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Abstract: With the development of the Internet of Things (IoT), most communication systems are difficult
to implement on a large scale due to their high complexity. Multiple-input multiple-output (MIMO) precod-
ing is a generally used technique for improving the reliability of free-space optical (FSO) communications,
which is a key technology in the 6G era. However, traditional MIMO precoding schemes are typically
designed based on the assumption of additive white Gaussian noise (AWGN). In this paper, we present
a novel MIMO precoding method based on reinforcement learning (RL) that is specifically designed for
the Poisson shot noise model. Unlike traditional MIMO precoding schemes, our proposed scheme takes
into account the unique statistical characteristics of Poisson shot noise. Our approach achieves significant
performance gains compared to existing MIMO precoding schemes. The proposed scheme can achieve
the bit error rate (BER) of 10−5 in a strong turbulence channel and exhibits superior robustness against
imperfect channel state information (CSI).

Keywords: precoding; reinforcement learning; FSO; MIMO; Poisson shot noise

1. Introduction

With the massive growth of data transmission, the future Internet of Things (IoT)
will face more severe challenges. Free-space optical (FSO) communication is crucial in
the forthcoming 6G era, with its characteristics of wide bandwidth, high speed, and high
capacity [1]. Multiple-input multiple-output (MIMO) technology has been proven by
multiple studies to be equally applicable to FSO systems. In FSO communication, MIMO
is applied to reduce turbulence-induced fading. Instead of using a single transmitter and
receiver, FSO MIMO systems employ multiple transmitters and receivers along with an
array of optical elements such as laser diodes and detectors. These elements are strategically
positioned to create multiple optical channels for data transmission. The application of
MIMO to FSO systems offers significant advantages in terms of data rate, reliability, and
robustness [2,3].

Ultraviolet (UV) communication has the characteristics of support for non-line-of-sight
(NLOS) communication [4], and good confidentiality performance, which has attracted
extensive attention. UV communication can be utilized in various scenarios. On-the-move
communication is made possible through UV-C links, enabling devices in vehicles or
drones to communicate seamlessly. Additionally, UV communication proves beneficial
in IoT applications, facilitating communication between devices in harsh environments.
Moreover, UV communication enables machine-to-machine communication, allowing
machines or sensors to exchange data even in environments with high interference or
restricted line-of-sight [5].

The atmospheric turbulence effect caused by random fluctuations in the atmosphere
can seriously affect the communication quality of FSO systems. To solve these problems,
precoding techniques are used at the transmitter to combat turbulence [6–8]. However, it
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should be pointed out that traditional precoding methods are derived from the additive
white Gaussian noise (AWGN) model. Optical communication systems use light to transmit
data, and light consists of discrete particles known as photons. The arrival of photons at
the receiver’s detector follows a Poisson process, where photons are emitted randomly
over time. The Poisson shot noise model accurately captures this discrete nature of optical
signals, making it a better fit for optical communication systems. In other words, the optical
communication models are generally modeled as signal-related Poisson shot noise [9,10].
Precoders and detectors designed under the AWGN model are no longer suitable for photon-
counting communication systems. The precoder and combiner should be redesigned for
the Poisson shot noise model.

The studies regarding the combination of communication and artificial intelligence
(AI) have attracted widespread attention from scholars [11–13], which is a novel way to
solve problems in mobile communication. The authors of [11] jointly design the active
beamforming and passive beamforming to maximize the sum rate, using the deep deter-
ministic policy gradient (DDPG) algorithm. The action space of this algorithm is designed
by the beamforming matrix and the phase shift matrix. In [12], the authors utilize soft
actor–critic (SAC) algorithm to design active analog precoder and passive beamformer. The
authors of [13] propose a DRL-based precoding framework in both codebook-based and
non-codebook-based MIMO precoding systems and examine the performance of the DQN
and DDPG algorithms. The advantage of combining reinforcement learning (RL) and
mobile communication is that different features can be extracted from a large number of raw
data, and by learning to continuously adjust the parameter settings in the internal structure,
RL can flexibly approximate the mathematical model of the simulated communication
environment and deal with some complex physical channels. RL is applied in practice in
various domains such as robotics, navigation, and smart grids. In robotics, RL can be used
to train robotic arms to perform tasks like opening doors and picking up objects. RL is
also used in navigation systems to optimize routes and make decisions based on real-time
data. However, there are some potential challenges in applying RL. One challenge is the
long time it takes for RL algorithms to converge and learn something meaningful. This
restricts the use of RL techniques in real-time learning scenarios. Another challenge is the
need for large numbers of data for training RL models. RL algorithms require extensive
exploration of the environment to learn optimal policies, which can be time-consuming and
resource-intensive. Additionally, RL algorithms may struggle with partial observability
and uncertainty in complex environments, which can affect their performance and ability
to make accurate decisions [14,15].

