 3.35	0.65	38	0.76	0.68 *
Teak Tower (W/ kg)	_	L	8.19 ± 2.87	0.55	30	8.42 ± 3.20	0.57	36	0.76	0.65 *
Poak Valocity (m/s)		R	1.63 ± 0.40	0.07	24	1.61 ± 0.42	0.08	26	0.80	0.66 *
Teak velocity (III/S)		L	1.33 ± 030	0.06	21	1.62 ± 0.34	0.07	22	0.78	0.73 *
Total Work (kl)	_	R	0.27 ± 0.11	0.02	41	0.25 ± 0.08	0.01	34	0.53	0.48
		L	0.28 ± 0.05	0.01	26	0.27 ± 0.08	0.01	31	0.47	0.33
Height (m)		R	0.55 ± 0.09	0.01	23	0.53 ± 0.16	0.02	19	0.61	0.43
riegitt (iii)		L	0.53 ± 0.07	0.01	19	0.46 ± 0.09	0.02	20	0.75	0.60 *
Moon Force (NI)		R	199 ± 176	33	87	199 ± 174	34	87	0.99	0.99 *
Weatt Force (IN)	_	L	207 ± 172	34	83	208 ± 180	36	86	0.98	0.98 *
Moon Power (W)		R	291 ± 45	8	15	302 ± 67	13	22	0.73	0.62 *
Wealt I Owei (W)	_	L	297 ± 50	11	17	310 ± 59	12	19	0.82	0.73 *
Mean Power (W/kg)	_	R	3.68 ± 0.41	0.08	11	3.84 ± 0.98	0.18	24	0.74	0.63 *
Mean Tower (W/Kg)		L	3.57 ± 0.46	0.09	12	3.94 ± 0.98	0.17	26	0.69	0.54 *
Mean Velocity (m/s)	_	R	0.96 ± 0.20	0.03	21	0.98 ± 0.23	0.04	24	0.81	0.75 *
Weatt velocity (III/3)		L	0.82 ± 0.11	0.02	14	0.94 ± 0.17	0.03	18	0.82	0.76 *
Dool: Force (NI)	T	R	587 ± 68	13	11	586 ± 104	20	17	0.76	0.67 *
I eak Poice (IN)		L	606 ± 84	16	13	615 ± 100	20	16	0.77	0.78 *
Poak Power (W)	_	R	717 ± 157	30	21	742 ± 228	44	30	0.76	0.65 *
i eak i owei (W)	_	L	654 ± 206	41	31	680 ± 221	45	32	0.78	0.70 *
Doals Down (W//kg)	_	R	9.06 ± 1.76	0.34	19	9.42 ± 3.01	0.59	32	0.69	0.60 *
геак rower (W/кg)		L	8.16 ± 2.01	0.46	22	8.44 ± 1.89	0.49	23	0.78	0.66 *
Poak Valacity (m/c)		R	1.72 ± 0.37	0.07	21	1.75 ± 0.41	0.08	23	0.81	0.85 *
Teak velocity (III/S)		L	1.62 ± 0.23	0.06	21	1.52 ± 0.34	0.06	22	0.83	0.74 *
Total 1471- (1-1)	_	R	0.26 ± 0.11	0.02	45	0.27 ± 0.10	0.02	38	0.61	0.56 *
		L	0.31 ± 0.11	0.02	38	0.27 ± 0.08	0.01	32	0.68	0.51 *

Table 4. Intra-rater reliability of landmine punch throw test with 35 kg.

Outcome Measure	Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$\textbf{Mean} \pm \textbf{SD}$	SEM	CV	ICC	r	
	1st 2nd									
Height (m)	R	0.44 ± 0.06	0.01	13	0.46 ± 0.07	0.01	15	0.56	0.56 *	
Tiergin (iii)	L	0.43 ± 0.06	0.01	14	0.40 ± 0.12	0.02	30	0.38	0.32 *	
Moon Force (NI)	R	149 ± 110	19	73	139 ± 109	19	73	0.97	0.97 *	
Weatt Force (IN)	L	145 ± 107	18	73	147 ± 101	18	73	0.99	0.99 *	
Moon Power (M)	R	413 ± 131	23	31	418 ± 124	22	30	0.94	0.85 *	
Wealt I Owel (W)	L	374 ± 109	19	29	369 ± 104	21	31	0.81	0.75 *	
Mean Power (W/kg)	R	5.39 ± 1.26	0.22	23	5.44 ± 1.30	0.29	24	0.87	0.76 *	
Weat Fower (W/ kg)	L	4.88 ± 1.04	0.18	21	4.84 ± 1.10	0.25	22	0.86	0.65 *	
Mean Velocity (m/s)	R	1.44 ± 0.21	0.04	15	1.41 ± 0.29	0.04	16	0.85	0.79 *	
Weatt velocity (III/ 3)	L	1.28 ± 0.26	0.04	18	1.19 ± 0.23	0.05	20	0.77	0.63 *	
Peak Force (N)	R	500 ± 91	16	18	503 ± 92	16	18	0.91	0.86 *	
Teak Poice (IV)	L	544 ± 147	26	27	543 ± 150	27	27	0.92	0.86 *	
Pool Power (M)	R	774 ± 237	41	30	760 ± 220	36	30	0.84	0.68 *	
reak rower (W)	L	747 ± 245	43	32	723 ± 225	41	30	0.84	0.73 *	
Poak Power (W/kg)	R	10.1 ± 2.41	0.42	23	10.3 ± 3.39	0.51	31	0.73	0.64 *	
reak rower (wy kg)	L	9.75 ± 2.63	0.46	27	8.84 ± 2.33	0.53	26	0.75	0.59	
Pools Valocity (m /a)	R	2.23 ± 0.35	0.06	16	2.28 ± 0.50	0.09	18	0.89	0.76 *	
reak velocity (m/s)	L	2.01 ± 0.36	0.06	18	1.81 ± 0.35	0.08	19	0.76	0.66 *	
Total Work (kl)	R	0.18 ± 0.03	0.00	20	0.20 ± 0.04	0.02	31	0.68	0.73 *	
Iotal Work (KJ)	L	0.22 ± 0.08	0.01	31	0.19 ± 0.09	0.02	40	0.55	0.38	
Usight (m)	R	0.54 ± 0.08	0.01	15	0.62 ± 0.11	0.02	21	0.55	0.73 *	
Height (III)	L	0.56 ± 0.07	0.02	13	0.50 ± 0.07	0.03	22	0.59	0.69 *	
	R	132 ± 97	17	73	131 ± 94	16	73	0.99	0.99 *	
Mean Force (IN)	L	126 ± 96	17	70	130 ± 95	18	70	0.97	0.93 *	
Maan Bayyan (M)	R	328 ± 104	18	31	320 ± 120	21	33	0.76	0.65 *	
Mean Power (W)	L	321 ± 96	17	30	297 ± 99	19	31	0.87	0.81 *	
Maan Davion (M//ka)	R	4.32 ± 1.19	0.21	27	4.28 ± 1.23	0.25	30	0.74	0.52	
Mean rower (W/kg)	L	4.22 ± 1.07	0.19	25	3.89 ± 1.03	0.23	27	0.75	0.55 *	
Maar Valasita (m. (s)	R	1.32 ± 0.21	0.03	16	1.35 ± 0.23	0.03	18	0.80	0.72 *	
Mean velocity (m/s)	L	1.21 ± 0.28	0.05	23	1.15 ± 0.25	0.05	23	0.88	0.79 *	
	R	515 ± 85	15	16	525 ± 101	20	21	0.77	0.66 *	
Peak Force (IN)	L	543 ± 102	18	23	520 ± 106	21	26	0.78	0.72 *	
	R	880 ± 258	45	25	896 ± 230	40	21	0.82	0.61 *	
Peak Power (W)	L	850 ± 297	53	35	812 ± 260	46	31	0.84	0.74 *	
	R	11.5 ± 2.85	0.50	24	11.9 ± 3.11	0.56	30	0.71	0.68 *	
reak rower (w/kg)	L	11.1 ± 3.67	0.71	31	9.80 ± 2.46	0.56	25	0.72	0.68 *	
$\mathbf{D}_{\mathbf{r}} = 1_{\mathbf{r}} \mathbf{V}_{\mathbf{r}} 1_{\mathbf{r}} = \mathbf{i}_{\mathbf{r}} \mathbf{i}_{\mathbf{r}} \left(\mathbf{r} \right)$	R	2.41 ± 0.38	0.06	16	2.36 ± 0.43	0.07	20	0.76	0.65 *	
reak velocity (m/s)	L	2.20 ± 0.45	0.08	20	2.07 ± 0.40	0.08	19	0.92	0.77 *	
	R	0.16 ± 0.05	0.01	35	0.21 ± 0.06	0.02	45	0.30	0.21	
Lotal Work (kl)										

Table 5. Test-retest reliability of landmine punch throw test with 20 kg.

Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	ICC	r	
				1st		2nd					
Height (m)		R	0.41 ± 0.10	0.01	17	0.51 ± 0.20	0.02	28	0.36	0.24	
rieigin (iii)		L	0.42 ± 0.07	0.01	18	0.44 ± 0.08	0.02	27	0.44	0.26	
Mean Force (NI)		R	177 ± 131	23	73	181 ± 128	22	73	0.98	0.92 *	
	_	L	173 ± 128	22	73	172 ± 122	21	73	0.96	0.97 *	
Moon Power (W)		R	370 ± 107	18	28	360 ± 105	16	27	0.90	0.80 *	
	_	L	327 ± 98	17	30	319 ± 102	23	32	0.93	0.87 *	
Mean Power (W/kg)		R	4.85 ± 1.12	0.19	23	5.01 ± 1.41	0.23	25	0.85	0.74 *	
wiedit i owei (vv/ kg)	_	L	4.25 ± 0.84	0.14	19	4.16 ± 0.91	0.20	21	0.81	0.68 *	
Moan Volocity (m/s)		R	1.27 ± 0.27	0.04	21	1.31 ± 0.34	0.04	22	0.92	0.85 *	
Weatt velocity (III/S)		L	1.17 ± 0.20	0.03	19	1.14 ± 0.24	0.03	20	0.91	0.85 *	
Pool Eoree (NI)	NT	R	521 ± 88	15	17	511 ± 101	23	22	0.75	0.62 *	
Teak Force (IN)		L	573 ± 110	25	21	527 ± 123	28	23	0.83	0.76 *	
Pool Power (W)	_	R	692 ± 190	33	27	714 ± 198	35	31	0.79	0.66 *	
Teak Tower (W)		L	687 ± 187	36	27	675 ± 170	33	24	0.86	0.80 *	
Pook Power (W//kg)	_	R	9.05 ± 1.99	0.35	21	10.02 ± 2.23	0.44	29	0.77	0.64 *	
reak rower (w/kg)		L	8.85 ± 1.67	0.30	18	8.23 ± 1.92	0.45	23	0.71	0.78 *	
Peak Velocity (m/s)	_	R	1.93 ± 0.42	0.07	22	1.98 ± 0.50	0.12	24	0.92	0.87 *	
		L	1.88 ± 0.21	0.04	19	178 ± 0.19	0.03	19	0.94	0.91 *	
Total Work (Id)		R	0.24 ± 0.04	0.00	23	0.20 ± 0.05	0.01	28	0.71	0.69 *	
Iotal Work (KJ)		L	0.20 ± 0.03	0.01	24	0.24 ± 0.05	0.01	29	0.49	0.35	
Height (m)		R	0.55 ± 0.08	0.01	16	0.61 ± 0.13	0.02	22	0.44	0.31	
Tieigitt (III)		L	0.53 ± 0.07	0.01	14	0.63 ± 0.10	0.03	23	0.29	0.14	
Moon Force (NI)	_	R	161 ± 119	21	73	159 ± 113	20	73	0.99	0.99 *	
Mean Force (IN)		L	142 ± 120	23	87	150 ± 123	24	87	0.98	0.99 *	
Maan Dawar (M)	_	R	317 ± 89	19	34	305 ± 85	18	32	0.89	0.84 *	
Mean Fower (W)		L	290 ± 66	11	22	283 ± 88	20	31	0.88	0.83 *	
Moon Power (W//kg)	_	R	4.15 ± 1.18	0.20	28	4.05 ± 0.91	0.16	22	0.84	0.77 *	
Wealt I Ower (W/ Kg)		L	3.78 ± 0.68	0.12	19	3.55 ± 0.65	0.28	28	0.75	0.60 *	
Moon Valacity (m/s)	_	R	1.18 ± 0.29	0.05	25	1.19 ± 0.25	0.05	24	0.92	0.87 *	
Weatt velocity (III/S)		L	1.22 ± 0.19	0.04	18	1.12 ± 0.21	0.04	22	0.83	0.75 *	
Deals Former (NI)	T	R	526 ± 95	16	18	511 ± 90	15	15	0.82	0.70 *	
Teak Force (IN)		L	590 ± 88	21	20	548 ± 75	20	21	0.80	0.75 *	
Pool Power (M)	_	R	832 ± 214	42	28	854 ± 224	44	30	0.85	0.77 *	
Peak Power (W)		L	821 ± 230	43	27	803 ± 187	36	25	0.83	0.70 *	
Peak Power (W/kg)		R	10.9 ± 2.67	0.49	24	9.99 ± 2.24	39	19	0.83	0.72 *	
		L	10.5 ± 2.85	0.51	25	9.29 ± 2.33	0.53	26	0.82	0.67 *	
Poole Volgeiter (m /s)	_	R	2.12 ± 0.51	0.09	21	2.11 ± 0.52	0.09	21	0.95	0.92 *	
reak velocity (m/s)		L	1.88 ± 0.36	0.06	19	1.84 ± 0.32	0.05	20	0.90	0.83 *	
	_	R	0.20 ± 0.10	0.01	44	0.15 ± 0.05	0.01	22	0.45	0.30	
		L	0.23 ± 0.09	0.01	39	0.20 ± 0.08	0.01	30	0.48	0.51	

Table 6. Test–retest reliability of landmine punch throw test with 25 kg.

