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Abstract: The actual performance of driving motors in the electric vehicle (EV) powertrain depends
not only on the electromagnetic design of the motor itself but also on the driving condition of
the vehicle. The traditional motor optimization method at the rated point is difficult to deal with
because of the mismatch between its high-efficiency area and the actual operation area. This paper
systematically proposes an optimal design method for driving motors for EVs, considering the
driving conditions and control strategy to improve motor efficiency and passengers’ riding comfort.
It uses cluster analysis to identify representative points and related energy weights to consider
motors’ comprehensive performance in different driving cycles. Three typical operation conditions
are selected to implement the proposed optimization process. In the design process, by using the
sensitivity analysis method, the significance of the structural parameters is effectively evaluated.
Moreover, the semianalytical efficiency model and torque model of permanent magnet driving motors
based on finite element analysis results are deduced to consider the influence of magnetic saturation,
space harmonics, and cross-coupling between d-axis and q-axis magnetic fields. Based on the driving
system demands of an A0 class pure EV, the whole optimization design is divided into four steps and
three scales, including the motor scale, control scale, and system scale. By using the multi-objective
optimization method, Pareto optimality of motor efficiency and torque ripple is achieved under
the city driving cycle and highway driving cycle. Compared to the optimization only at the rated
condition, the proportion of motor sweet region increased about 1.25 times and 3.5 times by the
proposed system-scale optimization under two driving cycles, respectively. Finally, the effectiveness
of the proposed optimization method is verified by the prototype experiments.

Keywords: multi-objective optimization; control strategy; driving cycle; electric vehicle

1. Introduction

With the deepening of vehicle electrification in the global market, the driving motor
as the main power of the electrical vehicle (EV) drive system holds promising growth
potential and attracts extensive attention [1,2]. At present, more than 80% of driving motors
in the electrical drive system of pure and hybrid EVs on the market adopt permanent
magnet synchronous motors (PMSM) for wider speed regulation range, higher efficiency,
and power density [3–5], such as Toyota Prius, Chevrolet Bolt, BMW i3, BYD E6, and so on.
To obtain a better driving experience and a longer driving range, it is of great significance
to improve PMSM performances through optimization design technologies [6,7].

Generally, the optimization design of PMSM for an EV can be based on a single opera-
tion condition, such as the rated operation point of the torque-speed curve, which could
ensure satisfactory working performance at this specific point. Yet, once the condition
changes, the PMSM performance will deteriorate and even result in undesired reliability
in the power train. The operating conditions of EVs are very complex and involve fre-
quent starting and braking, frequent accelerating and decelerating, cruising, and climbing.
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Therefore, the optimized PMSM at the rated operation point could not guarantee the whole
operation requirements within the considered driving cycle of an EV, which puts forward
inevitable demands for the PMSM design considering the driving cycle [8–11]. Different
from the PMSM that operated at the rated operation point, the actual performance of the
PMSM at each operating point in different driving cycles is closely related to the control
strategy and control parameters. To achieve high system-level performance, the perfect
cooperation of the motor and its control systems, considering the driving cycle, must be
investigated synchronously.

Although both motor and control are important to the system’s performance, not
much work has been reported in the literature. The design and optimization are mostly
at the component level of motors [10,11], which can be classified into two types of single-
objective and multi-objective optimization. For single-objective optimization, any one
of efficiency, torque ripple, cost, or weight can be used as the optimization objective.
In [12,13], by using the finite element method (FEM)-based model and the exact subdomain
model with intelligent optimization algorithms, the torque ripple and cogging torque
are respectively obtained minimally in the PMSM. For multi-objective optimization, two
or more design objectives are selected simultaneously [14,15]. Efficiency and cogging
torque are selected as the two design objectives for optimization of a PMSM in [16], where
two-stage design optimization using the Taguchi method and response surface model are
used to identify the three design variables. In [17], the multi-objective genetic algorithm
is adopted to achieve low cost and low torque ripple for a PMSM optimization, and the
resulting motor performances meet all the given design demands. The above optimization
on the component level of motors is generally conducted under the rated operation point.

