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Abstract: Well logging data contain abundant information on stratigraphic sedimentology. Artificial
identification is usually strongly subjective and time-consuming. Pattern recognition algorithms like
SVM may not adequately capture the depth-related variations in logging curve shape. This paper
defines logging sedimentary microfacies as unidirectional 2D image segmentation and builds an
improved U-net model to meet the requirements of logging sedimentary microfacies acquaintance.
The proposed model contains three characteristics: (1) It removes pooling layers to avoid the loss of
spatial features; (2) it utilizes multi-scale convolution blocks for mining multi-scale spatial features
in logging data; (3) a one dimensional convolution layer is added to achieve deep single-direction
segmentation. In this model, a 2D image composed of several standardized logging curves is used as
the network’s input. In addition, we propose an effective data enhancement method and calculate the
geometric feature attributes of well logging curves to reduce the complexity of the data characteristics.
We tested the model on manually annotated validation datasets. Our method automatically measures
fine sedimentary microfacies characteristics, improving the accuracy of sedimentary microfacies
identification and achieving the desired result. Additionally, the model was tested on unlabeled actual
logging data, which shows the generalizability of this deep learning method on different datasets.

Keywords: sedimentary microfacies; logging curves; deep learning; U-net

1. Introduction

The study of sedimentary microfacies is beneficial for revealing the properties of
reservoirs and providing practical guidance for oil and gas exploration. As core acquisition
is difficult and expensive, because specialized equipment and technology are required,
as well as a series of experiments and analyses. In addition, the sampling process may
encounter some difficulties, such as difficulty drilling into the rock, core fracture and other
problems, which will also increase the cost. So far, logging data are the only geological
data that can realize continuous, high-precision and high-resolution formation analysis and
interpretation of the whole well interval. The values of different types of logging curves
vary with the sedimentary characteristics of the rock mass, such as source, lithology, grain
size and structure, and these geological characteristics will be reflected in the morpho-
logical characteristics of the logging curves. Therefore, well logging data have become
an important source of information for sedimentary microfacies analysis. The amplitude,
shape and other features of logging data can be utilized to identify related lithofacies and
sedimentary environments. Traditionally, geologists have relied on subjective interpre-
tations of logging curves for sedimentary microfacies identification [1,2]. For example,
Chen et al. [3] used the morphological change trend of a natural gamma logging curve to
analyze the sedimentary microfacies of the Taiwan Hill fan delta. This method is highly
subjective, inaccurate, time-consuming and laborious, and consumes a great deal of human
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and material resources. To define sedimentary microfacies division criteria more accurately
and conveniently, identification of sedimentary microfacies has gradually transitioned from
traditional qualitative identification to quantitative identification. Quantitative analysis is
more efficient and accurate than qualitative analysis, as it applies complex mathematical
operations to sedimentary facies in logging data and constructs specific parameters as
the basis for judging sedimentary microfacies. Numerous scholars have mathematically
described variations in logging curve characteristics and constructed specific parameter
indicators as the basis for identifying sedimentary microfacies [4]. For example, Deng [5]
used the analysis of variance to automatically stratify the curve initially, then carried out
fine stratification through further calculations, and then obtained parameter values related
to log curve morphology in each layer as the basis for distinguishing sedimentary micro-
facies. Bayesian criteria [5,6], linear discriminant analysis [6], fuzzy logic [7], K-nearest
neighbor algorithms (KNN) [8] and support vector machines (SVM) [9,10], as well as other
mathematical statistics or machine learning methods, have been successively applied to
sedimentary microfacies identification based on logging curves. These methods involve the
pre-layering of logging curves and manual selection of criteria and parameters to extract
curve features. This process is complex and subjective, demanding a high level of expertise
from layering personnel.

The volume of well logging data is large and has multi-source heterogeneity [11]. The
use of logging curves for identifying sedimentary microfacies in the logging process faces
difficulties such as ambiguity and uncertainty. In recent years, deep learning composed
of neural networks that can autonomously learn and extract features between data has
provided a new way to identify sedimentary microfacies in logging. The deep neural
network autonomously learns curve features, which maximizes the characteristics of the
logging data themselves. Networks such as SOM [12,13] and ANN [14,15] have already
been preliminarily applied in the identification of sedimentary microfacies. These methods
still require the logging curves to be layered in advance, so that the single-layer logging
data and feature parameters can be input in vector form. Although these traditional neural
networks can explore complex nonlinear mapping relationships between logging data,
they only construct mapping relationships between logging depth sampling points and
sampling points, ignoring the local curve structure and morphological characteristics of
logging data with changes in formation depth.