The non-convex problem and coupling constraints, as studied in this paper, pose
considerable challenges to finding an optimal solution. In order to address this, we propose
a novel MIMO precoding scheme based on RL, which provides a highly effective approach
for jointly optimizing both the precoding and detection matrix of the transceiver and
receiver, respectively. The proposed RL-based solution offers a number of key advantages
over traditional optimization methods, such as greater flexibility and the adoption of the
variation of system dynamics. Specifically, the RL framework allows the system to learn
from past experiences and optimize the transmission and reception processes in an iterative
and adaptive manner. Overall, our findings highlight the potential of RL-based methods
for addressing complex optimization problems in FSO communication systems.

In this study, a joint precoder and combiner optimization based on RL is proposed. We
analyze the bit error rate (BER) performance at different system parameters and compare
it with the conventional schemes. The simulation results show that our scheme is able
to obtain a lower BER performance compared to the conventional scheme. The main
contributions of this research include:

1. Our proposal involves the introduction of a state-of-the-art NLOS UV MIMO system,
which is capable of photon-counting while operating under the influence of Poisson
shot noise. To optimize the system performance, we formulate a novel optimization
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problem that addresses the design of both the precoding and combining matrices,
utilizing the well-established minimum mean square error (MMSE) criterion.

2. By employing a methodical approach to deriving and reformulating key aspects of our
expected MMSE precoding design, we successfully transform it into an optimization
problem that is conducive to efficient computation using the multi-agent deep deter-
ministic policy gradient (MADDPG) algorithm [16]. Through this novel approach, we
are able to attain the global optimal precoding matrix and combining matrix.

3. The proposed system exhibits strong robustness. To evaluate the efficacy of our
approach in realistic settings, we conducted experiments considering varying degrees
of channel state information (CSI). The simulation results indicate our scheme is
capable of achieving a BER of less than 10−4 even when the CSI is imperfect.

The rest of this paper is organized as follows. The related work is presented in Section 2.
Section 3 introduces the system model. In Section 4, we present the RL-based precoder
and combiner design, in which a specific expression of the optimization problem is given
by a detailed mathematical derivation. In Section 5, we propose a method to solve the
optimization problem based on the MADDPG algorithm. The simulation results are given
in Section 6. Finally, we conclude in Section 7.

2. Related Work

Recently, various studies have been published in the area of photon-counting systems.
In [17], the design of a MIMO system under the Poisson model is considered, in which a
pulse-position modulation (PPM) modulation is used at the transmitter side, a maximum
likelihood (ML) detection algorithm under the Poisson model is derived, and optimal
as well as sub-optimal decoders are given. In [18], a receiver based on the linear least
mean square error (MSE) criterion for FSO communication is presented. The system BER
performance is analyzed under on–off keying (OOK) and PPM modulation. In [19], the
statistical behavior of underwater fading with different probability density functions (PDFs)
is studied. In [20], the authors present a composite quantum iterative multistage measurer
and MIMO detector at the receiver. In [21], the analytical error probabilities for ML detection
in turbulent and non-turbulent cases are derived. In [22], to minimize the probability of
detection errors given relay forwarding power budget, a counting and forward relay
framework for NLOS communication is presented. In [23], the communication capacity
and performance of the Poisson model are investigated. And an upper limit of capacity
and a lower limit of error probability are proposed. In [24], the photonic information rate is
investigated for a single-photon avalanche diode (SPAD) array, and the effect of dead time
on the system is considered. The results show that the photon-counting distribution can be
regarded as a Gaussian distribution for sufficiently large arrays.

The conventional millimeter-wave hybrid precoding design method mainly decou-
ples the hybrid precoding problem into transmitter-side hybrid precoding design and
receiver-side hybrid combiner design, and it regards these two subproblems as matrix
decomposition problems, respectively. The hybrid precoding problem is solved by min-
imizing the Euclidean distance between the product of the analog and digital matrices
and the optimal all-digital precoding matrix under unconstrained conditions. In [25], a
hybrid precoding method based on the alternating directional multiplier method (ADMM)
is proposed. In [26], the symbol-level precoding of a MU-MISO downlink system is in-
vestigated. In [27], the objective function of the considered precoding scheme is highly
nonconvex and has some complicated constraints, and the authors design a new method
based on the ADMM. The convergence conditions of the proposed method are given by
considering the order of iterations of the variables. In [28], the design of the symbol-level
precoder for MU-MISO downlink communication is investigated, and its decision bound-
ary is studied through the minimum maximum fairness design. To deal with this problem,
the dimensionality of the variables is firstly reduced by solving a relaxation problem, after
which the ADMM framework is used to efficiently solve the problem.
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UV has the characteristics of high interference immunity, good confidentiality, and
support for non-visual transmission, thus attracting the attention of a large number of
researchers. In [29], the authors calculate the optical loss in the FSO communication system
operating in the non-visual range, where scattering effects were taken into account, and the
obtained results were compared with experimental data at 265 nm (solar-blind UV region).
In [30], a 1 × 4 communication system was built. The experimental results show that equal-
gain combining can provide significant diversity gain, provided that the transmit elevation
angle is small or the transceiver distance is short. In [31], wireless UV communication is
applied to UAV communication systems to solve the problem of directional awareness.
In [32], the spatial diversity technique for the NLOS UV system is investigated, and the
BER for different transmitter and receiver configurations is derived.