When component-level-based optimization involves more operation points in the
driving cycle, the simple way is to repeat the performance calculation process in rated
point optimization at all operation points and then use the optimization algorithm to
select the optimal scheme [18,19]. However, the optimizations with a precise model that
includes all operating points will be very time-consuming, with a significant increase in
computational cost and complexity. There are two main solutions to this problem. One is
using approximate models for as many operating points as possible to obtain the global
optimal design. The approximate models for the former solution could be the Kriging
model, equivalent circuit model, and response surface model [20–22], which are generally
used to replace the finite element precise model and reduce the computer cost. However, the
inclusion of more points will still make the calculation more complicated. The other solution
is choosing representative points (RPs) to represent the driving cycle and the application
torque-speed profile [23,24]. The accuracy of this solution depends on the number and
values of the RPs and the corresponding current calculation under different RPs. At present,
motor optimizations using RPs to consider driving cycles mainly use the ideal current
value, which ignores the influence of controllers [25,26]. However, individually optimizing
motor structure parameters cannot ensure optimal performance for the entire drive system,
especially when the difference in the impact of the PWM carrier harmonic on the loss is
significant under different control strategies and control parameters [27,28].

On the other hand, for the control part, although there is much literature related to con-
trol strategies focusing on torque ripple reduction or motor efficiency improvements, such
as advanced angle field weakening control, loss minimization direct torque control, and
robust adaptive current control with disturbance observer [29–31], they usually consider
the influence of harmonics or control parameters on the performance of the motor after
the motor geometry structure is determined. It means that the proposed control strategies
are generally designed and optimized at the control level and have not been combined
with the motor design. As previously discussed, it can hardly achieve optimal system
performance with this component-level-based optimization based only on motor or control.
Therefore, to meet the challenging requirements and satisfy the wide operating range of
EVs, it is necessary to optimize the driving motor, considering the inverter control strategy
throughout the whole driving cycle in the product design phase.
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To deal with the aforementioned issue, this paper presents an effort to develop a
system-scale multi-objective optimization procedure for driving motors based on the clus-
tering technique under different operating conditions. And a full-speed domain vector
controller with maximum torque per current (MTPA) and flux weakening control strate-
gies [32–34] is adopted to meet the requirements of EVs. The main contributions of this
paper are shown as follows:

• The K-means clustering analysis is proposed as a preprocessing step to obtain insight
into the distribution of operation points in two typical driving cycles, and the RPs of
the torque-speed profile with their energy weights are identified.

• The semianalytical efficiency model and torque model of an interior PMSM (IPMSM)
based on FEM results are deduced to consider the influence of magnetic saturation,
space harmonics, and cross coupling between d-axis and q-axis magnetic fields.

• An optimal method to tune the motor and control parameters based on the multi-
objective particle swarm optimization (MOPSO) algorithm is proposed, where the
control model is added to consider the performance of IPMSMs under different control
strategies in the whole driving cycle.

This paper is organized as follows: Section 2 describes the clustering optimization
design procedure for the IPMSM driving motor. Section 3 presents the motor-scale, control-
scale, and system-scale optimization models. Based on these models, a comparative study
has been carried out under three working condition requirements: one is under the rated
operation point, and the other two are under driving cycles. And the optimization results
are discussed and verified by experiments in Section 4, followed by the Section 5.

2. Clustering Optimization Design Procedure

The target driving system that powers an A0 class pure EV [34] consists of a 48-slot
8-pole IPMSM and a full-speed domain vector controller with MTPA and flux weakening
control strategies, whose design requirements are shown in Table 1.

Table 1. Specification of the investigated EV.

Parameter Value Parameter Value

Vehicle mass 1100 kg Radius of wheels 0.308 m
Maximum gradeability 20% Maximum climbing speed 20 km/h

Motor rated speed 3000 rpm Motor maximum speed 8000 rpm
Acceleration time <10 s for 0~50 km/h, <15 s for 50~100 km/h

2.1. Design Framework

The overall optimization procedure is represented in Figure 1, which includes the
following four steps.