Sedimentary microfacies reflect the progressive sedimentation process of geological
periods. Through well logging, the characteristics of rock strata such as resistivity and
radioactivity are obtained and the corresponding changes in the values of these charac-
teristics at the longitudinal depth constitute the logging curves. Logging phase labeling
is obtained according to the morphological characteristics of the logging curve, then the
sedimentary microfacies information can be obtained by analyzing the changes in the
lithologic combination, composition, particle size, mud content, porosity and other char-
acteristics of the corresponding sediment at the longitudinal depth. As a response to the
progressive sedimentation process, the local curve structure and morphological characteris-
tics of logging curves with depth changes are key to identifying sedimentary microfacies.
By constructing a logging dataset as a two-dimensional image with depth as the vertical
axis and different types of logging parameters (such as longitudinal and transverse wave
velocities and density) as the horizontal axis [16], the complex rules of sedimentary mi-
crofacies in logging curves can be excavated by employing deep learning methods on the
strength of image semantic segmentation. Fully Convolutional Networks (FCNs) are one
of the most commonly used deep learning architectures for image semantic segmentation.
Using FCNs for the identification of sedimentary microfacies in logging curves can not only
consider the local or overall curve structure and morphological characteristics of logging
curves with depth changes, but also perform layering, feature extraction and classification
simultaneously. The U-net network is a network model developed on the basis of the
FCN structure. Compared with other network models, its major feature is that it fuses
the up-sampled output with the corresponding down-sampled output by means of “skip
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connection”, so that the network can spread the context information to the layer with
higher resolution, and the segmentation effect is often very good. Its unique network
architecture and data augmentation method have alleviated to some extent the requirement
for a large number of sample inputs in deep learning, which is beneficial for solving the
problem that logging data samples are insufficient due to the limitation of drilling costs and
cannot be applied to fully convolutional neural networks. The U-net network presents great
advantages in processing image segmentation tasks of small datasets, and has been widely
applied in remote sensing image analysis [17], medical image segmentation [18,19] and
other tasks. Unlike the analysis of medical images and remote sensing images, identifying
sedimentary microfacies based on logging curves only requires image segmentation in
the depth direction. The traditional sedimentary microfacies identification methods often
ignore the change in the morphological characteristics of the logging curve in the depth
direction. The shape of the logging curve is “vectorial” because of the time sequence of
sedimentation. Rotation, translation and inversion of the logging curve image will destroy
the meaning of the sedimentary relationship represented by the curve itself. Therefore, deep
learning network algorithms applied to sedimentary microfacies division in logging data
need to maintain scale invariance of feature extraction while discarding rotation invariance
and flip invariance of feature extraction.

We propose a U-net framework-based deep learning logging sedimentary microfacies
identification method based on the ideas of deep learning and image semantic segmen-
tation. According to the U-net framework, the pooling layer is removed, the multi-scale
convolutional block [20] is introduced, and the one-dimensional convolutional layer is
added to construct a deep learning model that can realize multi-scale feature extraction
and unidirectional segmentation and meet the requirements of logging sedimentary micro-
facies identification. We then constructed a 2D image from multiple well logs reflecting
sedimentary facies as inputted to the constructed deep learning network. To further im-
prove the performance of the constructed network model for the identification of logging
sedimentary microfacies, we transformed the input data in two ways: (1) Affected by the
length of the sedimentary cycle and the shape of the sedimentary basin, and the forma-
tion of the same sedimentary environment, there are differences in the stratum thickness.
According to the time-series sedimentation characteristics contained in the well logging
data, the structural shape of the well logging curve is “vectorial” and “multi-scale”, so the
curve stretching transformation was used to achieve data augmentation. (2) Considering
that some salient features of well logging curves can be extracted quickly and effectively
based on the physical model, by calculating the slope value, azimuth value and variance
features of the original logging data, the complexity of the features contained in the data
is reduced and the classification is improved. We applied our method to actual logging
data, and confirmed that the proposed method can enhance the accuracy of sedimentary
microfacies identification from logging data and obtain expected results. We tested the
adjustable parameters in the network model constructed in this paper from qualitative
and quantitative perspectives, and compared it with an Artificial Neural Network (ANN),
Support Vector Machine (SVM) and original U-net.

