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Abstract: The extension of low-earth orbit (LEO) services to non-terrestrial mobile communications
has huge potential for eliminating network white spots and providing high-speed, low-latency links
with worldwide geographic coverage. State-of-the-art user terminals for mobile platforms are too
large for integration into a passenger vehicle. Antenna elements loaded with a dielectric superstrate
could potentially lead to a considerable miniaturization of the user terminal. As per link budget
calculations, an array with a gain of 27 dBi is necessary to ensure a throughput of 25 Mbps in the
downlink at the Ku-band. A conventional array with a gain of 6 dBi per element, assuming a 12 × 12
arrangement with half-wavelength spacing, would require a footprint of 36 λ2 at 10 GHz to achieve
this target and appears unsuitable for automotive integration. This paper proposes a low-profile,
dual-band, dual-polarized, vertically stacked patch antenna with superstrate loading and shows that
the inclusion of the superstrate improves the antenna’s gain by at least 3 dB. Therefore, compared to
a conventional array, a superstrate-loaded array would need only half of the number of elements to
meet the target gain, thus occupying only half of the surface area, and offers better integration for
automotive applications. Requiring half of the number of elements also implies considerably reduced
design complexity and cost.

Keywords: compact phased array; Ku-band; LEO satellite

1. Introduction

The successful implementation of highly automated driving, connected cars (5G/6G),
and efficient fleet management demands real-time wireless connectivity architectures with
functional redundancy [1]. This is considered a pre-requisite to enable fail-operational
automated driving functionality within the operational design domain. Redundant con-
nectivity links are mandatory for such safety-relevant applications, according to current
traffic regulations. LEO satellite systems offer non-terrestrial network (NTN) connectivity
and can serve as supplements or back-ups for terrestrial networks (TNs) and thus help
meet regulatory requirements. The 5G Automotive Association (5GAA) pushes the need
for seamless interactions between TNs and NTNs by 2030 [2]. This will be critical for the
future car industry so as to ensure continuity of service for mobile users anywhere and at
any time. NTNs using suitable LEO satellite constellations promise broadband internet
access with latencies below 50 ms and data rates up to hundreds of Mbps, allowing for
high-quality multimedia, connectivity, and broadcasting. Moreover, this wireless function-
ality enables global coverage, especially in remote areas where terrestrial networks are
sparse [3]. However, the required link budget of an NTN system, including the transmit
power, antenna gain, and frequency bandwidth, in combination with the potentially large
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size of the antenna, poses challenges for its integration into a car. As state-of-the-art exam-
ples, the Starlink antenna terminal from Space-X [4], Amazon’s Ka-band antenna for Kuiper
satellites [5], the beam-steering antennas from ALCAN Systems [6], the SOTM terminals
from Requtech [7], and Kymeta [8], each have a diameter between 30 and 60 cm, i.e., 10 λ

and 20 λ at 10 GHz. The integration of such large antennas into cars is not feasible for mass
applications. A trade-off between size and performance needs to be found and thoroughly
studied in terms of the link budget required for given use cases and the antenna’s radiation
characteristics, as well as regulatory aspects and a design for manufacturability. There are
Ku-band antenna arrays for LEO connectivity available on the market. But the approach to
the miniaturization of such an antenna by designing a single antenna element with high
gain per unit area is novel. This miniaturization is critical for an automotive application
in which space and aesthetics are major constraints. In this regard, this paper proposes a
low-profile, dual-band, dual-polarized, vertically stacked patch antenna with a superstrate
with a focus on two main aspects:

• The calculation of the LEO satellite link budget, which establishes a general rela-
tionship between any desired data rate in downlink and the corresponding antenna
gain necessary for achieving the same. Several other authors [9–11] discuss Ku-band
antennas (with frequency range of 12 to 18 GHz and wavelengths of 1.7 to 2.5 cm) and
the corresponding link budgets. In this paper, the link budget for broadband internet
data rates DR >25 Mbps are consolidated for LEO connectivity in Section 2.

• The simulation and measurement results for the proposed single antenna element with
and without superstrate loading are presented and discussed. With the superstrate,
the single-element gain was enhanced by more than 3 dB, which has significant
consequences for the potential miniaturization of the Ku-band array antenna in that
theoretically, the array size could be halved compared to an array without superstrate
loading. These results are elucidated in Section 3. Section 4 presents the conclusion
and the future work.