Step 1: Analyze the driving conditions of EVs and make a preliminary design for
the motor. The K-means clustering algorithm is used to identify the RPs of the motor for
evaluating the performance of the motor in the whole driving cycle of EVs.

Step 2: Establish the semianalytical models and evaluate the steady performance
of the motor on the motor scale. The optimal parameters of the motor are selected by
sensitivity analysis.

Step 3: Evaluate the dynamic performance of the motor on the control scale with
respect to the nonlinear factors given by the motor characteristic parameters. The full-speed
domain control strategy is considered to meet the requirements of low-speed starting and
high-speed cruising for the proposed IPMSM driving motor.

Step 4: Performance evaluation of the system scale based on the fitness function and
obtaining the optimal design with MOPSO. When the result satisfies the iterative stop
condition, the Pareto solution is output. Otherwise, the motor parameters are updated
based on the MOPSO and then returned to Step 2.
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Figure 1. Framework of the proposed system-scale optimization for driving motors targeting driv-
ing cycles.

2.2. Clustering Analysis of Driving Cycles

There are three case studies proposed in this paper, which are optimizations at the
rated operation point, under the urban dynamometer driving schedule (UDDS), and the
highway fuel economy test (HWFET). To improve the optimization efficiency, the K-means
clustering method is used to analyze driving cycles [24,26], which splits the torque-speed
profile obtained from the driving cycle data into different groups considering the position
and density of the operating points on the plane. Euclidean distance is used to determine
the similarity between samples; therefore, the cluster Si and its centroid li can be determined
iteratively as follows:

S(t)
i =

{
zj :
∥∥∥zj − l(t)i

∥∥∥2
≤
∥∥∥zj − l(t)i
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}
(1)
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i =

1∣∣St
i

∣∣ ∑
xj∈St

i

xj (2)

The iteration repeats until the centroid of each cluster no longer changes. The cluster
number k is determined based on the sum of the distances of the load points to their
corresponding cluster centroid, and the cluster centroid is selected as the RP of motor
optimization. In this way, the two specific driving cycles shown in Figure 2a,c can be
partitioned into several clusters, as shown in Figure 2b,d. Moreover, the RPs and their
energy weights are listed in Table 2. It can be found that the motor operating conditions are
mostly located in the low-speed or low-torque region in UDDS, and the motor runs less in
the conditions of high speed or heavy load. Meanwhile, the motor operating conditions are
mostly located in the high-speed and low-torque regions of HFET. Therefore, the clusters
and the number of RPs determined by the proposed clustering analysis are different for the
two driving cycles, which will be used for the subsequent optimization design.
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Table 2. Specification of RPs in two driving cycles.

RPs Speed (rpm) Torque (N·m) w (%)

UDDS

1 738 27 7.8
2 4934 21.66 9.9
3 2546 14 46.26
4 1126 91 18.63
5 2157 50 17.37

HWFET
1 5308 21 47
2 2051 68 5
3 4269 20 48

2.3. Optimization Algorithm and Fitness Function

The multi-objective PSO algorithm is utilized to obtain the optimal design, which
includes adaptive mesh generation based on the roulette algorithm and global best updating
as presented in [34].

In order to improve the vehicle range and driving comfort, two objectives are con-
sidered: maximize the driving cycle efficiency and minimize the torque ripple. Efficiency
is the most important target for EV motors, which has a great influence on vehicle range
and comfort, especially considering the current constraints of battery technology faced by
vehicles. Maximum driving cycle efficiency can ensure the maximum efficiency of the drive
system in the driving cycle. Likewise, the torque ripple is another key factor influencing
the performance of the EV motor, which can lead to electromagnetic noise and vibration,
affect vehicle comfort, and shorten the service life of the power train. Accordingly, the
design objectives could be written as

min f1(x) = 1−

m
∑

j=1
(wjTjΩj)

m
∑

j=1
(wj(TjΩj + Ploss,j))

× 100%, (3)

min f2(x) =
m

∑
j=1

(
Trjwj

Tj
)× 100%, (4)
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where x is the optimization variable, the subscript j represents the RP j, and m is the total
RP number.