Recently, the concept of intelligent communication has attracted a considerable amount
of attention, and its use of machine learning-based methods to deal with optimization
problems in communication systems has achieved superior performance. In [33], an optimal
hybrid precoding scheme based on hybrid cross entropy (HCE) is designed to maximize
the total achievable rate. In [34], the authors design the selection and precoding matrices
jointly for millimeter-wave systems. The proposed framework contains a neural network
(NN) based on deep reinforcement learning (DRL) and a deep deployment NN. In [35], a
user grouping algorithm based on channel gain and correlation is designed, and then a
beam space orthogonal simulation precoder is obtained using DRL-based beam selection.

3. System Model

This section introduces the theoretical basis of the photon-counting MIMO system; the
system model of each technology will be further explained below.

As presented in Figure 1, the considered photon-counting MIMO downlink system
has Nt light-emitting diodes (LEDs) in the base station (BS) that transmit Ns data streams
collaboratively to the Nr photo detector (PD). Assume that the number of data streams
and PDs is identical (Ns = Nr) and that the data streams are uncorrelated. The precoded
signal is Ws, where s = [s1, · · · , sNs ]

T represents the data streams, and W ∈ RNt×Ns is the
precoding matrix. To ensure the non-negativity of the signals, a direct current (DC) bias
b = [b1, · · · , bNt ]

T is appended to the transmit symbols through bias-ttee circuits. Therefore,
the input signal of the LED is x = Ws + b , driving the LEDs to transmit the signal through
the FSO turbulent fading channels.

Precoder

Modulation

Bias-Tee

Combiner

Demodulation

User

Gamma-Gamma 
channels

Base Station

Gamma-Gamma 
channels

Figure 1. System block diagram of the UV NLOS MIMO.
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Free-space light transmits data to the PD through an optical medium via LEDs. FSO
systems encounter several challenges during transmition, such as shadows when the
lighting location is blocked from an area, which leads to information loss. The channel
irradiance between the i-th PD and the j-th LED is denoted by gi,j , which obeys the
gamma–gamma distribution with the PDF:

Pr
(

gi,j
)
=

2(αβ)
(α+β)

2

γ(α)γ(β)
gi,j

(α+β)
2 −1Kα−β

(
2
√

αβgi,j

)
, gi,j > 0, (1)

where γ(·) is the standard gamma function, and α, β are the distribution shaping parameters
satisfying:

α =

[
exp

(
0.49χ2(

1 + 0.18d2 + 0.56χ12/5
)7/6

)
− 1

]−1

, (2)

β =

exp

 0.51χ2
(

1 + 0.69χ12/5
)−5/6

(
1 + 0.9d2 + 0.62d2χ12/5

)5/6

− 1


−1

, (3)

where d =
(
kD2/4L

)1/2, χ2 = 0.5C2
nk7/6L11/6, k = 2π/λ is the light wave factor; λ

represents the wavelength; D is the diameter of the aperture of the condenser at the
receiver; L is the distance of the link; and C2

n represents the index value of the refractive
structure parameter and is a function of altitude h.

The i-th PD’s channel matrix is gi = [g1,1, · · · , g1,Nt ]; hence, the channel matrix be-
tween the user and the BS is denoted by

G =
[

gT
1 , · · · , gT

Nr

]T
. (4)

The photon-counting process model is adopted at the receiver. The random variable
corresponding to the number of photons detected by the j-th PD, denoted by zj , follows
the Poisson distribution with the PDF:

Pr
(
zj|s
)
=

[
g j(Ws + b) + nb

]zj

zj!
e−
[

g j(Ws+b)+nb

]
. (5)

In (5), nb = η PbT
h f is the number of noise photons generated by background radiation,

where η is the PD efficiency, Pb is the background radiation power, T is the duration of a
symbol, h is Planck’s constant, and f is the center frequency.

After removing the DC bias, the received signal follows:

Pr
(
yj = rj|s

)
=

(
g jWs + nb

)rj

rj!
e−
(

g jWs+nb

)
. (6)

The received signal from the transmitter is typically subject to various forms of inter-
ference and distortion during propagating through the channel. This results in a degraded
signal at the receiver, which requires further promotion in order to extract useful informa-
tion. Hence, a combiner matrix is typically used to combine the received signals from PD
at the receiver. The combiner matrix FT ∈ RNs×Nr is used to combine the received signal
across Nr PDs.

Assuming independent numbers of received photons across all PDs, the combined
signal FTy can be used to estimate the coded bit. This involves decoding the received signal
and extracting the transmitted information from it.
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4. Problem Formulate

In this section, we design the precoder and combiner according to the MMSE principle
with detailed mathematical derivation and propose the form of the optimization problem.
By solving this optimization problem, we are able to derive the optimal precoder and
combiner that minimize the MSE of the received and transmitted signals.