2. Materials and Methods
2.1. U-Net Architecture

The U-net network consists of two parts: the compression path and the expansion
path. The two parts are symmetrically distributed to form a U shape. Among them, the
compression path is called the downsampling process, which is composed of a convolu-
tional layer, a ReLU corrected linear unit and a maximum pooling, which mainly performs
the role of feature extraction. The convolution layer is composed of convolution kernel
and convolution layer parameters, which have the function of feature extraction. After
every 3 × 3 convolution, ReLU is used for de-linearization, so that later convolution can
effectively extract features. The pooling layer achieves feature dimension reduction and
field of view expansion at the cost of spatial information loss, which is generally carried
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out after the convolution layer. The maximum pooling layer is used for feature selection
and information filtering of the input image to retain the most important features of the
image. The expansion path is also called the upsampling process, which consists of the
deconvolution layer, splicing layer and convolution layer, which mainly play the role of
restoring image information. The U-net network architecture is shown in Figure 1. The
architecture replicates the encoder layers and connects to the corresponding layers in the
decoder. This type of connection that reuses the network properties of the encoder is often
referred to as a “skip connection”. The upsampled feature map has a low resolution, while
the corresponding downsampled feature map has a high resolution. Connecting the two
can enhance the local features of the image and make the recovered image have a higher
resolution. The advantage of “skip connection” in image segmentation is that it can provide
multi-scale and multi-level information, so as to obtain finer segmentation results.
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Figure 1. The network architecture of U-net.

2.2. Improved U-Net Architecture

The two-dimensional images constructed from well logging data may have the same
texture characteristics after mirror inversion in the formation depth direction, but the
sedimentary characteristics they represent are completely different. For example, the value
of the GR curve decreases first and then gradually increases from bottom to top, forming a
bell shape. The sediment grain size has a combination of fine–coarse–fine characteristics,
indicating that the hydrodynamic force changes from weak to strong and then weak. If
the GR curve is reversed and becomes funnel-shaped, it represents a completely different
regressive depositional environment. The shapes are similar, but the direction is different,
as shown in Figure 2. Since the sedimentation is time-sequential, the logging data have
a certain time-series feature, as the geophysical response of the sedimentary body. As
the shape of the logging curve has “vectoriality”, log curves with similar shapes but
different directions represent different sedimentary facies features, so the morphological
and structural features of the log curves are the key to identifying sedimentary microfacies.
However, the continuous pooling layer in the U-net architecture increases the receptive
field at the cost of losing spatial information, which may lead to the loss of the structural
feature information of the log curve. In addition, the maximum pooling can maintain the
scale invariance, rotation invariance and translation invariance of the features to a certain
extent, which do not match the actual features of the logging data.
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Thanks to the particularity and complexity of the formation of geological bodies,
influenced by the length of sedimentary cycle and the shape of sedimentary basins, the
thickness of geological bodies formed in the same depositional environment can be different.
This is due to periodic changes in the depositional environment caused by changes in crustal
movement, sea level, climate and sediment sources. Some periods are longer and some are
shorter, resulting in variations in sediment thickness in depositional cycles. In addition, in
different geographical locations and under the same depositional environment, affected by
depositional events and the shape of depositional basins, there are certain differences in
the depositional thickness. In the form of well logging curves, this difference is manifested
as the difference in the length and amplitude of the curves, but the overall morphological
characteristics are similar, which means they are “multi-scale”. However, in the original
U-net architecture, the convolution operation in each layer of the downsampling and
upsampling parts is composed of two 3 × 3 convolutions, which cannot better extract
important features of different scales on the logging curve information. In addition, the
identification of sedimentary microfacies based on images composed of well logging curves
only requires image segmentation in the depth direction. However, the resulting map of
semantic segmentation using the U-net network is the result of the classification of each
pixel in the image, so it cannot be guaranteed that the values of different logging types
corresponding to the same depth have the same category.

Therefore, while considering the characteristics of logging curves for sedimentary
microfacies identification, we constructed a deep learning model that is more suitable for
logging sedimentary microfacies identification on the basis of the original U-net framework.
The characteristics of building a deep learning model are as follows:

(1) Considering that the rotation invariance and inversion invariance of feature extrac-
tion should be discarded when logging data are applied to deep learning network
algorithms. So as to reduce the loss of spatial feature while retaining feature dimen-
sionality reduction, expanding the field of vision and decreasing network parameters,
we removed all the pooling layer from the U-net architecture, and replaced it with
a 3 × 3 convolution operation with a step size of 2 to form a compression layer, as
shown in Figure 3. The compression layer can reduce the feature dimension of the
image and cut down the loss of spatial characteristics.
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(2) To better learn and dig out more useful features from curves of different scales, a
multiscale convolution block is added to the network, as shown in Figure 4. The
multiscale convolution block can work 3 × 3, 5 × 5 and 7 × 7 convolution operations
in parallel to extract these spatial features of different scales of the logging data, and
splice the feature maps obtained from different convolution operations. In addition
to this, other connection and a 1 × 1 convolution are aggrandized to the network
to obtain more spatial features and improve the performance of network feature
extraction [21].
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(3) To achieve unidirectional segmentation of logging sedimentary microfacies only in
the depth direction, we must avoid different classification results for different log-
ging curve pixel points from U-net at the same depth. We added a one-dimensional
convolutional layer before the network output to comprehensively analyze the eigen-
values of various curves at the same depth, and transform 2D image features into
1D feature vectors in the depth direction, as shown in Figure 5. Finally, we classi-
fied each eigenvalue of the vector, so as to achieved the one-way segmentation of
sedimentary microfacies.
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Based on the above method, the model used for sedimentary microfacies identification
is shown in Figure 6. The input log image, formed from various types of logging curves, is
fed back into a network consisting of shrinking and expanded paths.