Furthermore, the fitness function can be defined as

min F(x) = min( f1(x), f2(x))
s.t. g1(x) = 30000− Pout|nmax

≤ 0
g2(x) = 2− nmax/nN ≤ 0

g3(x) = ks − 0.8 ≤ 0

. (5)

3. System-Scale Optimization of Drive Systems

For system-scale optimization, it is crucial to investigate the perfect cooperation of
the motor and its controller synchronously. A design example with the semianalytical
efficiency model and torque model of IPMSMs and a full-speed domain vector controller is
investigated in this section.

3.1. Optimization Model for Motor Level

The investigated motor is parameterized as shown in Figure 3, where five independent
design variables x1, x2, x3, x4, and x5 are selected and are listed in Table 3. They are the air
gap, tooth width, slot width, permanent magnet width, and yoke thickness, respectively.
Therefore, x = [x1, x2, x3, x4]T. It should be noted that the outer and inner diameters and
the stack length are fixed [34] throughout the optimization process to meet the maximum
installation space shown in Table 3.
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Table 3. Design parameters of the investigated IPMSM.

Parameter Value Parameter Value Parameter Value

Dso (mm) 210 le (mm) 153 wPM (mm) x4
lPM (mm) 5 la (mm) x1 lk (mm) x5
Dri (mm) 48 wt (mm) x2 α x6
Dro (mm) 136 ws (mm) x3 β x7

3.1.1. Semianalytical Torque Model and Efficacy Model of IPMSMs

For each RP with a specific torque and speed, motor performance is evaluated by
semianalytical models based on FEA results to balance accuracy and computation cost.
Considering the saturation, cross coupling, and spatial harmonics of IPMSMs, the torque T
is derived through the co-energy method [26] as follows:

T =
∂W ′m(id,iq,θ)

∂θ = is
∂λ(id,iq,θ)

∂θ − ∂Wm(id,iq,θ)
∂θ

=
3p
2 (λdiq−λqid)+ 3

2 (iq
∂λd
∂θ +id

∂λq
∂θ )− ∂Wm(id,iq,θ)

∂θ
T1 T2 T3

, (6)

where the subscribed d and q represent variables under the d-axis and q-axis.
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It can be noted that there are three torque components in (6), which take torque ripple
components T2 and T3 into consideration compared with the traditional torque equation,
which only considers the average torque T1.

Moreover, the magnetic density inside the driving motor core is usually non-sinusoidal
and rich in harmonics. Additionally, the two magnetization modes, alternating and rotating,
will make the variation trends of the magnetic density trajectory completely different. In
order to consider the effects of alternating magnetization, rotating magnetization, and
magnetic field harmonics, the iron losses PFe of each RP are calculated by the magnetic
density orthogonal decomposition model [21] as follows:

PFe = Ky( f h)
hm

∑
h=1

(B2
rh + B2

th

)
+ Kc( f h)2

hm

∑
h=1

(B2
rh + B2

th

)
+ Ke( f h)1.5

hm

∑
h=1

(B2
rh + B2

th

)
. (7)

where h, or the subscript h, represents the number of magnetic density harmonics, and hm
is the total harmonic number.

The λd, λq, Br, and Bt in analytical expressions (6) and (7) are calculated using com-
putationally efficient FEA [26], which is the so-called semianalytical model. According
to the magnetic and electric symmetry and periodicity of the considered IPMSM, when
n position samples are selected and flux linkage of winding and flux density of iron core
are calculated by n magnetostatics FEA of 1/8 model, there will be another 5n samples
reconstructing by post-processing techniques, which is much more time-saving than FEA.
Figure 4 shows the reconstructed results of λd, λq, Br, and Bt, which are used to set up the
efficiency model and torque model of IPMSMs. Figure 4a,b presents the variation of λd and
λq with stator phase current amplitude Is and rotor angle θ, where the rainbow color maps
the flux linkage value. Figure 4c,d present the variation of Br and Bt with stator current
and rotor angle in the stator teeth, where the rainbow color maps the flux density value.
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3.1.2. Sensitivity Analysis of Optimization Parameters

In this paper, the Taguchi method [35] is adopted to analyze the parameter sensitivity to
save computation costs for the following global optimization. The orthogonal table selects
four horizontal values for each factor as shown in Table 4, which include row number 16,
factor number 5, and level number 4, and can be expressed as L16(45). Considering the
geometric constraints of the motor structure, the range of values for each parameter above
is specified.