2. Antenna Array Specifications Based on Link Budget for LEO Connectivity

The aim of this study is to design an antenna capable of delivering broadband internet
access which, according to the U.S. Federal Communication Commission (FCC)’s definition,
is DRDL = 25 Mbps for download and DRUL ≥ 3 Mbps for upload [12]. The antenna gain G
needed to meet this target is derived from the carrier-to-noise ratio (C/N) at the receiver
input. The C/N is represented by Equation (1) [13] and depends on the chosen modulation
and coding scheme, channel bandwidth (CBW), and the desired data rate (DR).[

C
N

]
dB

=
Eb
N0

+ CBW − DR (1)

Typical satellite communications use digital video broadcast (DVB-S2) standards for
broadcast, and this is assumed as the communication standard for LEO connectivity in this
section. There are several modulation and coding schemes available for DVB-S2 systems,
and the most common, 16 APSK 2/3, is considered based on the specifications of existing
modems available for the application [14–16]. This scheme requires an energy per bit of
Eb/N0 = 4.76 dB [17]. The channel bandwidth is taken to be CBW = 10 MHz. Substituting
these values into Equation (1), we obtain C/N = 8.74 dB. This C/N value can be used to
calculate the required antenna quality factor G/T as per the link budget in Equation (2) [17].[

G
T

]
dB

= FSPL + Latm + K + RBW − EIRP − C
N

(2)

Table 1 lists the parameters involved in the calculation of the link budget. The domi-
nant contribution is the free-space path loss (FSPL), which depends on the orbital distance
d and the frequency f of the signal. The values for d and the satellite’s effective isotropic
radiated power (EIRP) in Table 1 are derived from the specifications of the three major LEO
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constellations, namely SpaceX, OneWeb, and Telesat [16]. Further significant contributions
result from atmospheric losses (Latm) and the system’s noise temperature (Tsys). As the
Ku-band frequencies are in a range at f > 10 GHz, they are subject to attenuation due to
atmospheric effects like cloud, rain, fog, and atmospheric gases, which are accumulated in
Latm [17]. The link should be established even under heavy-rain conditions; in other words,
at 99.99% availability. Accordingly, a value of Latm = 5 dB [18] was chosen. For an antenna
looking at a cold sky during satellite reception, the antenna noise temperature was set to
Tant = 20 K [19].

Table 1. Link budget calculations in the Ku-band (downlink).

Parameter Symbol Value Unit

Eb/N0 required for 16 APSK 2/3 Eb/N0 4.76 dB
Data rate required DR 25 Mbps

Channel BW CBW 10 MHz
Receiver noise BW RBW 36 MHz

Carrier-to-noise ratio required C/N 8.74 dB
Carrier-to-noise density required C/N0 84.3 dB

Satellite EIRP EIRP 34.6 dBW
Downlink frequency fd 12.6 GHz

Path distance d 1200 km
Free-space path loss FSPL 176.09 dB
Atmospheric losses Latm 5.0 dB

System noise temperature Tsys 314 K
Roll-off factor fro 0.1

Antenna quality factor required G/Tsys −2.31 dB/K
Realized gain required G 27.4 dB

The other contributions are calculated from the noise figure of the RF chain based on
typical frontend IC specifications [20]. For a noise figure of F = 3 dB, the effective noise
temperature, as per Equation (3), [18] results in TFE = 294 K.

TFE = 295·
(

10
F
10 − 1

)
(3)

Combining these temperatures as per Equation (4) [18] results in Tsys = 314 K as the
system noise temperature.

Tsys = Tant + TFE (4)

Substituting this value in Equation (2) and additionally taking into account the scan
loss through the roll-off factor fro = 0.1 [16] yields the required realized gain, G = 27.4 dBi.