ItiDelivation of the term of	Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	ICC	r
Height (m) R 0.51 ± 0.07 0.01 24 0.44 ± 0.05 0.01 17 0.56 0.40 Mean Force (N) I 0.48 ± 0.12 0.02 39 0.42 ± 0.06 0.01 16 0.28 0.20 Mean Force (N) I 185 ± 159 31 87 187 ± 149 30 87 0.99 0.99* 0.98* Mean Force (N) I 189 ± 170 23 27 36 ± 102 20 4.99 0.88* 0.88* 0.88* 0.88* 0.88* 0.88* 0.88* 0.85* 0.85 0.82* 0.86 0.85* 0.82* 0.88 0.85* 0.82* 0.88* 0.85* 0.88* 0.85* 0.80 0.85* 0.80 0.85* 0.80 0.85* 0.80 0.85* 1. 1.20 ± 0.22 0.04 18 1.17 ± 0.18 0.03 15 0.80 0.85* 1. 1. 1.20 ± 0.22 0.04 18 1.17 ± 0.18 0.85 0.87* 0.8 1.11 <td></td> <td></td> <td></td> <td></td> <td>1st</td> <td></td> <td colspan="5">2nd</td>					1st		2nd				
	Height (m)		R	0.51 ± 0.07	0.01	24	0.44 ± 0.05	0.01	17	0.56	0.40
Mean Force (N) R 132 ± 159 31 87 187 ± 149 30 87 0.99 0.99* Mean Power (W) R 309 ± 110 23 27 355 ± 102 20 24 0.89 0.98* Mean Power (W/kg) R 509 ± 110 23 27 355 ± 102 20 24 0.89 0.88* Mean Power (W/kg) R 5.05 ± 0.62 0.21 20 4.59 ± 0.95 0.22 23 0.88 0.82* Mean Velocity (m/s) NT R 603 ± 90 24 21 596 ± 91 24 22 0.88 0.81* Peak Force (N) NT R 603 ± 90 24 21 596 ± 91 24 22 0.89 0.88* Peak Power (W/kg) R 721 ± 209 36 25 711 ± 189 33 24 0.87 0.68* 0.76* L 666 ± 120 24 33 692 ± 117 23 32 0.90 0.84 0.	Tieigitt (III)		L	0.48 ± 0.12	0.02	39	0.42 ± 0.06	0.01	16	0.28	0.20
Image: Power (W) L 180 ± 157 30 87 181 ± 154 30 87 0.89 0.88 Mean Power (W) L 337 ± 75 14 22 331 ± 89 19 29 0.86 0.85 Mean Power (W/kg) L 4337 ± 75 14 22 331 ± 89 19 29 0.86 0.85 Mean Velocity (m/s) L 4337 ± 75 14 22 331 ± 89 19 29 0.86 0.85 Mean Velocity (m/s) L 423 ± 0.62 0.12 14 429 ± 0.87 0.00 21 0.84 0.82 L 1.20 ± 0.22 0.04 18 1.17 ± 0.18 0.03 15 0.80 0.81* L 1.02 ± 0.22 0.04 18 1.17 ± 0.18 0.33 14 0.87 0.85* Peak Force (W/kg) R R 661 ± 10 24 33 649 ± 117 23 32 0.90 0.41* Peak Power (W/kg) R 9.61 ± 1.77 0.39 22 8.67 ± 2.01 0.46 25 0.86	Moon Force (NI)	_	R	182 ± 159	31	87	187 ± 149	30	87	0.99	0.99 *
Mean Power (W) R 399 ± 110 23 27 356 ± 102 20 24 0.89 0.88* Mean Power (W/kg) L 337 ± 75 14 22 331 ± 89 19 29 0.86 0.85* Mean Power (W/kg) L 4.23 ± 0.62 0.12 14 4.29 ± 0.87 0.20 21 0.84 0.82* Mean Velocity (m/s) R 1.14 ± 0.22 0.04 19 1.09 ± 0.33 0.05 24 0.80 0.85* Peak Force (N) R 6.03 ± 90 24 21 596 ± 91 24 22 0.89 0.85* 0.80 0.85* Peak Force (N) R 7.1 ± 209 36 25 711 ± 189 33 24 0.87 0.75* Peak Power (W/kg) R 7.61 ± 1.77 0.39 23 8.67 ± 2.01 0.46 25 0.86 0.75* Peak Power (W/kg) R 1.80 ± 0.36 0.07 23 8.67 ± 2.01 0.46 25 0.86	Wealt Porce (IV)		L	180 ± 157	30	87	181 ± 154	30	87	0.99	0.98 *
International operation of the term of the term of the term of	Moon Power (M)		R	399 ± 110	23	27	356 ± 102	20	24	0.89	0.88 *
		_	L	337 ± 75	14	22	331 ± 89	19	29	0.86	0.85 *
L 4.23 \pm 0.62 0.12 14 4.29 \pm 0.87 0.20 21 0.84 0.82 * Mean Velocity (m/s) R 1.14 \pm 0.22 0.04 19 1.09 \pm 0.33 0.05 24 0.84 0.85 * L 1.20 + 0.22 0.04 19 1.07 \pm 0.33 0.05 24 0.81 * Peak Force (N) R 6.03 = 90 24 21 596 \pm 91 24 22 0.08 0.81 * R 6.03 = 90 24 21 596 \pm 91 24 22 0.88 0.89 * R 721 \pm 209 36 25 711 ± 189 33 24 0.87 0.74 * L 666 ± 120 23 8.67 ± 2.01 0.46 25 0.66 0.75 * L 1.61 ± 0.23 0.07 23 1.73 ± 0.33 0.66 21 0.83 0.74 * L 1.61 ± 0.23 0.06 17 1.48 ± 0.19 0.01 30 0.52 0.54	Mean Power (W/kg)		R	5.05 ± 0.87	0.21	20	4.59 ± 0.95	0.23	23	0.85	0.82 *
	wiedit i owei (vv/ kg)	_	L	4.23 ± 0.62	0.12	14	4.29 ± 0.87	0.20	21	0.84	0.82 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Moan Volocity (m/s)		R	1.14 ± 0.22	0.04	19	1.09 ± 0.33	0.05	24	0.80	0.85 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Weatt velocity (III/S)		L	1.20 ± 0.22	0.04	18	1.17 ± 0.18	0.03	15	0.80	0.81 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pool Eoree (NI)	NT	R	603 ± 90	24	21	596 ± 91	24	22	0.89	0.81 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Teak Force (IN)		L	608 ± 101	19	22	591 ± 98	18	20	0.85	0.89 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Poal Power (M)	_	R	721 ± 209	36	25	711 ± 189	33	24	0.87	0.76 *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	reak rower (W)		L	666 ± 120	24	33	649 ± 117	23	32	0.90	0.84 *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pool Power (W//kg)	_	R	9.61 ± 1.77	0.39	23	8.67 ± 2.01	0.46	25	0.86	0.75 *
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak Power (W/kg)		L	8.31 ± 1.73	0.33	20	7.73 ± 1.56	0.30	18	0.80	0.76 *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathbf{D}_{\mathbf{r}} = 1 \cdot \mathbf{V}_{\mathbf{r}} 1_{\mathbf{r}} = 1 \cdot \mathbf{v}_{\mathbf{r}} \left(\mathbf{v}_{\mathbf{r}} \cdot \mathbf{v}_{\mathbf{r}} \right)$		R	1.80 ± 0.36	0.07	23	1.73 ± 0.33	0.06	21	0.83	0.74 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak velocity (m/s)		L	1.61 ± 0.23	0.06	17	1.48 ± 0.19	0.05	14	0.85	0.78 *
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T- 1-1 M/1. (1-1)	_	R	0.27 ± 0.10	0.01	35	0.24 ± 0.09	0.01	30	0.52	0.34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iotal work (KJ)		L	0.25 ± 0.05	0.01	21	0.28 ± 0.06	0.01	24	0.57	0.40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Haight (m)		R	0.54 ± 0.11	0.02	22	0.61 ± 0.14	0.03	30	0.60	0.66 *
Mean Force (N)R 178 ± 148 29 83 176 ± 139 28 83 0.99 0.99^* Mean Power (W)L 171 ± 149 30 81 173 ± 145 30 81 0.99 0.98^* Mean Power (W/kg)L 297 ± 53 10 17 281 ± 68 13 20 0.87 0.77^* Mean Velocity (m/s)L 3.74 ± 0.49 0.09 13 3.65 ± 0.42 0.08 11 0.78 0.69^* Mean Velocity (m/s)TR 3.90 ± 0.76 0.15 21 3.71 ± 0.57 0.13 19 0.79 0.72^* Peak Force (N)TR 569 ± 68 13 12 555 ± 75 16 16 0.80 0.83^* Peak Power (W)R 808 ± 225 47 30 733 ± 201 38 23 0.77 0.80^* Peak Velocity (m/s)L 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 0.74^* Peak Velocity (m/s)L 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 1.005 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 0.79^* R 192 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 1.02 ± 2.11 0.02 31 0.20 ± 0.06 0.01 34 0.33 0.26 Peak Power (riegni (m)		L	0.54 ± 0.08	0.01	19	0.52 ± 0.09	0.02	24	0.41	0.36