Table 4. Orthogonal table of motor factors.

Number x1 x2 x3 x4 x5

1 0.93 5.59 1.87 32.4 11.2
2 1.2 5.59 2.13 35.87 9.6
3 1.07 5.83 2.13 34.13 14.4
4 1.07 5.83 2.13 32.4 12.8
5 0.8 5.36 1.6 32.4 9.6
6 1.2 5.36 1.87 37.6 12.8
7 0.8 5.83 1.87 35.87 14.4
8 1.07 5.36 2.4 35.87 11.2
9 1.07 6.06 1.87 34.13 9.6
10 1.07 5.59 1.6 37.6 14.4
11 1.2 5.83 1.6 34.13 11.2
12 0.8 5.59 2.4 34.13 12.8
13 0.8 6.06 2.13 37.6 11.2
14 0.93 5.83 2.4 37.6 9.6
15 1.2 6.06 2.4 32.4 14.4
16 0.93 6.06 1.87 35.87 12.8

The sensitivity analysis method [35] is considered an effective approach to analyzing
the significance of design variables. And the sensitivity calculation model S(O) in this
paper can be expressed as

S(O) =

d
∑

i=1
(pO(i) − pt)

2

d
. (8)

Based on (8), the effects of the selected five variables on the optimization objectives
can be evaluated effectively. Figure 5 shows the sensitivity results. It can be seen that the
factors x4 and x5 have great impacts on efficiency, and the factors x3 and x4 have great
influences on torque ripple. Consequently, x3, x4, and x5 are comprehensively considered
as optimization variables for the following optimization design.
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3.2. Optimization Model for Control Level

The response current of the motor under different operating conditions is related
to the control strategy and the limits of the inverter bus voltage. A full-speed domain
vector controller is adapted to meet the requirements of low-speed starting and high-speed
cruising for the proposed IPMSM driving motor. In order to optimize the performance
of the motor under different operating conditions, MTPA and flux-weakening control are
used in this paper to meet the requirements of EVs. The control block is shown in Figure 6.
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When the load is given and the motor terminal voltage does not reach the limit with
the speed below base speed, the IPMSM adopts the MTPA control strategy and runs at
the MTPA trajectory. As shown in Figure 6, in this MTPA mode, by comparing the real
speed n with the speed demand n*, the torque demand T* could be obtained from the speed
controller and input into the MTPA control part. And then, the current demand idq* can
be solved from torque Equations (6) and (9). If the motor operates in MTPA mode, d-axis
and q-axis current demand id*, iq* are decoupled from idq* and sent directly to the d-axis
current controller and the q-axis current controller, respectively. Subsequently, the voltage
demands ud*, uq* are obtained, and through the 2r/2s transformation and SVPWM module,
they are finally turned into the switching signal to control the IGBT inverter.

∂(T/is)
∂id

=
∂(T/is)

∂iq
= 0. (9)

When the speed demand is higher, the motor provides more torque to accelerate the
rotor. At the early stage of speed regulation, the motor does not reach the base speed.
However, as the motor voltage reaches its limit shown in (10), the motor speed approaches
the base speed, and the speed loop saturates with the maximum given current. Therefore,
the flux-weakening control strategy is adopted to redistribute the current in the dq axis
through the leading angle so that the speed loop exits the saturation state and the motor
torque meets the load. As shown in Figure 6, in this flux weakening mode, the leading
angle δ is calculated from the angle controller by comparing the bus voltage Udc with the
motor voltage. And the d-axis and q-axis current demand id*, iq* are redistributed by the
current decoupling module according to δ as (11). It can be found that the flux-weakening
control can increase the motor torque and expand the operating range in comparison with
the MTPA control at the same motor speed.