The downlink gain and data rate scale with the number of antenna elements, as summa-
rized in Figure 1, assuming that a single patch antenna provides a realized gain of GSE = 6
dBi. In a dual-band (uplink + downlink) antenna design, the number of antenna elements
needed in an array is determined by the higher of the uplink/downlink data rate requirements.
As DRDL = 25 Mbps is needed in the downlink but only DRUL = 3 Mbps is needed in the
uplink, fulfilling the downlink data rate requirement would automatically satisfy the uplink
requirements. This, however, corresponds to an array with 12 × 12 = 144 antenna elements
and for the half-wavelength element distance, a footprint of 6 λ × 6 λ = 36 λ2, which would
be too large for automotive applications.
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3. Proposed Antenna

Satellite communications predominantly use circularly polarized signals; hence, the
proposed antenna is designed to work circularly polarized. Some beamforming integrated
circuits combine vertical and horizontal polarizations to form circularly polarized signals
via appropriate superposition [21], while other solutions accept circularly polarized sig-
nals [22] from the antenna. Here, we decided to design a dual-band, dual-linearly polarized
antenna; an ideal quadrature coupler is used in post-processing to obtain circular polariza-
tion. The dual band covers downlink (DL) frequencies from 10.8 to 12.6 GHz and uplink
(UL) frequencies from 14 to 14.5 GHz. Since there are no existing compact antenna designs
for LEO satellite connectivity in automotive applications to the best knowledge of the
author, a comparison to other approaches is not presented.

3.1. Design

The use of a microstrip patch appeared to be the most attractive option to achieve a
low profile and reduced complexity and cost. Alternative types of antennas would increase
the cost and/or complexity. A dipole antenna, for example, would additionally require a
balun for mode transformation from a differential feed to an unsymmetric microstrip line,
and it would also need to be λ/4 apart from the underlying ground plane for constructive
interference with the ground. As a second example, although it offers a high gain, an array
design based on leaky-wave antennas fed via a slotted waveguide [23] would result in a
bulky structure and pose limitations on the antenna’s beam-steering capabilities.

The single element was designed using electromagnetic full-wave simulations in CST
microwave studio [24], with the dimensions mentioned in Figure 2a,b. In this paper, [25]
was taken as the starting point for the design of the antenna. Significant changes were made
in order to adapt it to our intended application; for example, the feeding structures were
optimized, a vertically stacked parasitic patch was included to enhance the impedance
bandwidth in addition to other bandwidth-enhancing techniques, as mentioned later, and
a low-loss substrate, a Rogers RO4350B (εr = 3.66, tanδ = 0.0037 at 10 GHz) [26], which
is suited for high frequencies, was chosen. The feeding was accomplished via aperture
coupling, using two microstrip lines that coupled to the two orthogonal H-shaped slots
in the antenna ground, exciting dual polarization. In comparison to other techniques like
microstrip line feeding, proximity coupling, et cetera, aperture coupling offers the widest
bandwidth [27,28].
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Figure 2. (a) Exploded view of the single antenna element; (b) side-view; (c) side-view of the single
antenna element with the superstrate.

The antenna described above would offer a typical single-element realized gain GSE
≈ 6 dBi, but if we would like to create an array with a reduced size, this value should be
increased without compromising the surface area, i.e., a higher gain per unit area should
be realized. A highly efficient way to achieve this was proposed in [29] and is based on the
suspension of a superstrate above a patch antenna. When a relatively large-sized superstrate
(>λ) is used over a small radiator with a large ground plane, significant gain enhancement
is achievable when the superstrate is suspended at approximately a half-wavelength above
the antenna ground. Therefore, in the second step, a superstrate was added which is
approximately six times the size of the main patch, as shown in Figure 2c. The superstrate
was separated from the parasitic patch by an air gap of 0.27 λ, corresponding to a distance
of 8.1 mm at a reference frequency of f = 10 GHz. It has a relative permittivity and loss
tangent of εr = 11.1 and tanδ = 0.0022 at 10 GHz. The thickness tS of the superstrate was
2.5 mm, which is around 0.08 λ. These values were determined through the parametric
optimization of the gain achievable at the frequencies of interest.