Index Porce (N)L 171 ± 149 30 81 173 ± 145 30 81 0.99 $0.98 \times$ Mean Power (W)R 307 ± 71 15 23 287 ± 62 14 22 0.84 $0.82 \times$ Mean Power (W/kg)L 297 ± 53 10 17 281 ± 68 13 20 0.87 $0.77 \times$ Mean Velocity (m/s)R 3.90 ± 0.76 0.15 21 3.71 ± 0.57 0.13 19 0.79 $0.72 \times$ Mean Velocity (m/s)R 1.04 ± 0.19 0.03 19 0.98 ± 0.22 0.05 22 0.74 $0.60 \times$ Peak Force (N)TR 569 ± 68 13 12 555 ± 75 16 16 0.80 $0.83 \times$ Peak Power (W)R 808 ± 225 47 30 733 ± 201 38 23 0.77 $0.80 \times$ Peak Power (W/kg)L 808 ± 225 47 30 733 ± 201 38 23 0.77 $0.80 \times$ Peak Power (W/kg)L 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 $0.74 \times$ Peak Velocity (m/s)R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 $0.89 \times$ L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 $0.73 \times$ R 1.92 ± 0.12 0.02 31 0.20 ± 0.06 0.01 34 0.33 0.26 L<	Maan Fanas (NI)	_	R	178 ± 148	29	83	176 ± 139	28	83	0.99	0.99 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean Force (IN)		L	171 ± 149	30	81	173 ± 145	30	81	0.99	0.98 *
Indean Power (W)L 297 ± 53 1017 281 ± 68 1320 0.87 0.77^* Mean Power (W/kg)R 3.90 ± 0.76 0.15 21 3.71 ± 0.57 0.13 19 0.79 0.72^* Mean Velocity (m/s)L 3.74 ± 0.49 0.09 13 3.65 ± 0.42 0.08 11 0.78 0.69^* Peak Force (N)TR 569 ± 68 1312 555 ± 75 1616 0.80 0.83^* Peak Power (W)R 808 ± 225 47 30 733 ± 201 38 23 0.77 0.80^* Peak Power (W/kg)R 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 0.77^* Peak Velocity (m/s)L 10.23 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 0.79^* Peak Velocity (m/s)R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.74^* R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 1.023 ± 2.54 0.51 24 0.78 0.77^* 0.73^* 0.74^* Peak Power (W/kg)I 1.023 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 0.79^* R 1.92 ± 0.38 0.07 20 <	Maar Dawar (M)	_	R	307 ± 71	15	23	287 ± 62	14	22	0.84	0.82 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weart Fower (W)		L	297 ± 53	10	17	281 ± 68	13	20	0.87	0.77 *
$ \frac{L}{R} = \frac{3.74 \pm 0.49}{0.09} = \frac{13}{12} = \frac{3.65 \pm 0.42}{0.08} = \frac{0.08}{11} = \frac{10.78}{0.69} = \frac{0.69}{12} $ $ \frac{R}{R} = \frac{1.04 \pm 0.19}{0.03} = \frac{0.09}{19} = \frac{13}{0.98 \pm 0.22} = \frac{0.05}{0.22} = \frac{22}{0.74} = \frac{0.60}{0.60} = \frac{10}{16} = \frac{0.69}{12} = \frac{10.44 \pm 0.19}{0.02} = \frac{0.03}{16} = \frac{10.98 \pm 0.22}{0.05} = \frac{0.05}{22} = \frac{22}{0.74} = \frac{0.60}{0.60} = \frac{10.60}{12} = $	Moon Power (W//kg)	_	R	3.90 ± 0.76	0.15	21	3.71 ± 0.57	0.13	19	0.79	0.72 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	weatt i owei (w/kg)		L	3.74 ± 0.49	0.09	13	3.65 ± 0.42	0.08	11	0.78	0.69 *
$\frac{L}{Peak Force (N)} T = \frac{L}{R} = \frac{0.92 \pm 0.16}{569 \pm 68} = \frac{0.03}{16} = \frac{16}{0.87 \pm 0.19} = \frac{0.04}{22} = \frac{22}{0.83} = \frac{0.70 \times 10^{-1}}{16} = \frac{16}{0.80} = \frac{0.83 \times 10^{-1}}{16} = \frac{16}{0.80} = \frac{16}{0.80} = \frac{0.83 \times 10^{-1}}{16} = \frac{16}{0.80} = \frac$	Moon Valacity (m/s)	_	R	1.04 ± 0.19	0.03	19	0.98 ± 0.22	0.05	22	0.74	0.60 *
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weatt velocity (III/S)		L	0.92 ± 0.16	0.03	16	0.87 ± 0.19	0.04	22	0.83	0.70 *
L 641 ± 104 25 23 579 ± 121 29 27 0.75 $0.79*$ Peak Power (W)R 808 ± 225 47 30 733 ± 201 38 23 0.77 $0.80*$ Peak Power (W/kg)L 825 ± 176 30 22 734 ± 156 26 17 0.75 $0.71*$ Peak Power (W/kg)R 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 $0.74*$ Peak Velocity (m/s)R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 $0.89*$ Total Work (kJ)R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26	D 1. E (NI)	- Т	R	569 ± 68	13	12	555 ± 75	16	16	0.80	0.83 *
R 808 ± 225 47 30 733 ± 201 38 23 0.77 $0.80 *$ L 825 ± 176 30 22 734 ± 156 26 17 0.75 $0.71 *$ Peak Power (W/kg)R 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 $0.74 *$ Peak Velocity (m/s)R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 $0.89 *$ Total Work (kJ)R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26	Peak Force (IN)		L	641 ± 104	25	23	579 ± 121	29	27	0.75	0.79 *
L 825 ± 176 30 22 734 ± 156 26 17 0.75 $0.71 *$ Peak Power (W/kg)R 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 $0.74 *$ L 10.05 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 $0.79 *$ Peak Velocity (m/s)R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 $0.89 *$ L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 $0.73 *$ Total Work (kJ)L 0.22 ± 0.17 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24	De als Dearant (IAI)	_	R	808 ± 225	47	30	733 ± 201	38	23	0.77	0.80 *
R 10.23 ± 2.54 0.51 24 9.62 ± 2.85 0.60 29 0.78 $0.74 *$ Peak Velocity (m/s)L 10.05 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 $0.79 *$ R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 $0.89 *$ L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 $0.73 *$ R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26 L 0.22 ± 0.12 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24	Peak Power (W)		L	825 ± 176	30	22	734 ± 156	26	17	0.75	0.71 *
L 10.05 ± 2.21 0.47 26 8.64 ± 2.14 0.51 24 0.78 0.79^* Peak Velocity (m/s) R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 0.73^* R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26 L 0.22 ± 0.12 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24	Peak Power (W/kg)	_	R	10.23 ± 2.54	0.51	24	9.62 ± 2.85	0.60	29	0.78	0.74 *
R 1.92 ± 0.38 0.07 20 1.87 ± 0.42 0.08 25 0.84 0.89^* L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 0.73^* R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26 L 0.22 ± 0.12 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24			L	10.05 ± 2.21	0.47	26	8.64 ± 2.14	0.51	24	0.78	0.79 *
L 1.70 ± 0.30 0.06 18 1.65 ± 0.38 0.07 21 0.85 0.73 * Total Work (kJ) L 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26 L 0.22 ± 0.12 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24		_	R	1.92 ± 0.38	0.07	20	1.87 ± 0.42	0.08	25	0.84	0.89 *
R 0.25 ± 0.17 0.02 41 0.18 ± 0.06 0.01 34 0.33 0.26 L 0.22 ± 0.12 0.02 31 0.20 ± 0.06 0.01 27 0.61 0.24	Peak Velocity (m/s)		L	1.70 ± 0.30	0.06	18	1.65 ± 0.38	0.07	21	0.85	0.73 *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			R	0.25 ± 0.17	0.02	41	0.18 ± 0.06	0.01	34	0.33	0.26
	Iotal Work (kJ)		L	0.22 ± 0.12	0.02	31	0.20 ± 0.06	0.01	27	0.61	0.24