We take the MSE as the performance measure and optimization objective for the joint
precoder and combiner design, which is defined as

JMSE = E
{
||FTy− s||2

}
= E

{
tr
(

FTy− s
)(

FTy− s
)T
}

= tr
{

FTE
(

yyT
)

F− 2FTE
(

ysT
)}

+ Θ,

(7)

where the expectation is taken over variables y and s. Consider OOK modulation in the BS,
and equal probability for the code bit s, i.e., Pr(s = −1) = Pr(s = 1) = 1

2 [36]. Hence,

Θ = tr
{
E
(

ssT
)}

= Ns. (8)

Define the correlation matrix Ryy = E
(
yyT) ∈ RNr×Nr , Rys = E

(
ysT) ∈ RNr×Ns .

Then, we have
JMSE = tr

{
FTRyyF− 2FTRzs

}
+ Ns. (9)

First, we have that Ryy is given by

Ryy = E


y2

1 y1y2 · · · y1yNr

y2y1 y2
2 · · · y2yNr

...
...

. . .
...

yNr y1 yNr y2 · · · y2
Nr

. (10)

For 1 6 i 6 Nr, we have

E
(

y2
i

)
= ∑

s
E
(

y2
i |s
)

Pr(s). (11)

Define a set S0 = {s(j) ∈ {−1, 1}, j = 1, · · · , 2Ns} with alphabet size 2Ns , where each
element of S0 has the a priori probability 1/2Ns . Then, (11) can further expand as

E
(

y2
i

)
=

2Ns

∑
j=1

E
(

y2
i |s(j)

)
Pr
(

s(j)
)

. (12)

Based on (6), we have E
(

yi|s(j)
)
= giWsj + nb. Since E

(
X2) = E2(X) + Var(X) for a

randome varaible X, (12) is equal to

E
(

y2
i

)
=

2Ns

∑
j=1

{[
giWs(j) + nb

]2
+ giWs(j) + nb

}
Pr
(

s(j)
)

=
1

2Ns

2Ns

∑
j=1

{[
giWs(j) + nb

]2
+ giWs(j) + nb

}
= giWWT gT

i + n2
b + nb.

(13)
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Note that we have used the fact that ∑2Ns
j=1 s(j)

[
s(j)
]T

= 2Ns INs and ∑2Ns
j=1 s(j) = 0 based

on our definition.
For 1 6 i 6 Nr, 1 6 j 6 Nr, i 6= j, we have

E
(
yiyj

)
= E(yi)E

(
yj
)
= ∑

s
E(yi|s)Pr(s)∑

s
E
(
yj|s

)
Pr(s) = 0. (14)

According to (13) and (14), we have that

Ryy =


g1WWT gT

1 + n2
b + nb 0 · · · 0

0 g2WWT gT
2 + n2

b + nb · · · 0
...

...
. . .

...
0 0 · · · gNR

WWT gT
Nr

+ n2
b + nb


= diag

(
diag

(
GWWTGT + n2

b + nb

))
.

(15)

Next, Rys is given by

Rys = E


y1s1 y1s2 · · · y1sNs

y2s1 y2s2 · · · y2sNs
...

...
. . .

...
yNr s1 yNr s2 · · · yNr sNs

. (16)

For 1 6 i 6 Nr, 1 6 j 6 Ns, we have

E
(
yisj
)
= E

(
yisj|sj = −1

)
Pr
(
sj = −1

)
+E

(
yisj|sj = 1

)
Pr
(
sj = 1

)
= −1

2
E
(
yi|sj = −1

)
+

1
2
E
(
yi|sj = 1

)
= giWej.

(17)

Note that we use the conclusion that E
(
yi|sj = 1

)
= giWej + nb and E

(
yi|sj = −1

)
=

−giWej + nb, and the proof is given in Appendix A. According to (17), we have that

Rys =


g1We1 g1We2 · · · g1WeNs

g2We1 g2We2 · · · g2WeNs
...

...
. . .

...
gNr

We1 gNr
We2 · · · gNr

WeNs

 = GW. (18)

According to (8), (15), and (18), the closed form of the MSE is

JMSE = tr
{

FTdiag
(

diag
(

gWWT gT + n2
b + nb

))
F− 2FTGW

}
+ Ns. (19)

In order to make the LED work within a linear dynamic range, the transmit signal satisfies

IL 6 eT
i Ws + bi 6 IH , (20)

where IL and IH represent the minimum and maximum currents corresponding to the
linear dynamic range, respectively. Since

−||eT
i W||1 6 eT

i Ws 6 ||eT
i W||1, (21)

adding DC bias to (21) yields

−||eT
i W||1 + bi 6 eT

i Ws + bi 6 ||eT
i W||1 + bi. (22)
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To satisfy the constraint in (20), we have{
−||eT

i W||1 + bi > IL

||eT
i W||1 + bi 6 IH ,

(23)