Shrinking path: Each step consists of a multi-scale convolutional block and compres-
sion layer, which plays the role of feature extraction. The multiscale convolution block
comprises 1 × 1, 3 × 3, 5 × 5 and 7 × 7 convolution operations and other connections,
which can extract feature information from images of different scales. After each convo-
lution operation, there is a ReLU unit to delinearize, so that the subsequent convolution
operators can effectively extract features. A 3 × 3 convolution operation with a step size
of 2 is applied to the compression layer, which can reduce the size of the image while
extracting features, expand the receptive field, and reduce the loss of spatial information.

Expanded path: Each step includes a 2 × 2 deconvolution operation, a multi-scale
convolution block, and a concatenate layer, which play the role of restoring image. Addi-
tionally, a 1D convolutional layer is added before the final output. The deconvolution layer
is used for image restoration to achieve upsampling of feature maps. Each 2 × 2 deconvo-
lution operation doubles the image size, so that layer-by-layer upsampling can restore the
original input image. The concatenate layer stitches the upsampled low-resolution feature
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map with the corresponding downsampled high-resolution feature map to heighten the
local features of the image. The multi-scale convolution block also plays an important
role in feature extraction. The 1D convolutional layer converts the 2D image features into
1D feature vectors in the depth direction before the output layer, and comprehensively
analyzes the characteristic values of various curves at the same depth. Finally, we used a
1 × 1 convolution and SoftMax function to classify each feature of the 1D feature vector to
obtain the final recognition result of logging sedimentary microfacies.
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The advantage of the model is that it can realize the identification of sedimentary
microfacies in logging curves, and can basically identify each sedimentary microfacies
correctly. Compared with the traditional algorithm, this method has higher accuracy and
universality in identifying sedimentary microfacies. The disadvantage is that the model
is more sensitive to the data and will further divide the places where the data changes.
Therefore, compared with the real label, the model will divide the sedimentary microfacies
more carefully, and the local location of a certain sedimentary microphase will be divided
into other types, resulting in misclassification.

2.3. Overall Implementation Process

In terms of the geological background characteristics of the survey area and logging core
data, gamma-ray (GR), spontaneous potential (SP), density (DEN) and other logging curves
that can reflect sediment lithology and porosity, which are beneficial to the division of sedi-
mentary facies. SOM can use well logging data including compensated neutron log (CNL),
DEN, GR and other sample values for lithofacies analysis [22]. Firstly, the logging data are
analyzed using SOM clustering to initially determine the lithologic characteristics of each
depth sampling. The numerical representation is used to characterize a certain lithological
characteristic with a specific numerical value, and the lithological characteristic curve of
the logging curve is formed. They are then arranged in columns to form a 2D matrix. The
logging image is shown in Figure 7. Then, according to the experience and knowledge
of experts, manually mark the corresponding labels on the logging images to form a one-
dimensional vector label map that changes with depth, as shown in Figure 8. Perform
data enhancement processing and attribute extension on the logging images, and cut these
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images into 2D matrices of the same size as the network input. The built model is trained
with different parameters to obtain the optimal model and realize the segmentation of
sedimentary microfacies.
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2.3.1. Data Preprocessing

The input data consist of various types of log curve values arranged in columns. It
is necessary to normalize the logging data separately, column by column, to reduce the
influence of the data dimension and facilitate the network solution. The normalization
method can maintain the morphological characteristics of the log curve changing with the
depth direction, as well as the relationship between the relative amplitude changing with
the depth, while having no effect on the classification task.

The minimum–maximum (Min–Max) method is a data normalization method com-
monly used in machine learning which can scale data to the [0, 1] range. Each log can be
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viewed as a 1D vector composed of N values X = (x1, x2, . . . , xn). The normalized data can
be calculated with the following equation:

xi
′ =

xi −min(X)

max(X)−min(X)
(1)

here, xi
′ represents the normalized result of xi, max(X) and min(X) represent the maximum

and minimum values of each column of well log curves in turn, respectively.