u2
s = pΩ

√
(Lqiq)

2 + (Ldid + λpm) ≤ u2
lim, (10)
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where the motor stator resistance is neglected, and ulim is the limited value of motor
phase voltage. {

i∗d = is cos(δ + ∆δ)
i∗q = is sin(δ + ∆δ)

. (11)

As described above, the speed demand is converted into torque demand by the speed
controller, and the current demand is converted into voltage demand by two current
controllers. In the implementation, the three PI controllers shown in Figure 6 have the form{

Ksp = α+1
α

π J
360Ts pλpm

; Ksi =
1
α

Ksp
4Ts

Kip_d = βLd; Kip_q = βLq; Kii_d = Kii_q = βRs
. (12)

In the whole optimization process, motor parameters and operating points change
frequently, which means the fixed PI controller based on classical control theory could not
satisfy the optimization demand. Therefore, to ensure that the performance evaluation of
each motor scheme is carried out under the same optimal control level, two parameters α
and β are optimized in the control level with the minimum control error as follows:

min f (α, β) =
∫ ∞

0
t|e(t)|dt. (13)

where t is the calculation time, and e(t) is the instantaneous response error [36].

4. Discussion and Optimization Results
4.1. Optimization Results

According to the optimization procedure shown in Figure 1, after determining the
value of representative currents of RPs under different operating conditions, the system’s
performance could be evaluated based on the fitness function, and MOPSO is used to
obtain the optimal design. To illustrate the optimistic effect, the optimized motor scheme
designed by the proposed optimization method will be compared with that designed by the
single operation point optimization method in this section. The results of multi-objective
optimization are shown in Figure 7. Figure 7a–c shows the Pareto solution set optimized
by the rated operation point optimization method and the proposed optimization method
under UDDS and HWFET, respectively. The black curves in these three figures are the
Pareto optimal fronts for each optimization design. Each solution in the Pareto front
solution set is optimal. Hence, the optimal motor scheme could be selected from this
Pareto front solution set by the decision maker. Based on the VIKOR model [37], which is a
multi-attribute decision-making method, the optimal solution could be selected according
to (14).

max f (x) = υ1
η − ηmin

ηmax − ηmin
+ υ2

Tr max − Tr

Tr max − Tr min
, (14)

where η and Tr are the efficiency and torque ripple corresponding to the current scheme,
and the subscript max and min represent the maximum and minimum values of the
corresponding variables. v1 and v2 are weight coefficients of two objectives, which depend
on the will and preference of decision-makers, and are 0.55 and 0.45, respectively, in
this paper.

In this way, three optimal motor schemes are selected and marked as red points in
Figure 7. The motor scheme designed by the rated operation point optimization method
is termed L1. The motor scheme designed by the proposed optimization method under
UDDS is termed L2, and that optimized under HWFET is termed L3.



Appl. Sci. 2023, 13, 10792 11 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17 
 

objective optimization are shown in Figure 7. Figure 7a–c shows the Pareto solution set 
optimized by the rated operation point optimization method and the proposed optimiza-
tion method under UDDS and HWFET, respectively. The black curves in these three fig-
ures are the Pareto optimal fronts for each optimization design. Each solution in the Pareto 
front solution set is optimal. Hence, the optimal motor scheme could be selected from this 
Pareto front solution set by the decision maker. Based on the VIKOR model [37], which is 
a multi-attribute decision-making method, the optimal solution could be selected accord-
ing to (14).  

r max rmin
1 2

max min r max r min

max ( ) T Tf
T T

η ηυ υ
η η

−−= +
− −

x , (14)

where η and Tr are the efficiency and torque ripple corresponding to the current scheme, 
and the subscript max and min represent the maximum and minimum values of the cor-
responding variables. v1 and v2 are weight coefficients of two objectives, which depend on 
the will and preference of decision-makers, and are 0.55 and 0.45, respectively, in this pa-
per.  