(23) can be further expressed as

||eT
i W||1 6 D, ∀i = 1, · · · , NT , (24)

where D is given by
D = min(IH − bi, bi − IL). (25)

The optimization problem can thus be formulated as

arg
W,FT

min tr
{

FTdiag
(

diag
(

gWWT gT + n2
b + nb

))
F− 2FTGW

}
s.t. ||eT

i W||1 6 D, ∀i = 1, · · · , Nt

||eT
i W||1 + bi 6

ηPmaxT
hυ

, ∀i = 1, · · · , Nt,

(26)

where Pmax is the maximum linear optical power of the LEDs. For optical communications,
the transmit signals must be non-negative. The emitting power of the LED also needs to be
within its dynamic range [Pmin, Pmax]. These factors lead to the constrains.

5. Precoder and Combiner Design Based on Reinforcement Learning

The optimization problem mentioned in Equation (26) is obviously a NP-hard problem,
which cannot be solved via conventional optimization solvers. Hence, we proposed an
RL-based approach to jointly solve the precoding matrix and the combining matrix. Several
researchers of beamforming employed the deep Q network (DQN) to find optimal solutions.
DQN is designed to solve tasks with discrete action space. To utilize DQN in continuous
action space, we need to discretize the continuous action space, which will make the action
space grow exponentially with the size of network [37]. While the DDPG algorithm can be
used in continuous action space, the MADDPG can in addition reduce the action dimension
of single agent. In the case of the joint design of the precoding matrix and combining
matrix, MADDPG may be appropriate as it allows for decentralized decision-making while
considering global state information. MADDPG enables each agent to interact with the
environment and learn its own strategy based on local observations and rewards while also
considering the joint actions and rewards of other data streams. The choice of MADDPG
for jointly designing precoding and combining matrices may be based on its ability to
handle multi-agent scenarios, its abikity to handle continuous action spaces, and its use
of target networks and experience replay for stability and efficiency. To employ an RL
method, we model the process of generating the precoding and combining matrix into
the Markov decision process (MDP). Then, we apply the MADDPG algorithm to explore
the optimal policy of the MDP. The elements of MDP and the MADDPG algorithm will
be presented in the following, respectively. In the context of optimizing precoding and
combining matrices, MADDPG can be used to train a network of agents, where each agent
represents a communication node equipped with multiple antennas. The agents collaborate
to learn the optimal strategies for precoding and combining matrices, taking into account
the interactions and dependencies among the nodes.

Figure 2 is the framework of the MADDPG-based joint precoding and combing
algorithm, which consists of two sets of the same number of agents and an interactive
environment. The agents receive the states and rewards transmitted by the environment
and output corresponding actions, which are recombined into a precoding/combing matrix,
respectively, allowing the environment to compute and output new states and rewards.
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Figure 2. The framework of MADDPG-based joint precoding and combining algorithm.

5.1. Agent

Since the dimensions of the precoding and combining matrices to be optimized do
not coincide, two sets of agents with different action dimensions are set to form the part of
solving the precoding and combining matrices. For the state of each agent, characterized as
the L2-norm value of each row of the interactively generated precoding matrix and combine
matrix, the set of state dimensions and the set of action dimensions of the agent are denoted
as dimstate =

{
dstate

1 , dstate
2 , · · · , dstate

2Ns

}
and dimaction =

{
daction

1 , daction
2 , · · · , daction

2Ns

}
.

5.2. State Space

In the t-th iteration, given the environment state si
t ∈ Rdimstate

i of the current agent i, the

joint state space of multiple agents at iteration step t is represented as St =
{

s1
t , s2

t , · · · , s2Ns
t

}
.

One precoding and combining agent only obtains its own state information, which is the L2-
norm value of the row vector corresponding to the WT or FT matrix according to the agent
allocation situation, while the states as well as actions information of other agents are unknown.
That is, the state observed by the agent i is si

t = {||eiW||} or si
t = {||eiF||}.

5.3. Action Space

The action output of one agent constitutes the elements of one row of the matrix. The
action outputs of all 2Ns agents compose the whole matrix. The elements of the matrix are
continuous real numbers, and in the agent action design, the action output range is [−1,1],
that is, the matrix elements are normalized to the range [−1,1], and the action dimension of
the agent is designed according to dimaction. In the t-th iteration, the actor network of the
i-th agent outputs the action ai

t ∈ Rdimaction
t according to the current policy. The joint action

is denoted as At =
{

a1
t , a2

t , · · · , a2Ns
t

}
. The agents interact with the environment through

the joint action and obtain the reward Rt and the (t + 1)-th state information St+1. For
the reward, all of the agents obtain the same reward from the interaction with the system
environment to prompt cooperative behaviors among the 2Ns agents.