2.3.2. Data Enhancement

An important feature of using deep learning algorithms to train neural networks is
the need for a large number of samples. However, logging data are difficult to obtain and
the sample size is small. In the traditional image segmentation process, data enhancement
methods such as rotation, translation, scaling, random occlusion, horizontal flip and
noise perturbation are commonly utilized to increase the number of samples, so that the
constructed network can learn features more fully [23]. Allowing for the timing and vector
feature of well logging curves, rotating, translating, flipping and other transformations on
the well logging curve images will destroy the meaning of the sedimentary relationship, so
traditional data enhancement methods are not suitable for well logging data.

At the same time, due to the complexity and particularity of the formation of geological
bodies, the identification of sedimentary microfacies using the shape of well logging
curves must satisfy scale invariance. If the length and amplitude of well logging curves
are different, but the overall shape is similar, they still represent the same sedimentary
microfacies. Therefore, a data enhancement method of curve stretching transformation is
proposed in this paper to make full use of existing logging data and increase the size of
training samples. This method is principally used to stretch the curve segment representing
a certain depositional environment in the entire logging curve, reflecting the variation
characteristics of sediments with different thicknesses formed in the same depositional
environment. Stretch transformation inserts the average value of two adjacent points to
stretch the length of the curve. Aiming at the existing well logging curves, one curve
segment belonging to the same type is selected for stretching with the permutation and
combination method under the constraints of sedimentary laws, so as to construct new
samples. On analyzing the sample data, the maximum thickness of the three sedimentary
microfacies of the submerged bifurcated channel, river channel margin and river channel
bend in this area are 104.7 m, 108.2 m and 124.4 m, respectively. The thickness will not
exceed the maximum value so as to avoid violating the sedimentary law. The well logging
curve contains many classes, so the proposed method can significantly augment the set
of samples, which can make up for the insufficient number of samples of the well logging
data in deep learning.

2.3.3. Attribute Extension

Extracting some salient features of logging curves based on physical drive helps to
reduce the complexity of data feature extraction and achieve the purpose of improving
classification accuracy. The log curve is the geophysical response of the sedimentary body,
and the abrupt change point of its shape is the key to dividing different sedimentary
microfacies. Feature augmentation combined with domain knowledge can further improve
machine learning capabilities [24]. Based on this, this study defined three attributes of
the logging curve slope value, azimuth value and variance value, and used them as
characteristic curves extracted via physical drives to be involved in the identification of
subsequent sedimentary microfacies. When selecting attributes, it is necessary to select
attributes that can describe the morphological characteristics of curves such as lithology
curves and resistivity curves in each layer section [25]. These three attributes are used to
enhance the morphological characteristics of the curve, enhance the “directivity” of the
logging data and highlight the sudden change points of the logging curve, thus reducing
the complexity of data feature extraction.
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(1) Slope D refers to the difference between the values of two adjacent logging samples,
indicating the rate of change of the curve, which is conducive to highlighting the
division point between different sedimentary microfacies and enhancing the mor-
phological characteristics of the curve. This attribute essentially reflects the rate of
depositional cycles and expands the characteristics of depositional rhythms. The
simplest difference equation can find the change between two points of the curve.
By calculating the difference value corresponding to each measurement point, a new
slope value property curve can be extended.

(2) Azimuth G: Well logging curves have time-series characteristics, and their overall
directionality is the key to identifying sedimentary microfacies. A square position
is assigned to each measurement point, as a supplement to the attribute “slope”,
which reflects the characteristics of the data value becoming larger or smaller, and
can enhance the attribute of the “directivity” of the logging data. The log curve
composed of n values X = (x1, x2, . . . , xn) and the corresponding azimuth value
curve G = (g1, g2, . . . , gn) can be obtained with the following formula:

gi =


0.1, i f xi+1− xi > 0.01;
−0.1, i f xi+1− xi < −0.01;

0, Otherwise;
gn = gn−1.

(2)

where gi represents the azimuth value corresponding to the value of log data.
(3) Variance A can reflect the degree of dispersion of each measurement point relative to

the overall data. This can highlight the sudden change point of the well log curve and
better realize its stratification. It can be obtained with a simple variance equation.

2.3.4. Evaluation Metrics

The confusion matrix is widely used in machine learning to verify the quality of
classification results. It is a table of relationships between predicted and true values. The
rows represent the true categories, and the columns of the matrix represent the predicted
categories. This paper sets the value of the confusion matrix as the probability of the
category being correctly identified or misjudged, rather than the number of samples. It is a
concentrated expression of the classification results of each pixel of the input image. For
example, the three-category confusion matrix is shown in Table 1, where Pxx represents the
probability that the X category is correctly identified, and PX1X2 represents the probability
that the X1 category is misidentified as the X2 category.