 
Efficiency (%) Efficiency (%) Efficiency (%) 

(a) (b) (c) 

Figure 7. Motor optimization results under different working conditions. (a) Underrated condition. 
(b) Under UDDS. (c) Under HWFET. The blue dots are optimization solutions and black curves are 
Pareto optimal fronts. 

In this way, three optimal motor schemes are selected and marked as red points in 
Figure 7. The motor scheme designed by the rated operation point optimization method 
is termed L1. The motor scheme designed by the proposed optimization method under 
UDDS is termed L2, and that optimized under HWFET is termed L3.  

The values of the optimal variables and objective performance of the three motor 
schemes are listed in Table 5. Furthermore, their performances under different driving 
cycles are shown in Figure 8. The area in the red dotted box in Figure 8 is defined as the 
sweet region with high efficiency and low torque ripple, where 92% < Tr < 98% and 5% < 
η < 30%. Figure 8a shows the performance evaluation of L1 and L2 under UDDS. It can be 
observed that the motor optimized at the rated point (L1) has about 40% of the operation 
points falling into the sweet region, and this ratio is about 90% for the motor optimized 
under UDDS (L2). Figure 8b shows the performance evaluation of L1 and L3 under 
HWFET. It can be seen that L1 has about 20% of the operation points falling into the sweet 
region, and this ratio is over 90% for the motor optimized under HWFET (L3). Therefore, 
it can be concluded that the sweet region can be expanded by the proposed system-scale 
optimization, considering driving cycles. 

Figure 7. Motor optimization results under different working conditions. (a) Underrated condition.
(b) Under UDDS. (c) Under HWFET. The blue dots are optimization solutions and black curves are
Pareto optimal fronts.

The values of the optimal variables and objective performance of the three motor
schemes are listed in Table 5. Furthermore, their performances under different driving
cycles are shown in Figure 8. The area in the red dotted box in Figure 8 is defined as
the sweet region with high efficiency and low torque ripple, where 92% < Tr < 98% and
5% < η < 30%. Figure 8a shows the performance evaluation of L1 and L2 under UDDS.
It can be observed that the motor optimized at the rated point (L1) has about 40% of the
operation points falling into the sweet region, and this ratio is about 90% for the motor
optimized under UDDS (L2). Figure 8b shows the performance evaluation of L1 and L3
under HWFET. It can be seen that L1 has about 20% of the operation points falling into
the sweet region, and this ratio is over 90% for the motor optimized under HWFET (L3).
Therefore, it can be concluded that the sweet region can be expanded by the proposed
system-scale optimization, considering driving cycles.

1 
 

 
Figure 8. Performance evaluations of three motor schemes under different working conditions.
(a) UDDS. (b) HWFET. The area in the red-dotted box is the sweet region.
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Table 5. Objective performances and optimal variables.

L1 L2 L3

RPs IP (A), PFe (W), PCu (W), Tr (%)

UDDS

1 29.8, 39.35, 53.25, 21 31.56, 34.24, 59.76, 14

none
2 66.8, 355.11, 268, 35 53.37, 324.2, 171.24, 21
3 15.26, 178.09, 14, 42 16.32, 155.81, 16, 25
4 92.74, 80.5, 515.9, 10 96.55, 76.14, 559.18, 8
5 52.6, 154.5, 165.8, 15 55.18, 140.78, 182.7, 11

HWFET
1 82.8, 381, 411.25, 38

none
82.75, 59.48, 325, 15

2 71, 153.22, 303.4, 14 71.11, 76.4, 135.76, 10
3 34.39, 327, 71.27, 28 34.39, 21.14, 296.67, 17

Rated 97.3, 284, 567.9, 7.91 100.75, 274, 608.92, 6.1 103, 268.32, 638, 9.26

Optimal results
x1, x2, x3, x4, x5, x6, x7

0.8, 5.5, 1.5, 36, 14, 8750, 6500 0.8, 5.5, 1.7, 33.5, 14.5, 7854, 6280 0.8, 5.5, 1.7, 32.5, 14.5, 7525, 7500