3.2. Measurement Results with and without the Superstrate

The antenna was manufactured and assembled as in Figure 3a and set up in a shielded
anechoic chamber, as shown in Figure 3b, for measurements. Figure 4 compares the
measured and simulated S-parameters for the single element without the superstrate.
Since the S-parameters of the design with the superstrate were very similar, in accor-
dance with expectations, they were omitted for clarity. The measured |S22|2 (f) -curves
in the DL band were shifted by 500 MHz to lower the frequencies compared to the sim-
ulations, whereas the simulated and measured |S11|2 (f)-data follow similar trends. In
general, these differences are due to the differences between the idealized and real en-
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vironments, for example, the simulations were performed in a free-space environment
which did not take into account the presence of antenna probes and positioning equipment.
There are also the manufacturing and assembly tolerances of the antenna’s geometry and
the substrate’s properties. The shift in the |S22|2 (f) -curves does not, however, influ-
ence the measured gain to the extent that the data rate and gain bandwidth are affected.
The transmission coefficient was |S12|2 < −20 dB over the entire frequency range, which is
in good agreement with the numerical simulations and indicative of good port isolation.
The fractional bandwidth requirements of 15 % in downlink and 4% in uplink for LEO
satellite connectivity were fulfilled and validated by the measurements.
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Figure 3. (a) Assembly of the single antenna element; (b) setup of the antenna for spherical far-field
measurements in the shielded anechoic chamber at TU Ilmenau.

From the measured gain curves in Figure 5a, it is clearly visible that the superstrate
yields a 3 . . . 6 dB gain improvement across the entire DL-band. There is, however, a shift in
the measured gain enhancement compared to the simulations. This shift is attributed to the
variations in the dielectric permittivity of the inhomogeneous medium comprised of the air
gap and the superstrate; as for the experiments, the superstrate was fixed using four screws
above the antenna element. For the final application, these manufacturing anomalies need
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to be compensated for to achieve a properly matched antenna. While the improvement in
the UL-band was around 2 dB, this is still quite an acceptable performance in view of the
significantly relaxed data rate requirement for uplink compared to downlink.

Moving on to Figure 5b,c, the polarization purity was studied by comparing the right-
hand circularly polarized (RHCP) and left-hand circularly polarized (LHCP) gain values
and the axial ratio (AR) of the main beam at boresight. Over the frequency bands of interest,
the RHCP gain was higher than the LHCP gain by 8 . . . 10 dB, and the measured axial ratio
was below 5 dB. The lower axial ratio value observed in the measurements compared to the
simulated data is the result of shadowing from the positioner. This leads to a weakening of
the LHCP beam with respect to the RHCP beam in the boresight.
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Figure 5. (a) Comparison of RHCP gain over frequency in measurements (solid curves) and sim-
ulation (dashed curves) without superstrate (blue colour) and with superstrate (orange colour).
(b) Comparison of RHCP (blue colour) and LHCP gains (orange colour) in simulations (dashed
curves) and measurements (solid curves) without superstrate (top) and with superstrate (bottom).
(c) Comparison of axial ratio over frequency in simulations (dashed curves) and measurements
(solid curves) without superstrate (top) and with superstrate (bottom).

In Figure 6a–d, the elevation cuts of the normalized RHCP gain are plotted for the
downlink frequency f = 11 GHz and show very good agreement between the simulations
and the measurements. The antenna performance at the uplink frequency f = 14 GHz
is presented in Figure 7a–d. The normalized cuts of the measured and simulated RHCP
patterns are comparable for the case without the superstrate, while the measurement with
the superstrate deviates from the simulation, as seen in Figure 7b, especially the appearance
of the null, which is not observed in the simulations. This null in the measurements can
be attributed to the artifacts in the measurement setup and requires further investigation.
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Such a null in the application can be detrimental for reception quality; however, in the
phased array design, the null can be compensated for using adaptive weighting algorithms.
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Figure 7. Normalized elevation cuts for the single element at 14 GHz in the measurements
(solid curves) and simulation (dashed curves) without the superstrate (left) and with the super-
strate (right) for (a) Elevation cut Φ = 0◦, (b) Elevation cut Φ = 0◦, (c) Elevation cut Φ = 90◦, and
(d) Elevation cut Φ = 90◦.

The key parameters corresponding to Figures 6 and 7 are presented in Table 2.
The total efficiency (η) for each frequency was calculated by substituting the values of the
maximum RHCP realized gain Gmax(θ,Φ) and the respective maximum directivity Dmax(θ,Φ)
in Equation (5) [30]. At 14 GHz, the measured efficiency with the superstrate was around
40% lower than the simulated efficiency as the measured directivity was approximately 3
dB higher for similar realized gains in the simulations and measurements.

η =
Gmax(θ, Φ)

Dmax(θ, Φ)
(5)

Table 2. Simulated and measured antenna characteristics with and without the superstrate at 11 and
14 GHz.