Table 1. Three-category confusion matrix.

Predictive Label

A B C

True
label

A PAA PAB PAC
B PBA PBB PBC
C PCA PCB PCC

According to the confusion matrix, we can clearly know the accuracy rate of each
category and analyze which categories are easily misjudged by the others.

3. Results and Analysis
3.1. Dataset

The logging data used in this paper come from the Triassic formation in the LN area
of the northern Tarim Basin, which is a very important oil–gas-bearing formation [24].
It is mainly composed of clastic rocks deposited in fluvial lacustrine facies, including
conglomerate, sandstone, siltstone, mudstone and their intermediate products. It has the
characteristics of a positive rhythmic grain sequence combination, and is a set of inland
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fluvial lake delta facies deposits. Drilling and well logging data show that these sedimentary
facies can be divided into three sedimentary microfacies: submerged bifurcated channel,
river channel margin and river channel bend [26].

Sedimentary microfacies, as a combination of lithofacies, have certain characteristic
rules in terms of sediment lithology, grain size distribution, shale content and porosity,
which are caused by hydrodynamic factors in the depositional environment. In addition, the
difference in hydrodynamic conditions will cause changes in the petrophysical properties
of sediments, such as electrical conductivity, natural radioactivity and acoustic wave
transmission velocity. As the response of petrophysical properties around the borehole wall,
the logging curve is of great significance for the fine division of lithofacies or sedimentary
microfacies. The morphology of well logging curves can help to classify sedimentary
microfacies. The sediments in the submerged bifurcated channel are mainly sandstone and
pebble sandstone, and their spontaneous potential curves and natural gamma ray curves
are characterized by low to medium microdentate or toothed bell shapes, and sometimes
box shapes, or a combination of both. The sediments of the microfacies at the lateral edge
of the channel are mainly fine sandstone or siltstone, with argillaceous sandstone interbeds,
medium to high resistivity, medium negative spontaneous potential, and obvious zigzag
curves. River channel bends have high micro-facies shale content, low apparent resistivity
amplitude and generally low amplitudes of natural gamma rays and spontaneous potential
curves, which are flat or micro-toothed with a low amplitude [27]. Figure 9 is an example
of the division of three sedimentary microfacies.
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Figure 9. Log characteristics of different sedimentary microfacies [26]: (a) Submerged bifurcated
channel; (b) river channel margin; (c) river channel bend.

In the process of identifying sedimentary microfacies using logging curves, logging
curves that can reflect rock lithology, grain size, shale content and porosity are usually
selected. The abnormal amplitude of (SP) and the amplitude of GR can reflect the grain
size and shale content in the formation. For clastic rock reservoirs, GR and SP are the
most commonly used logging curves to indicate lithology, and permeable layers can be
displayed in sand–mudstone sections [28]. DEN can indirectly describe the porosity of
the sedimentary body and reflect the grain size and lithological characteristics of the
sedimentary body [29]. Since a sedimentary facies is a combination of lithofacies, and a
lithofacies is a combination of lithological characteristics, the change curve L of lithological
characteristics reflected by logging curves is an important basis for identifying sedimentary
microfacies. According to the logging data, we selected SP, GR, DEN logging curves and
lithology curve L as the basic data for identifying sedimentary microfacies in this area.

The available dataset contains well log data from 19 wells. The four curves of each well
are arranged to form a two-dimensional matrix, forming 19 original images. We took the
results of the manual identification of sedimentary microfacies by geologists by observing
lithological columns and characteristics of logging curves, and made them into the actual
labels of the corresponding wells. Using the enhancement method proposed, the label data
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were expanded from the original 19 logging images to 258. Starting from the first line of
the well logging image, we cut it with 800 lines and saved the last 800 lines directly when
the remaining images were smaller than 800 lines. Thus, the logging image was cut into
1286 sample sets of 800 × 4 size as the input data, among which there were 1125 training
datasets, 125 validation sets and 36 test sets.

We separately obtained the slope curves (DEN-D, GR-D, SP-D), azimuth curves (DEN-G,
GR-G, SP-G) and variance curves (DEN-A, GR-A, SP-A) corresponding to the DEN, GR
and SP curves. The effectiveness and correctness of the proposed method was verified by
comparing the results of different input data features in different network architectures.