 Table 7. Test-retest reliability of landmine punch throw test with 30 kg.

Interpretation Interpr	Outcome Measure		Side	$\mathbf{Mean} \pm \mathbf{SD}$	SEM	CV	$Mean \pm SD$	SEM	CV	ICC	r	
R 0.46 + 0.10 0.02 2.2 0.43 + 0.06 0.01 15 0.69 0.68* Mean Force (N) I 0.40 + 0.05 0.01 14 0.43 + 0.06 0.01 11 0.58 0.29 Mean Force (N) I 205 + 179 35 83 203 + 175 35 83 0.98 0.99* Mean Forcer (W/kg) I 205 + 179 35 83 203 + 175 35 83 0.98 0.98* Mean Power (W/kg) R 364 + 135 0.63 381 + 129 0.28 31 0.29 0.68* Mean Velocity (m/s) R 613 + 137 26 22 0.07 + 0.16 0.41 18 0.68 0.7* R 613 + 137 26 22 0.07 + 1.06 0.40 0.83 0.75* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7* 0.7*					1st		2n	2nd				
	Hoight (m)		R	0.46 ± 0.10	0.02	22	0.43 ± 0.06	0.01	15	0.69	0.68 *	
Mean Force (N) R 211 ± 184 36 87 209 ± 180 35 87 0.99 0.99* Mean Power (W) R 205 ± 179 35 83 203 ± 175 35 83 0.98 0.99* Mean Power (W/kg) R 331 ± 102 20 30 351 ± 79 21 22 0.88 0.88* 0.88* Mean Power (W/kg) R 4.43 ± 1.56 0.37 41 4.82 ± 0.99 0.33 38 0.075 0.07* R 1.10 ± 0.20 0.04 22 0.07 ± 0.16 0.04 18 0.86 0.74* R 613 ± 137 26 22 600 ± 121 21 19 0.81 0.77 Peak Power (W/kg) R 666 ± 241 47 34 713 ± 210 45 30 0.83 0.73* R 663 ± 231 44 31 643 ± 159 32 24 0.77 0.75* Peak Power (W/kg) R 8.75 ± 237 <	riegitt (iit)	_	L	0.40 ± 0.05	0.01	14	0.43 ± 0.06	0.01	11	0.58	0.42 *	
Mean Power (W) I. 205 + 179 35 83 203 + 175 35 83 0.98 0.99* Mean Power (W) I. 368 + 133 26 36 388 + 120 22 32 0.85 0.78* Mean Power (W/kg) I. 413 ± 102 20 30 452 ± 159 0.31 38 0.75 0.71* R 4.63 ± 1.56 0.37 41 4.82 ± 0.99 0.28 31 0.79 0.69* L 4.12 ± 1.22 0.23 30 4.52 ± 1.59 0.31 38 0.75 0.71* R 1.04 ± 0.20 0.04 22 0.97±0.16 0.04 18 0.86 0.7* L 655 ± 112 25 20 635 ± 97 25 16 0.80 0.83* 0.77* 1.5 0.43 0.22 0.97 0.55* 0.6* 0.74* 0.7* 0.75* 8 655 ± 0.12 0.02 1.43 ± 0.24 0.07 0.24 0.71 0.5* 0.6* 1.33 ± 0.0 0.6* 1.33 ± 0.0 0.6 1.3 ± 0.24 0.6*	Mean Force (NI)		R	211 ± 184	36	87	209 ± 180	35	87	0.99	0.99 *	
R 368 ± 133 26 36 388 ± 120 22 32 0.85 0.78* Mean Power (W/kg) I 331 ± 102 20 30 351 ± 79 21 22 0.88 0.88* Mean Power (W/kg) I 4.12 ± 122 0.23 30 4.22 ± 1.59 0.31 38 0.75 0.71* R 1.10 ± 0.26 0.06 24 1.21 ± 0.18 0.05 1.6 0.78 0.63* Peak Force (N) R 613 ± 137 2.6 22 0.07 ± 0.16 0.04 1.8 0.86 0.74* R 666 ± 241 47 34 713 ± 210 45 30 0.83 0.73* Peak Power (W/kg) I 675 ± 231 44 31 643± 159 32 0.4 0.77 0.75* Peak Power (W/kg) I 675 ± 231 44 31 643± 159 32 0.0 0.75 0.05 30 7.91± 1.57 0.25 0.75 0.1 2	Wealt Force (IV)		L	205 ± 179	35	83	203 ± 175	35	83	0.98	0.99 *	
Image Power (W/kg) L 331 ± 102 20 30 351 ± 79 21 22 0.88 0.08* Mean Power (W/kg) R 4.63 ± 1.56 0.37 41 4.82 ± 0.99 0.28 31 0.79 0.69* L 4.12 ± 1.22 0.23 30 4.32 ± 1.59 0.31 38 0.75 0.71* R 1.01 ± 0.26 0.66 24 1.21 ± 0.18 0.05 16 0.78 0.63* Peak Force (N) R 6.13 ± 137 26 22 600 ± 121 22 19 0.81 0.77* L 6.68 ± 112 25 20 6.35 ± 97 25 16 0.80 0.80* R 6.96 ± 241 47 34 711 ± 210 45 30 0.83 0.77* L 6.78 ± 287 0.56 32 9.01 ± 178 0.49 26 0.78 0.664* L 8.19 ± 287 0.55 30 7.91 ± 1.65 0.45 20 0.71 0.65* R 1.63 ± 0.40 0.07 24 1.7.	Moon Power (M)	_	R	368 ± 133	26	36	388 ± 120	22	32	0.85	0.78 *	
	Wealt I Owel (W)		L	331 ± 102	20	30	351 ± 79	21	22	0.88	0.88 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Moon Power (W//kg)		R	4.63 ± 1.56	0.37	41	4.82 ± 0.99	0.28	31	0.79	0.69 *	
	Wealt I Owel (W/ Kg)		L	4.12 ± 1.22	0.23	30	4.32 ± 1.59	0.31	38	0.75	0.71 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Moon Valacity (m/s)	_	R	1.10 ± 0.26	0.06	24	1.21 ± 0.18	0.05	16	0.78	0.63 *	
Peak Force (N) NT R 613 ± 137 26 22 600 ± 121 22 19 0.81 0.77^* Peak Fower (W) R 696 ± 241 47 34 713 ± 210 45 30 0.83 0.73^* Peak Power (W/kg) R 876 ± 2.87 0.56 32 924 0.77 0.64^* Peak Velocity (m/s) R 8.76 ± 2.87 0.55 30 7.91 ± 1.65 0.45 20 0.71 0.65^* Peak Velocity (m/s) R 1.63 ± 0.40 0.07 24 1.74 ± 0.39 0.06 23 0.92 0.85^* Total Work (k) R 0.27 ± 0.11 0.02 41 0.24 ± 0.07 0.02 28 0.66 0.59^* Height (m) R 0.55 ± 0.09 0.01 23 0.51 ± 0.10 0.02 24 0.52 0.36 Mean Power (W) R 217 ± 53 87 202 ± 179 33	Wealt velocity (III/S)		L	1.04 ± 0.20	0.04	22	0.97 ± 0.16	0.04	18	0.86	0.74 *	
	Pool Force (N)	NT	R	613 ± 137	26	22	600 ± 121	22	19	0.81	0.77 *	
	Teak Poice (IN)		L	658 ± 112	25	20	635 ± 97	25	16	0.80	0.80 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pool Power (M)	_	R	696 ± 241	47	34	713 ± 210	45	30	0.83	0.73 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	reak rower (w)		L	678 ± 231	44	31	643 ± 159	32	24	0.77	0.75 *	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Poal Power (W//kg)	_	R	8.76 ± 2.87	0.56	32	9.01 ± 1.78	0.49	26	0.78	0.64 *	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak Power (W/kg)		L	8.19 ± 2.87	0.55	30	7.91 ± 1.65	0.45	20	0.71	0.65 *	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Doold Valocity (m. /a)	_	R	1.63 ± 0.40	0.07	24	1.74 ± 0.39	0.06	23	0.92	0.85 *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Peak velocity (m/s)		L	1.33 ± 030	0.06	21	1.43 ± 0.24	0.06	16	0.82	0.72 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T 1 147 1. (1.1)	_	R	0.27 ± 0.11	0.02	41	0.24 ± 0.07	0.02	31	0.64	0.61 *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Iotal work (KJ)		L	0.28 ± 0.05	0.01	26	0.26 ± 0.05	0.02	28	0.66	0.59 *	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Height (m)		R	0.55 ± 0.09	0.01	23	0.51 ± 0.12	0.02	29	0.41	0.25	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Height (m)		L	0.53 ± 0.07	0.01	19	0.50 ± 0.10	0.02	24	0.52	0.36	
Image of the force (N) L 207 ± 172 34 83 205 ± 171 34 83 0.98 0.99^* Mean Power (W) R 291 ± 45 8 15 304 ± 53 14 17 0.77 0.69^* Mean Power (W/kg) R 3.68 ± 0.41 0.08 11 3.48 ± 0.59 0.09 15 0.82 0.74^* Mean Velocity (m/s) R 3.57 ± 0.46 0.09 12 3.74 ± 0.39 0.10 10 0.82 0.80^* Mean Velocity (m/s) R 0.96 ± 0.20 0.03 21 1.08 ± 0.16 0.04 15 0.75 0.66^* Peak Force (N) R 587 ± 68 13 11 605 ± 74 20 12 0.84 0.72^* Peak Power (W) L 606 ± 84 16 13 619 ± 74 12 20 0.81 0.69^* Peak Power (W/kg) L 654 ± 206 41 31 705 ± 170 47 24 0.85 0.78^* Peak Velocity (m/s)	Marry France (NI)	_	R	199 ± 176	33	87	202 ± 179	33	87	0.98	0.97 *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean Force (N)		L	207 ± 172	34	83	205 ± 171	34	83	0.98	0.99 *	