5.4. Reward Function

The focus of whether RL can better solve the optimization problem lies in the reward
function. In the precoding optimization problem of the downlink MIMO system, the joint
optimization problem of the precoding matrix and combining matrix can be reduced to a
minimization MSE problem. The optimization problem is shown in (26).
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Due to the existence of constraints, the reward function designed in this paper is
divided into two parts: one is the desired optimization objective, and another one is the
penalty term for not satisfying the constraints. The first part of the reward function is

R1 = tr
{

FTdiag
(

diag
(

gWWT gT + n2
b + nb

))
F− 2FTGW

}
. (27)

The second part of the reward function is the penalty term, which is set to −β for any
constraint that is not satisfied. Since the MSE value should be positive, consider increasing
the penalty when MSE < 0. This penalty term is set to −10 ∗ β, which means that

penalty1 =

{
−β, Constraint1notmet

0, Constraint1met
(28)

penalty2 =

{
−β, Constraint2notmet

0, Constraint2met
(29)

penaltymse =

{
−10 ∗ β, ConstraintMSEnotmet

0, ConstraintMSEmet
. (30)

The second part of the reward function can be expressed as

R2 = penalty1 + penalty2 + penaltymse. (31)

In summary, the ultimate reward of MDP can be represented as the linear combination
of optimization objective and the penalty term.

Reward = R1 + R2. (32)

5.5. Joint Precoding and Combining Algorithm Based on MADDPG

MADDPG is actor–critic algorithm that utilizes the idea of centralized training and
decentralized decision-making. The actor makes a decision over time steps, while the critic
evaluates the value of the decision. Assume the set µ = {µ1, · · · , µ2Ns} is the policies of
all agents and set θ = {θ1, · · · , θ2Ns} as the parameters of corresponding policies. For the
i-th agent’s policy µi, the object function I(θi) is the expected reward. The gradient of the
object function w.r.t θi can be depicted as:

∇(θi)
I(µi) = E(S,A∼D)

[
∇(θi)

µi(ai|si)∇(ai)
Qµ

i (S, a1, ..., ai)
]
|(ai=µi(si))

, (33)

where S = (s1, · · · , s2Ns), A = (a1, · · · , a2Ns). D is the replay buffer, which stores the tran-
sition

(
S, A, R, S′

)
, where S′ is the next time step state and R = (r1, ..., r2Ns). Qµ

i (S, a1, ..., ai)
is the Q-value function. The Q-function can be updated by minimizing the function below:

L(θi) = ES,A,R,S′

[(
Qµ

i (S, a1, ..., ai)− y
)2
]

. (34)

In (34), y = ri + γQµ′

i
(
S′, a′1, ..., a′i

)
|a′i=µ′i(si)

, γ is the Q-value discounting factor, and µ′

represents the policies with the delayed network parameter θ′. Each agent maintains two
sets of actor–critic network pairs, known as the behavior pair and the target pair. Relative
to the behavior pair, the target pair of networks makes a soft replacement with parameters.
We show the algorithm as a pseudo-code type in Algorithm 1.

The hyperparameters of MADDPG are shown in Table 1.
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Algorithm 1: MADDPG for joint precoding and combining optimization

1 Start;
2 Initialize the environment of downlink MIMO communication system;
3 Randomly initialize the weights of behavior actor–critic pair;
4 for episode = 1→ M do
5 Initialize a Gaussian random process N ;
6 Reset the photon-counting MIMO downlink system environment and obtain

initial global state S;
7 for t = 1→ N do
8 Each agent selects action ai = µi(si) +Nt;
9 Reformulate actions A = (a1, · · · , a2Ns) into precoding matrix W and

combining matrix FT and obtain new state S′;
10 Store

(
S, A, R, S′

)
in replay buffer D;

11 S← S′;
12 for agent i = 1→ 2Ns do
13 Randomly sample a minibatch of transitions

(
S, A, R, S′

)
from D;

14 Update the critic network by (34);
15 Update the actor network by (33);

16 Update the target network parameters of each precoding and combining
agent i;

17 θ′i ← τθi + (1− τ)θ′i ;

18 End;

Table 1. Hyperparameters of MADDPG.

Parameter Value

Episode M 600
Time step N 1000

Gaussian random process N N (0, 0.5)
Minibatch size 100

Discouting factor Υ 0.9
Soft replacement factor τ 0.001

Learning rate of behavior critic 0.0001
Learning rate of behavior actor 0.00001

Replay buffer D size 100,000
Layers and Hiddern Units 8× 2 (4, 200)

Layers and Hiddern Units 6× 2, 4× 2 (3, 128)

6. Result and Discussion

In this section, we present the simulation results to estimate the BER performance of
the proposed RL-based MMSE precoding scheme in the UV NLOS MIMO communication
systems. For the simulation setup, the PD efficiency is set to η = 0.06, and the wavelength
of the UV light is set to 266 nm [38]. We use the gamma–gamma channel model as the
channel fading model. We set background radiation fixed at −188.18 dBJ and increase Eb
from −160 dBJ to −155 dBJ. A single user is considered with two data streams. MIMO
configurations with 2× 8, 2× 6, 2× 4 are set for simulation. Each data point in Figures 4–9
is the average of five independent tests, and different random seeds are used for the tests.