3.2. Network Performance

We used MATLAB for data processing, and used the Python language to build and
train the model on PyCharm based on the Keras framework. To obtain the parameter
settings of the optimal model, we conducted a lot of experiments to analyze relevant
parameters, mainly including learning rate, batch size, convolution kernel size and down-
sampling times. The accuracy rate Acc is the standard for judging the effect of the model.
The changes in network model accuracy under different parameter configurations are
shown in Table 2. We mainly set the learning rate to the negative power of 10, and set
the batch size to the power of 2 for testing. In order to obtain a more accurate parameter
value, according to the results, we further narrowed down the range of optimal parameter
values by testing the intermediate values of 5 × 10−4 and 6 for the learning rate within the
range of [10−3, 10−4] and the batch size within the range of [4, 8]. When the input data size
is 800 × 8, a maximum of three downsampling operations can be performed. Based on the
test results, we obtained the optimal model parameters: a batch size of 6, a learning rate of
10−4, and two downsampling operations.

Table 2. The accuracy rate of the network model under different parameter configurations.

Learning Rate 10−1 10−2 10−3 5 × 10−4 10−4 10−5 10−6
Acc (%) 37.82 27.18 84.02 83.10 86.42 80.24 78.80

Batch size 1 2 4 6 8 16 32
Acc (%) 82.23 80.69 83.42 86.98 76.24 79.18 76.18

Downsampling Times 1 2 3
Acc (%) 73.95 84.69 81.86

3.3. Result Analysis

To validate the superiority of our proposed method over conventional methods, we
conducted experiments on eight different input datasets and compared the performance of
our Improved U-net model with U-net architecture, as well as the ANN and SVM models
used in traditional methods for well log lithology identification. The results demonstrate
that our Improved U-net model performs better in identifying sedimentary microfacies. The
following results are based on test datasets that were not involved in the training process.

Table 3 shows the accuracy obtained by the four models on eight test datasets with dif-
ferent input data characteristics. The eight datasets were mainly divided into four categories:

Category 1: Consists of only three well log curves and one lithology curve;
Category 2: Consists of one well log curve and its corresponding three extension curves
(slope, azimuth, variance);
Category 3: Consists of two well log curves and their corresponding three extension curves
(slope, azimuth, variance);
Category 4: Consists of three well log curves and their corresponding three extension
curves (slope, azimuth, variance).
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Table 3. The accuracy obtained by the four models on eight test datasets with different input
data characteristics.

Input Data
Classification Model

SVM ANN
Raw

U-Net
Improved

U-Net

DEN, GR, SP, L 60.26% 65.20% 69.47% 73.34%
DEN, DEN-D, DEN-G, DEN-A 48.04% 49.83% 58.95% 64.71%

GR, GR-D, GR-G, GR-A 55.11% 60.63% 68.12% 74.31%
SP, SP-D, SP-G, SP-A 55.11% 58.65% 63.52% 68.09%

GR, GR-D, GR-G, GR-A, DEN,
DEN-D, DEN-G, DEN-A 62.85% 60.30% 76.59% 80.93%

SP, SP-D, SP-G, SP-A, DEN,
DEN-D, DEN-G, DEN-A 63.01% 63.18% 76.13% 78.88%

SP, SP-D, SP-G, SP-A, GR,
GR-D, GR-G, GR-A 62.27% 66.56% 76.81% 82.90%

DEN, DEN-D, DEN-G, DEN-A, GR,
GR-D, GR-G, GR-A, SP,

SP-D, SP-G, SP-A
60.13% 65.44% 81.53% 86.49%

Table 3 shows that our proposed method has significant advantages over traditional
ANN and SVM classification algorithms in identifying sedimentary microfacies. Compared
with the Raw U-net architecture, our Improved U-net model can significantly improve
the accuracy of sedimentary microfacies identification. In addition, compared with the
DEN curve, GR and SP curves make a greater contribution to the characterization of
sedimentary microfacies in this study area, and adding data features through attribute
extension can significantly improve the test results. Among the input data consisting of
DEN, GR, SP, DEN-D, DEN-G, DEN-A, GR-D, GR-G, GR-A, SP-D, SP-G and SP-A, the
Improved U-net model has the highest accuracy at 86.49%.

Noise was added to the input data and the influence of data with different signal-to-
noise ratios on the deposition level was analyzed. Table 4 shows the accuracy of input data
with different SNR in Improved U-net and Raw U-net models, and the highest accuracy of
data without added noise in the two models. It can be seen that the accuracy of Improved
U-net is higher than that of Raw U-net when the SNR is the same. Moreover, the higher the
signal-to-noise ratio of the input data, the higher the accuracy of the Improved U-net for
deposition micro-recognition.

Table 4. The accuracy rate of the network model under different SNR.