Mean Power (W)L 297 ± 50 1117 302 ± 43 1114 0.75 $0.79 \times 0.79 \times 0$	Maran Darway (M)	_	R	291 ± 45	8	15	304 ± 53	14	17	0.77	0.69 *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean Power (W)		L	297 ± 50	11	17	302 ± 43	11	14	0.75	0.79 *	
$\frac{L}{R} = \frac{3.57 \pm 0.46}{R} = \frac{0.09}{12} = \frac{3.74 \pm 0.39}{1.08 \pm 0.16} = \frac{10}{10} = \frac{0.82}{0.80 *}$ $\frac{L}{R} = \frac{3.57 \pm 0.46}{0.09} = \frac{0.03}{21} = \frac{3.74 \pm 0.39}{1.08 \pm 0.16} = \frac{0.10}{15} = \frac{10}{15} = \frac{0.80 *}{0.66 *}$ $\frac{R}{1} = \frac{0.96 \pm 0.20}{0.03} = \frac{0.13}{21} = \frac{1.08 \pm 0.16}{0.04} = \frac{0.04}{15} = \frac{15}{0.75} = \frac{0.66 *}{0.66 *}$ $\frac{L}{L} = \frac{0.82 \pm 0.11}{0.02} = \frac{0.02}{14} = \frac{0.86 \pm 0.23}{0.04} = \frac{0.04}{20} = \frac{0.73}{0.73} = \frac{0.73 *}{0.73 *}$ $\frac{R}{172 \pm 157} = \frac{10}{30} = \frac{11}{21} = \frac{0.65 \pm 74}{12} = \frac{10}{20} = \frac{0.84}{0.72 *}$ $\frac{R}{10} = \frac{717 \pm 157}{30} = \frac{11}{21} = \frac{746 \pm 160}{32} = \frac{32}{23} = \frac{0.85}{0.85} = \frac{0.75 *}{0.75 *}$ $\frac{R}{1} = \frac{654 \pm 206}{41} = \frac{41}{31} = \frac{705 \pm 170}{75 \pm 170} = \frac{47}{24} = \frac{0.85}{0.85} = \frac{0.78 *}{0.76 *}$ $\frac{R}{100 \pm 1.76} = \frac{0.34}{0.34} = \frac{19}{9.94 \pm 2.13} = \frac{0.59}{0.59} = \frac{11}{21} = \frac{0.75}{0.76 *}$ $\frac{R}{1} = \frac{1.72 \pm 0.37}{0.07} = \frac{0.07}{21} = \frac{1.85 \pm 0.34}{0.07} = \frac{0.07}{20} = \frac{0.90}{0.85 *}$ $\frac{R}{1} = \frac{0.25 \pm 0.23}{0.06} = \frac{0.17}{21} = \frac{0.45 \pm 0.22}{0.06} = \frac{0.17}{17} = \frac{0.45}{0.81 *}$	Moon Dowor (M//lco)	_	R	3.68 ± 0.41	0.08	11	3.48 ± 0.59	0.09	15	0.82	0.74 *	
Mean Velocity (m/s)R 0.96 ± 0.20 0.03 21 1.08 ± 0.16 0.04 15 0.75 $0.66 *$ Peak Force (N)R 587 ± 68 13 11 605 ± 74 20 12 0.84 $0.72 *$ L 606 ± 84 16 13 619 ± 74 12 20 0.81 $0.69 *$ Peak Power (W)Peak Power (W/kg)R 717 ± 157 30 21 746 ± 160 32 23 0.85 $0.75 *$ L 606 ± 84 16 13 619 ± 74 12 20 0.81 $0.69 *$ Peak Power (W)Peak Power (W/kg)R 9.06 ± 1.76 0.34 19 9.94 ± 2.13 0.59 21 0.75 $0.76 *$ Peak Velocity (m/s)L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 $0.66 *$ R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 $0.85 *$ L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 $0.81 *$	Mean rower (W/kg)		L	3.57 ± 0.46	0.09	12	3.74 ± 0.39	0.10	10	0.82	0.80 *	
$\frac{L}{Peak Force (N)} = \frac{L}{R} + \frac{0.82 \pm 0.11}{0.02} + \frac{0.02}{14} + \frac{0.86 \pm 0.23}{0.04} + \frac{0.04}{20} + \frac{0.73}{0.73} + \frac{0.73 + 0.73 + 0.73 + 0.73}{0.73 + 0.73 + 0.72 + 0.72} + \frac{R}{12} + \frac{587 \pm 68}{13} + \frac{11}{11} + \frac{605 \pm 74}{0.55 \pm 74} + \frac{20}{12} + \frac{12}{0.84} + \frac{0.72 + 0.72}{0.75 + 0.75 + 0.75} + \frac{11}{12} + \frac{12}{0.84} + \frac{0.69 + 0.73}{0.72 + 0.81} + \frac{12}{0.84} + 0.69 + 0.6$	Maan Vala situ (m. /a)	_	R	0.96 ± 0.20	0.03	21	1.08 ± 0.16	0.04	15	0.75	0.66 *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wealt velocity (III/S)		L	0.82 ± 0.11	0.02	14	0.86 ± 0.23	0.04	20	0.73	0.73 *	
L 606 ± 84 16 13 619 ± 74 12 20 0.81 0.69^* Peak Power (W) R 717 ± 157 30 21 746 ± 160 32 23 0.85 0.75^* L 654 ± 206 41 31 705 ± 170 47 24 0.85 0.78^* Peak Power (W/kg) R 9.06 ± 1.76 0.34 19 9.94 ± 2.13 0.59 21 0.75 0.76^* L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 0.66^* R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 0.85^* L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81^*	Deel Ermer (NI)	Т	R	587 ± 68	13	11	605 ± 74	20	12	0.84	0.72 *	
R 717 ± 157 30 21 746 ± 160 32 23 0.85 0.75^* L 654 ± 206 41 31 705 ± 170 47 24 0.85 0.78^* Peak Power (W/kg) R 9.06 ± 1.76 0.34 19 9.94 ± 2.13 0.59 21 0.75 0.76^* L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 0.66^* R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 0.85^* L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81^*	Peak Force (N)		L	606 ± 84	16	13	619 ± 74	12	20	0.81	0.69 *	
L 654 ± 206 41 31 705 ± 170 47 24 0.85 0.78 * Peak Power (W/kg) R 9.06 ± 1.76 0.34 19 9.94 ± 2.13 0.59 21 0.75 0.76 * L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 0.66 * R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 0.85 * L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81 *	De als Dearan (MI)	_	R	717 ± 157	30	21	746 ± 160	32	23	0.85	0.75 *	
R 9.06 ± 1.76 0.34 19 9.94 ± 2.13 0.59 21 0.75 0.76^* L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 0.66^* R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 0.85^* L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81^*	Peak Power (W)		L	654 ± 206	41	31	705 ± 170	47	24	0.85	0.78 *	
L 8.16 ± 2.01 0.46 22 8.69 ± 1.64 0.45 17 0.70 $0.66 *$ Peak Velocity (m/s) R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 $0.85 *$ L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 $0.81 *$	Peak Power (W/kg)	_	R	9.06 ± 1.76	0.34	19	9.94 ± 2.13	0.59	21	0.75	0.76 *	
R 1.72 ± 0.37 0.07 21 1.85 ± 0.34 0.07 20 0.90 0.85^* L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81^*			L	8.16 ± 2.01	0.46	22	8.69 ± 1.64	0.45	17	0.70	0.66 *	
L 1.62 ± 0.23 0.06 21 1.52 ± 0.22 0.06 17 0.87 0.81 *	D1. V-1. '. ()		R	1.72 ± 0.37	0.07	21	1.85 ± 0.34	0.07	20	0.90	0.85 *	
	reak velocity (m/s)		L	1.62 ± 0.23	0.06	21	1.52 ± 0.22	0.06	17	0.87	0.81 *	
$R \qquad 0.26 \pm 0.11 \qquad 0.03 \qquad 45 \qquad 0.18 \pm 0.09 \qquad 0.02 \qquad 43 \qquad 0.18 \qquad 0.10$		_	R	0.26 ± 0.11	0.03	45	0.18 ± 0.09	0.02	43	0.18	0.10	
1000000000000000000000000000000000000	Iotal Work (kJ)		L	0.31 ± 0.11	0.02	38	0.22 ± 0.09	0.02	39	0.21	0.13	