Figure 3 shows the average reward in the 95% confidence interval for five runs to
show statistical significance. As shown in Figure 3, the average reward converges with the
number of training increases. This reward includes the optimization objective’s MSE and
the penalty of constraint conditions. In the later stage of training, the penalty term is 0, and
the entire reward represents MSE, which shows the effectiveness of our proposed scheme.
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Figure 3. Average reward of the proposed scheme.

The impact of the number of LEDs is analyzed in Figure 4, where the background
radiation is nb = −188.18 dBJ. The increase in the number of LED arrays (Nt) helps to reduce
the BER. In particular, for a 2× 8 MIMO configuration, the proposed scheme achieves an
average BER of 10−5 at an energy per bit of Eb = −155 dBJ, providing a performance gain
of about 2 dB over the 2× 4 system. This indicates that the proposed scheme can efficiently
utilize the spatial diversity. The result suggests that the proposed scheme can provide
reliable and efficient data transmission even under low receive energy conditions.
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100
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OOK BER under different Nt
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Nt=6, Nr=2
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Figure 4. Performance comparison under different Nt with Nr = 2 in strong turbulence.

Figure 5 presents the performance comparison between our scheme and traditional
AWGN-based precoding schemes in a severe fading channel with Nt = 8 and Nr = 2. For
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traditional schemes, we considered different schemes at the receiver side and transmitted
side [39–41]: MMSE-MMSE, ZF-MMSE, and SVD-MMSE. The background radiation is
nb = −188.18 dBJ. It is clear that the AWGN-based MMSE precoding schemes perform
poorly in the Poisson shot-noise photon-counting systems. The MMSE precoding scheme
in the Gaussian system can only achieve a BER of 10−3 when Eb = −155 dBJ, while our
proposed scheme can reach 10−5.
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Eb(dBJ)
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OOK BER und r mul)ipl  (ch m (
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MMSE-MMSE
ZF-MMSE
SVD-MMSE

Figure 5. Performance comparison with traditional Gaussian schemes for Nt = 8 and Nr = 2 in
strong turbulence.

For the computational complexity analysis, we exploit the number of float num-
ber operations with Big-O notation. According to the formula, we can know that the
computational complexity of the MMSE-MMSE, ZF-MMSE, and SVD-MMSE scheme is
O
(

N3
r + NtN2

r
)
. Since the actor network of MADDPG uses the multi-layer perceptron

structure, the computational complexity of the MADDPG generating precoding matrix and
combining per execution for one agent is given by [42]:

O
(

NsNeval Nstep

(
dimstaten1 +

L−1

∑
l

nlnl+1 + nLdimaction

))

= O
(

NsNeval Nstepγ

(
dimstate

dimaction
+ (L− 1)γ + 1

)
(dimaction)

2
)

= O
(

NsNeval Nstepγ2(L− 1)(dimaction)
2
)

= O
(

NsNeval Nstepγ2(L− 1)
(

N2
t + N2

r

))
,

(35)

where Neval is the number of evaluation episodes; dimaction > dimstate, Nstep is the step
number; L is the number of hidden layers; and nl is the nodes number of l-th hidden
layer. nl = γdimaction for 1 6 l 6 L. Note that γ is a scaling factor, which depends on the
dimension of states, for the hidden-layer nodes.

Figure 6 shows the BER of the proposed MMSE scheme under three different turbu-
lence fading conditions, where α = 2/3, 1.5, 2.1 and β = 2/3, 1.5, 2.4. It is observed that
the proposed MMSE scheme could achieve a low BER as Eb increases, under each of the
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turbulence fading conditions. However, under stronger turbulence, a higher Eb is required
to maintain the same BER target.
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Figure 6. Performance comparison under different turbulence channel.

Figure 7 shows the BER performance of the proposed scheme with different DC bias.
As shown in Figure 7, when the DC bias is 1, the BER cannot decrease. This is because the
bias is too small to allow the LED to operate in a linear range. Compare the other three
curves; it is obvious that a smaller DC bias tends to provide a better performance. This is
because when the total power is given, the less the power is applied to biasing, the more
power can be saved for transmitting useful signals.
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Figure 7. Performance comparison under different DC biases in strong turbulence.



Appl. Sci. 2023, 13, 10855 15 of 19

In FSO communication systems, CSI plays a critical role in designing and optimizing
transmission schemes. However, CSI estimation errors can occur due to various factors,
such as outdated or inaccurate feedback from the users. To investigate the BER performance
of the proposed MIMO precoding scheme in the presence of imperfect CSI, the channel
irradiance is modeled as ĝi,j = δgi,j, where the estimation error δ is independently and
uniformly randomly distributed within the interval [−δ, δ], and δ is the maximum error
percentage. The CSI at the transmitter is modeled as a mapping G → G, where G is an
arbitrary subset of RNr×Nt .