11 GHz

Parameter
Without Superstrate With Superstrate

Simulated Measured Simulated Measured

Gmax(θ,Φ) (dBic) 5.6 6.3 9 11.8
η (%) 77 85 89 97

FBR (dB) 29 42 34 37
HPBW, Φ = 0◦ (◦) 77 63 47 42

HPBW, Φ = 90◦ (◦) 77 50 48 42
14 GHz

Gmax(θ,Φ) (dBic) 5.28 6.8 10.35 9.4
η (%) 88 76 89 55

FBR (dB) 26 40 27 25
HPBW, Φ = 0◦ (◦) 112 114 33 20

HPBW, Φ = 90◦ (◦) 94 80 32 60

The value of Dmax(θ,Φ) in Equation (5) was obtained by taking the ratio of the maxi-
mum radiated power of the antenna to the power averaged at all azimuth (Φ) and elevation
(θ) angles around the antenna at that particular frequency, as shown in Equation (6) [29].

Dmax(θ, Φ) =
4π Pmax(θ, Φ)

ΣPmax(θ, Φ)
(6)

The front-to-back ratio (FBR) mentioned in Table 2 is based on the power ratio of the
beam from θ = 0◦ to θ = 180◦, and the half-power beamwidth (HPBW) is based on the
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elevation cuts at Φ = 0◦ and Φ = 90◦. In general, there is a good correlation between the
experimental and simulation results in this case.

4. Conclusions

As LEO satellites are a promising solution that can offer higher data rates at very
low latencies, they can be used to complement TN and assure seamless connectivity.
In order to design an antenna for this application in a passenger car, a link budget analysis
was performed. To obtain downlink data rates of 25 Mbps from the link budget, it was
concluded that the antenna requires a realized gain of 27 dBi. This means that if each
antenna element had a gain of 6 dBi, an array of 12 × 12 elements would be needed to
achieve 27 dBi. This implies a footprint of 6λ × 6λ with respect to a frequency of 10 GHz
or 18 × 18 cm. Since size is a major constraint for integrating an antenna into the roof of a
car, the aim was to design an antenna element that could provide a gain higher than the
conventional design. Therefore, a design based on superstrate loading was used to enhance
the gain. The antenna was manufactured, assembled, and tested in a shielded anechoic
chamber. In the DL-band, measurements showed that there was a 500 MHz shift to a lower
frequency in the S11 matching from the simulations. This was due to the difference in
the measurement environment and variations in the substrate’s properties. The presented
antenna design and results show that the inclusion of a superstrate in the single element
enhances its realized gain by 3 . . . 6 dB. Therefore, this approach looks promising for
the miniaturization of a Ku-band antenna array as we could potentially use half of the
number of elements using superstrate loading. This could drastically reduce the array size,
making it suitable for automotive applications. The reduced number of elements leads
to fewer front ends or beamforming integrated circuits which, in turn, reduces cost and
manufacturing complexity. Contrary to the size reduction and high gain, the superstrate
poses the challenges of scanning range, side-lobe levels, and bandwidth in particular.
For applications in which a full-hemisphere beam steering is required, this approach may
not be feasible. Similarly, for large fractional bandwidth requirements, the superstrate-
based antenna design presents challenges in implementation. These characteristics require
further study to define the boundary conditions and constraints for the use of a superstrate
in high-gain-antenna array designs.

The following topics are considered for further investigation:

• The behavior of a superstrate integrated into a 2 × 2 phased array, especially with
respect to an analysis of its impact on beam steering. In the measurements, a null was
observed in the UL-band for an elevation cut of Φ = 0◦. It needs to be determined
whether this is caused by the superstrate itself or from measurement artifacts. In order
to steer the beam to ± 50◦ for satellite tracking, such a null would be detrimental to
receiving or transmitting the signal as it can cause interferences.

• The dimension of the superstrate is critical for achieving the maximum gain and
for achieving a consistent radiation pattern over the frequency range of interest.
Properties such as the dielectric constant, thickness, size, and height of superstrate
also play a role in gain enhancement. Therefore, they need to be carefully chosen to
attain the best advantage in automotive applications. In the antenna, an increased
height and multiple layers lead to additional costs which also need to be studied to
reach a compromise between performance, size, and cost.
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