Table 8. Test–retest reliability of landmine punch throw test with 35 kg.

4. Discussion

The most important observation from this study is that the GymAware linear transducer may be a reliable tool for evaluating the strength, power, and velocity of the barbell during the LPT test. All applied barbell loads and both forms of the LPT test (with and without throw) for most variables (including force, power, and velocity) demonstrated good to excellent reliability. In this study, there was a noticeable tendency towards worsening reliability as the load of the barbell increased. Additionally, the LPT test performed with a barbell throw showed some lower ICC and r values compared to the test without a throw.

Velocity-based training (VBT) is becoming more and more popular; thus, methods allowing for the precise selection of training loads based on force, power, and velocity measurements are considered better and safer than classic 1RM assessment [7,13,14]. The main advantage of this approach is that it provides accurate, indirect estimations of 1 RM without the need to perform a maximal lift [1,7,13,14]. Moreover, the wide accessibility of velocity-based technology makes VBT attractive to coaches [7,21]. It has been previously reported that controlling barbell velocity is a good way to monitor resistance training intensities [1,4,20]. The LPT test is applied to assess the ability to produce high velocities in a movement pattern similar to a rear-hand punch. Due to the fact that movement during the LPT test is similar to punching movement patterns, which occur in combat sports (e.g., in boxing), it may be suggested that the LPT, in conjunction with the linear position transducer, may be a useful tool in the assessing the speed-strength component of punching and monitoring training loads in combat sports [23–25]. It was reported that for boxers, the maximal and explosive strength of the upper body are strongly related to punch impact force [21,22].

There are many methods of assessing punch performance, but none are considered good enough [7,19,23]. However, linear transducers are thought of by many authors as the gold standard for the measurement of barbell velocity [1,33]. Fritschi et al. [18] tested various kinds of devices on separate days and reported high between-measurement correlations of mean and peak velocity for linear transducers such as GymAware (r = 0.90-1), Quantum (r = 0.88-1), and Vmaxpro (r = 0.92-0.99). In their study, the Push Band (r = 0.69-0.96) and Flex (r = 0.60-0.94) devices showed poorer validity (especially for higher-velocity exercises). Other authors also confirmed these observations, noting that GymAware appeared to be the most valid among other linear transducers used [40,41]. Additionally, the Push device was found to be less valid than GymAware [1,7]. In our study, the GymAware linear transducer also demonstrated very high and significant correlations between measurements for the same day as well as for different days.

We suggested that the results from the current study are of great applicative value for coaches and athletes. Since in most of the papers, barbell velocity was evaluated during more classical strength exercises, i.e., the bench press, back squat, and bench pull [1,7,12], our study is the first in which the reliability of the barbell force, power, and velocity were assessed during the LPT test applying various loads.

Orange et al. [42] examined 29 youth rugby league players who performed the squat and bench press exercises with loads between 20 and 90% of 1RM at two different testing sessions. The authors found good to excellent reliability of velocity and power assessed by the GymAware system at loads within the 40–90% 1RM range [42]. Additionally, the inter-repetition reliability for the one testing session was high for the bench press, bentover-row, and squat [42]. The reliability of the GymAware system observed in our study was similar to that noted by Orange et al. [42]. For all loads and both LPT test types, the reliability of mean and peak force, power, and velocity ranged from good to excellent. Moreover, intra-rater reliability was similar to test–retest, which may indicate that this device provided comparable results not only during one session but even on separate days.

Chéry et al. [43] used the deadlift exercise and loads ranging between 20 and 100% of 1RM for assessing velocity and power. They reported that reliability starts to decrease at loads below 30% of 1RM. In the study by Orange et al. [42] a decrease in ICC was observed at lower barbell loads. The authors reported good reliability at loads of 60, 80,

and 90% of 1RM. Reliability of velocity and power tended to be lower at 20% of 1RM [42]. Contrarily, in our study, such a decrease in reliability was observed when the barbell load increased. This discrepancy was probably present because they examined professional athletes, but in our work, the participants comprised students. Therefore, the subjects in our work were probably weaker and less fit, so their performance was better at lower loads. Moreover, Orange et al. [42] used squat and bench press exercises, which may require different movement skills than the landmine punch throw. Bench press and squat are simple, one-plane exercises commonly used in strength training by both athletes and recreational amateurs. Therefore, this movement could finally provide higher reliability, even in the case of heavy loads. LPT, on the other hand, is a complex multi-plane movement requiring more motor skills and greater control for precise execution with a heavy load. In our study, series were performed progressively increasing the load to refusal, so the participants were subjected to loads from 30–40% of 1 RM (20 kg) to 90–100% of 1 RM (35 kg). Therefore, we used a similar spectrum of loads and also observed good to excellent inter-rater and test-retest reliability for force, power, and velocity.

In numerous studies, the validity or reliability of velocity parameters provided by various VBT mobile devices have been assessed. Generally accepted are parameters of mean and peak concentric velocity, which are usually obtained by linear position transducers [17,29,44]. Our study is the first in which more variables than power and velocity have been reported, which provides a fuller and broader picture of barbell movement during the LPT test. Such information can be used by coaches as well as athletes in VBT.

This study has some limitations which should be addressed. We evaluated young male students who were not professional athletes. Therefore, this study should be extended to professional athletes, especially from combat sports. Additionally, the reliability of the LPT test may be further evaluated by other velocity-based devices for comparison. Additionally, only young men were included in the present study; therefore, research should also include the participation of women and people above the age of 30. Moreover, it is worth assessing the reliability of the LPT test, taking the circadian cycle into account, by comparing measurements taken in the morning with those obtained in the afternoon.

5. Conclusions

In conclusion, these results support the use of the GymAware linear transducer to track barbell velocity during the LPT test. This device could have valuable practical applications for strength and conditioning coaches. Therefore, we suggest that LPT assessed with the GymAware linear transducer may be a useful method for evaluating upper limb strength and power during the performance of a boxing punch.