To evaluate the robustness of the proposed MIMO precoding scheme, Figure 8 shows
the BER performance in the presence of different levels of CSI imperfection in a strong
gamma–gamma fading channel, where Nr = 2 and Nt = 8. In Figure 8, the value of
δ = 1 indicates perfect CSI, and it is observed that the proposed scheme is resilient
to imperfect CSI. More specifically, it is clear that our scheme achieves a BER of 10−3

or lower at Eb = −155 dBJ even when the estimation error percentage is as high as
δ = 0.6. These results indicate the robustness of the proposed precoding scheme in practical
communication systems.
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Figure 8. Performance comparison under different types of CSI in strong turbulence.

The background light intensity is a key factor affecting the performance of the FSO
system. Figure 9 shows the system BER performance under different background light
intensities (i.e.,−188.18 dBJ,−180 dBJ,−175 dBJ, and−170 dBJ). It is clear that the proposed
scheme can resist strong background light interference. Specifically, under the strong
background light condition of nb = −175 dBJ, a BER 10−4 can be achieved.
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Figure 9. Performance comparison under different nb in strong turbulence.

7. Conclusions

We presented a novel MIMO precoding scheme based on RL, jointly optimizing
both the precoding and combining matrix of the transceiver and receiver, respectively.
The simulation results indicate that the proposed RL-based MIMO precoding scheme
outperforms existing methods under a wide range of operating conditions, delivering
significant gains in terms of BER performance. The proposed system exhibits strong
robustness and can achieve the BER of less than 10−4 even when the CSI is imperfect.
The proposed solution offers a highly effective approach for jointly optimizing both the
precoding and detection matrix of the transceiver and receiver.

The dead time in photon counting systems refers to the minimum time delay that
must occur between the detection of two consecutive photons by a detector. During this
dead time period, the detector is unable to register or detect any subsequent photons. This
study does not consider the impact of dead time. In the future, we can analyze the system
throughput with precoding and the impact of dead time. In addition, the system considered
in this article is a single user system, which can also be extended to multi-user systems in
the future. It is worth exploring how to eliminate the inter-user interference in multi-user
systems by designing precoding and detection matrices.

Author Contributions: Methodology, Z.L., C.W. and X.Z.; writing—original draft, Z.L. and C.W.; and
writing—review and editing, X.Z., G.D. and Y.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant No. 62231010 and the Innovation Program of Shanghai Municipal Science and Technology
Commission under Grant No. 21XD1400300.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 10855 17 of 19

Abbreviations
The following abbreviations are used in this manuscript:

AWGN Additive white Gaussian noise
IoT Internet of Things
ADMM Alternating directional multiplier method
MIMO Multiple-input multiple-output
FSO Free-space optical
BER Bit error rate
CSI Channel state information
NLOS Non-line-of-sight
AI Artificial intelligence
MMSE Minimum mean square error
MADDPG Multi-agent deep deterministic policy gradient
PPM Pulse-position modulation
OOK On–off keying
SPAD Single-photon avalanche diode
NN Neural network
HCE Hybrid cross entropy
LED Light-emitting diodes
DC Direct current
PD Photo detector

Appendix A

Define a set S = {s(p), p = 1, · · · , 2Ns−1|s(p)
i = 1, s(p)

p 6=i ∈ {−1, 1}} with alphabet size

2Ns−1, where each element of S yields the same a priori probability 1/2Ns−1. Based on (6),
the conditional probability distribution of receiver i’s received signal yi given sj = 1 is
provided by

Pr
(
yi|sj = 1

)
=

1
2Ns−1

[
Pr
(

yi|s(1)
)
+ · · ·+ Pr

(
yi|s(2Ns−1)

)]
=

1
2Ns−1

2Ns−1

∑
p=1

(
giWs(p) + nb

)yi

yi!
e−(giWs(p)+nb). (A1)

Then, we have

E
(
yi|sj = 1

)
=

∞

∑
yi=0

yiPr
(
yi|sj = 1

)

=
1

2Ns−1

2Ns−1

∑
p=1

∞

∑
yi=0

yi ·

(
giWs(p) + nb

)yi

yi!
e−(giWs(p)+nb). (A2)

It follows from (A2) that E
(
yi|sj = 1

)
is the average of the expected values of 2Ns−1

Poisson random variables with means giWs(p) + nb, p = 1, · · · , 2Ns−1. Hence, we have

E
(
yi|sj = 1

)
=

1
2Ns−1 giW

2Ns−1

∑
p=1

s(p) + nb. (A3)

Note that ∑2Ns−1

p=1 s(p) = 2Ns−1ej, where ej is the j-th column of the identity matrix INs .
Consequently, (A3) is equivalent to

E
(
yi|sj = 1

)
= giWej + nb. (A4)
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Similarly, we can derive

E
(
yi|sj = −1

)
= −giWej + nb. (A5)
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