S/N Data without Noise 12 10 8 5 3 2

Improved U-net 86.49% 78.36% 72.68% 62.44% 36.43% 10.53% 11.23%
Raw U-net 81.53% 70.46% 71.34% 54.95% 22.35% 12.61% 9.65%

We also analyzed the impact of sample size on different network architectures. For
the eighth input dataset (composed of 12 curves: three well log curves and their corre-
sponding slope, azimuth and variance extension curves), we used a training dataset of
1250 × 800 × 12 well log curves and randomly selected 30%, 50%, 70%, 90% and 100% of
the sample size to train different network models. The same test dataset was employed
to achieve the recognition accuracy of each trained model and analyze the training effect.
The accuracy of Raw U-net slowly increases with the increase in sample size, and the
performance is poor (Figure 10). In contrast, the Improved U-net model performs well
overall and the accuracy gradually increases with the increase in sample size.

The confusion matrix of the prediction results for various methods is shown in Figure 11.
It can be seen that the ANN and SVM methods have inaccurate feature extraction for
sedimentary microfacies and are prone to misclassification, while Raw U-net and Improved
U-net show relatively good classification results. Compared with Raw U-net, Improved
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U-net can be used to more accurately characterize submarine distributary channels and
the river channel bay, but the identification of the river channel margin is not as good.
This may result in the misclassification of sandstone interbeds at the edge of the river
channel as distributary channels mainly composed of sandstone, and the misclassification
of mudstone interbeds as river channel bay mainly composed of mudstone.
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The segmentation and identification results of the test wells is shown in Figure 12.
The experimental results show that our method can be applied to the description of sedi-
mentary microfacies in well logging data. Compared with the manually identified original
labels, this method can accurately segment different categories of sedimentary microfa-
cies and identify them. For the results in Figure 12a,b, the segmentation results of the
ANN and SVM methods show fragmented characteristics, which are due to the fact that
the input samples only consider the well logging curve values at the depth points without
considering the morphological changes of the well logging curves. On the other hand, both
Raw U-net and Improved U-net segmentation results perform better, with good continuity
and block. Most of all, Improved U-net shows the best performance. In local areas, due to
sudden changes in the structure of well logging curves, Improved U-net can perform more
detailed identification of sedimentary microfacies. Compared with manual identification,
this method has higher sensitivity and can further refine the results of manual classification.
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The lithologic profile of the test well is shown in Figure 13, along with a compari-
son of the results obtained using our method and geological experts (labels) [30]. This
figure shows that our method can effectively segment and precisely describe sedimentary
microfacies. Our method is more sensitive to the change in data characteristics than the
identification results of geological experts, so the identification of sedimentary microfacies
is more detailed.
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Figure 13. The lithology profile of the test wells and a comparison of the identification results
obtained with Improved U-net and labels; (a) well LN-1; (b) well LN-2. The red triangles in the figure
represents oil producing intervals.

The trained model was also tested on unlabeled actual well logging data (Figure 14).
It can be inferred that the model can also accurately identify and classify sedimentary
microfacies in new actual well logging data, and the overall identification results are
ideal. However, the segmentation in local areas is too detailed, mainly due to the model’s
sensitivity to data changes. The results indicate that this deep learning well logging
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sedimentary microfacies identification method based on the U-net framework has good
generalization ability on different datasets, and no specific adjustment is needed. For
logging data from other areas, considering the corresponding curve shape characteristics,
the proposed model can also be used to identify sedimentary microfacies. According to
the background characteristics of the area where the data are used, the corresponding
parameters can be fine-tuned to obtain a better recognition effect.
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4. Conclusions

Our research realizes the intelligent identification of logging sedimentary microfacies
by using the ideas of deep learning and semantic segmentation. Considering that the time-
series deposition reflected by the logging curve determines that it has the characteristics
of “vectoriality” and “multiscale” in the depth direction, we removed the pooling layer
and introduced a multiscale convolution block to the traditional U-net. The last layer
was also improved by adding a 1D convolutional operation. A deep learning network
architecture that can realize multi-scale feature extraction and unidirectional segmentation
of logging sedimentary microfacies identification is constructed. At the same time, a
unique data enhancement method for well logging curves is proposed, and attribute
extension was used to extract more intuitive curve features to alleviate the complexity of
feature extraction, thereby significantly improving the training efficiency and application
effect of the model. The experimental results of applying our method to the sedimentary
microfacies identification of the Triassic formation in the LN area of the Northern Tarim
Basin show that our method shows advantages compared with the SVM, ANN algorithm
and the original U-net. It can realize the fine identification of sedimentary microfacies
using log data on the premise of meeting the requirement of geologists for the accuracy of
sedimentary microfacies.
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