Author Contributions: Conceptualisation: Ł.O., M.K., G.B., A.M., M.P., I.P.-Ś., R.K., H.R., O.A. and M.D.; methodology: Ł.O., M.K., G.B., A.M., M.P. and I.P.-Ś.; software: Ł.O., M.K., G.B. and A.M.; investigation: Ł.O., M.K. and G.B.; resources: Ł.O., M.K., G.B. and A.M.; data curation: Ł.O., M.K., G.B. and A.M.; writing—original draft preparation: Ł.O. and A.M.; writing—review and editing: Ł.O., M.K., G.B., A.M., M.P., I.P.-Ś., R.K., H.R., O.A. and M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Approval of the Ethical Committee at the Regional Medical Chamber in Kraków was obtained for research (13/KBL/OIL/2021). All procedures were performed in accordance with the 1964 Declaration of Helsinki and its later amendments.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data generated or analysed during this study are included in this published article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Balsalobre-Fernández, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J.D. Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [CrossRef] [PubMed]
- 2. Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. *Sports Med.* 2007, *37*, 145–168. [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of resistance training: Progression and exercise prescription. *Med. Sci. Sports Exerc.* 2004, 36, 674–688. [CrossRef]
- 4. González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. *Int. J. Sports Med.* **2010**, *31*, 347–352. [CrossRef] [PubMed]
- 5. Pearson, S.N.; Cronin, J.B.; Hume, P.A.; Slyfield, D. Effects of a power-focussed resistance training intervention on backward grinding performance in America's Cup sailing. *Sports Biomech.* **2009**, *8*, 334–344. [CrossRef] [PubMed]
- Dohoney, P.; Chromiak, J.A.; Lemire, D.; Abadie, B.R.; Kovacs, C. Prediction of one repetition maximum (1-RM) strength from a 4-6 RM and a 7-10 RM submaximal strength test in healthy young adult males. *J. Exerc. Physiol.* 2002, 5, 54–59.
- Balsalobre-Fernández, C.; Marchante, D.; Baz-Valle, E.; Alonso-Molero, I.; Jiménez, S.L.; Muñóz-López, M. Analysis of Wearable and Smartphone-Based Technologies for the Measurement of Barbell Velocity in Different Resistance Training Exercises. *Front. Physiol.* 2017, *8*, 649. [CrossRef]
- 8. Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.B. Optimal force-velocity profile in ballistic movements—Altius: Citius or fortius? *Med. Sci. Sports Exerc.* 2012, 44, 313–322. [CrossRef]
- 9. Blazevich, A. Are training velocity and movement pattern important determinants of muscular rate of force development enhancement? *Eur. J. Appl. Physiol.* **2012**, *112*, 3689–3691. [CrossRef]
- 10. Blazevich, A.J.; Jenkins, D.G. Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. *J. Sports Sci.* **2002**, *20*, 981–990. [CrossRef]
- 11. González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Gorostiaga, E.M.; Pareja-Blanco, F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. *Eur. J. Sport Sci.* 2014, 14, 772–781. [CrossRef] [PubMed]
- 12. Sánchez-Medina, L.; González-Badillo, J.J.; Pérez, C.E.; Pallarés, J.G. Velocity- and power-load relationships of the bench pull vs. bench press exercises. *Int. J. Sports Med.* **2014**, *35*, 209–216. [CrossRef] [PubMed]
- González-Badillo, J.J.; Pareja-Blanco, F.; Rodríguez-Rosell, D.; Abad-Herencia, J.L.; Del Ojo-López, J.J.; Sánchez-Medina, L. Effects of velocity-based resistance training on young soccer players of different ages. J. Strength Cond. Res. 2015, 29, 1329–1338. [CrossRef]
- 14. Conceição, F.; Fernandes, J.; Lewis, M.; Gonzaléz-Badillo, J.J.; Jimenéz-Reyes, P. Movement velocity as a measure of exercise intensity in three lower limb exercises. *J. Sports Sci.* **2016**, *34*, 1099–1106. [CrossRef] [PubMed]
- 15. Muñoz-López, M.; Marchante, D.; Cano-Ruiz, M.A.; Chicharro, J.L.; Balsalobre-Fernández, C. Load-, Force-, and Power-Velocity Relationships in the Prone Pull-Up Exercise. *Int. J. Sports Physiol. Perform.* **2017**, *12*, 1249–1255. [CrossRef]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. *Scand. J. Med. Sci. Sports* 2017, 27, 724–735. [CrossRef]
- 17. Grgic, J.; Scapec, B.; Pedisic, Z.; Mikulic, P. Test-Retest Reliability of Velocity and Power in the Deadlift and Squat Exercises Assessed by the GymAware PowerTool System. *Front. Physiol.* **2020**, *11*, 561682. [CrossRef]
- Fritschi, R.; Seiler, J.; Gross, M. Validity and Effects of Placement of Velocity-Based Training Devices. *Sports* 2021, *9*, 123. [CrossRef]
 Bazuelo-Ruiz, B.; Padial, P.; García-Ramos, A.; Morales-Artacho, A.J.; Miranda, M.T.; Feriche, B. Predicting Maximal Dynamic Strength From the Load-Velocity Relationship in Squat Exercise. *J. Strength Cond. Res.* 2015, *29*, 1999–2005. [CrossRef]
- 20. Jidovtseff, B.; Harris, N.K.; Crielaard, J.M.; Cronin, J.B. Using the load-velocity relationship for 1RM prediction. *J. Strength Cond. Res.* **2011**, 25, 267–270. [CrossRef]
- Thompson, S.W.; Olusoga, P.; Rogerson, D.; Ruddock, A.; Barnes, A. "Is it a slow day or a go day?": The perceptions and applications of velocity-based training within elite strength and conditioning. *Int. J. Sports Sci. Coach.* 2023, 18, 1217–1228. [CrossRef]
- Vetrovsky, J.; Omcirk, D.; O'Dea, C.; Ruddock, A.; Wilson, D.; Tufano, J. More experienced boxers display closer peak velocities between hands during the landmine punch throw compared to less experienced boxers [abstract only]. In Proceedings of the NSCA Conference 2021, Orlando, FL, USA, 7–10 July 2021; NSCA: Nagareyama, Japan, 2021.
- Beattie, K.; Ruddock, A.D. The Role of Strength on Punch Impact Force in Boxing. J. Strength Cond. Res. 2022, 36, 2957–2969. [CrossRef] [PubMed]
- 24. Walilko, T.J.; Viano, D.C.; Bir, C.A. Biomechanics of the head for Olympic boxer punches to the face. *Br. J. Sports Med.* 2005, *39*, 710–719. [CrossRef] [PubMed]
- 25. Dunn, E.C.; Humberstone, C.E.; Iredale, K.F.; Blazevich, A.J. A damaging punch: Assessment and application of a method to quantify punch performance. *Transl. Sports Med.* **2019**, *2*, 146–152. [CrossRef]
- 26. Loturco, I.; Nakamura, F.Y.; Artioli, G.G. Strength and Power Qualities Are Highly Associated With Punching Impact in Elite Amateur Boxers. J. Strength Cond. Res. 2016, 30, 109–116. [CrossRef]

- Courel-Ibáñez, J.; Martínez-Cava, A.; Morán-Navarro, R.; Escribano-Peñas, P.; Chavarren-Cabrero, J.; González-Badillo, J.J. Reproducibility and repeatability of five different technologies for bar velocity measurement in resistance training. *Ann. Biomed. Eng.* 2019, 47, 1523–1538. [CrossRef]
- Ruf, L.; Chéry, C.; Taylor, K.L. Validity and reliability of the load-velocity relationship to predict the one-repetition maximum in deadlift. J. Strength Cond. Res. 2018, 32, 681–689. [CrossRef]
- Weakley, J.; Morrison, M.; García-Ramos, A. The validity and reliability of commercially available resistance training monitoring devices: A systematic review. Sports Med. 2021, 51, 443–502. [CrossRef]
- 30. Thompson, S.; Rogerson, D.; Dorrell, H. The reliability and validity of current technologies for measuring barbell velocity in the free-weight back squat and power clean. *Sports* **2020**, *8*, 94. [CrossRef]
- 31. Weakley, J.; Mann, B.J.; Banyard, H. Velocity-Based training: From theory to application. *Strength Cond. J.* **2020**, 43, 31–49. [CrossRef]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [CrossRef] [PubMed]
- Fernandes, J.F.T.; Lamb, K.L.; Clark, C.C.T. Comparison of the FitroDyne and GymAware Rotary Encoders for Quantifying Peak and Mean Velocity During Traditional Multijointed Exercises. J. Strength Cond. Res. 2021, 35, 1760–1765. [CrossRef] [PubMed]
- 34. Ruddock, A.; Wilson, D.; Hembrough, D. BOXING—Strength and Conditioning for Professional Boxing. In *Handbook of Strength and Conditioning: Sport-Specific Programming for High Performance*; Turner, A., Ed.; Routledge: New York, NY, USA, 2018.
- Schofield, M.; Cronin, J.B.; Macadam, P.; Storey, A. Reliability of cable downswing load-velocity performance in golf swings. Sports Biomech. 2021, 20, 230–237. [CrossRef] [PubMed]
- 36. Wadhi, T.; Rauch, J.T.; Tamulevicius, N.; Andersen, J.C.; De Souza, E.O. Validity and Reliability of the GymAware Linear Position Transducer for Squat Jump and Counter-Movement Jump Height. *Sports* **2018**, *19*, 177. [CrossRef] [PubMed]
- 37. Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [CrossRef]
- Bujang, M.A.; Baharum, N. A simplified guide to determination of sample size requirements for estimating the value of intraclass correlation coefficient: A review. Arch. Orofac. Sci. 2017, 12, 1–11.
- 40. Lorenzetti, S.; Lamparter, T.; Luthy, F. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats. *BMC Res. Notes* **2017**, *10*, 707. [CrossRef]
- Mitter, B.; Holbling, D.; Bauer, P.; Stockl, M.; Baca, A.; Tschan, H. Concurrent Validity of Field-Based Diagnostic Technology Monitoring Movement Velocity in Powerlifting Exercises. J. Strength Cond. Res. 2021, 35, 2170–2178. [CrossRef]
- 42. Orange, S.T.; Metcalfe, J.W.; Marshall, P.; Vince, R.V.; Madden, L.A.; Liefeith, A. Test-retest reliability of a commercial linear position transducer (GymAware PowerTool) to measure velocity and power in the back squat and bench press. *J. Strength Cond. Res.* **2020**, *34*, 728–737. [CrossRef]
- 43. Chéry, C.; Ruf, L. Reliability of the load-velocity relationship and validity of the PUSH to measure velocity in the deadlift. *J. Strength Cond. Res.* **2019**, *33*, 2370–2380. [CrossRef] [PubMed]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-Gonzalez, M. Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors 2021, 21, 2511. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.