4.2. Performance Evaluation by Experiments

To further prove the effectiveness of the optimization method described above, an
IPMSM prototype is tested on the experimental platform shown in Figure 9, which is
based on the dSPACE controller. The magnetic powder brake is used to provide vari-
ous load torques, and a dynamic torque sensor is used to measure dynamic torque and
speed. The target motor is used to power an A0 class pure EV, which adopts UDDS as the
main test specification for emissions certification and fuel economy performance testing.
Therefore, L2 shown in Table 5 is chosen to be tested as the prototype, which is optimized
under UDDS. Meanwhile, the UDDS driving cycle is carried out to conduct the motor
performance evaluation.
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Figure 9. Experimentation platform of the IPMSM prototype.

Firstly, the no-load performance of the proposed IPMSM is tested, and the results
are shown in Figure 10. In Figure 10a, it can be observed that the IPMSM can quickly
follow the given speed during the starting or speed switching process. And Figure 10b
shows the torque ripple at no load is less than ±0.2 N·m, which demonstrates the good
design of cogging torque. From Figure 10c, it can be seen that its three-phase back EMFs
are sinusoidal and symmetric. Moreover, the no-load current is smaller than 1A to provide
no-load loss, as shown in Figure 10d. The changes in the above curves are consistent with
the changes in motor working conditions, and the motor speed regulation effect shows the
feasibility of the proposed control system.
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Figure 10. Experimental results at no load. (a) Speed. (b) Torque. (c) Back EMF. (d) Current.

Moreover, the loaded performance of the proposed IPMSM under MTPA and flux
weakening control is tested, and the results are shown in Figure 11. It can be seen from
Figure 11a,b that the motor driving modes can be switched from MTPA mode to flux
weakening mode at about 5 s to expand its high-speed carrying capacity. With the flux
weakening control under constant power operation, more negative id is applied to the
IPMSM to achieve the same torque requirements as the MTPA shown in Figure 11c. In
Figure 11a, it can be seen that the IPMSM can quickly follow the given speed at starting,
speed switching, or load-changing working conditions. Moreover, the torque ripple at
2000 rpm with 5 N·m is about ±1 N·m; it is similar at 3500 rpm with 5 N·m; and it is about
±3 N·m at 3500 rpm with 15 N·m, which is shown in Figure 11b. Generally, torque ripples
in the two modes are about 20%, which agrees with the results in Table 5. Furthermore, the
three-phase currents shown in Figure 11c are sinusoidal and symmetric, which also shows
the effectiveness of the proposed control system.
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In order to further verify the effectiveness of the proposed optimization method, the
prototype is tested under the five RPs of UDDS. The measured efficiency and torque ripple
of the prototype with the proposed control system are compared with the calculated results
from the optimization process, which are listed in Table 6. The calculated results of efficiency
shown in Table 6 are obtained according to the data in Tables 2 and 5, where the input power
is calculated by 2πnT/60 from Table 2 and the output power is approximately equal to the
sum of the input power, PFe, and PCu in Table 5. Meanwhile, the calculated results of torque
ripple shown in Table 6 are the same as Tr in Table 5. It can be observed that the measured
results are almost in accordance with the optimized results. The error of efficiency is within
8%, and the maximum error of torque ripple is 20%. These errors are mainly due to the
inaccurate estimation of losses and vibrations caused by mechanical factors such as wind
wear and bearing in simulations. In spite of this, it can still greatly reflect the effectiveness
of the proposed system-scale optimization design method, considering driving cycles.

Table 6. Optimization parameters of the investigated IPMSM.

L2 RPs

Efficiency (%) Torque Ripple (%)

Calculated
Result

Experimental
Result Error * Calculated Result Experimental Result Error *

UDDS

1 95.7 91 5.15 14 15 6.67
2 95.7 89 7.59 21 20 −5
3 95.6 89 7.41 25 23 −8.7
4 94.4 89 6.07 8 10 20
5 97.2 91 6.83 11 13 15

* Error = (Calculated result-Experimental result)/Experimental result.

5. Conclusions

In this paper, a system-scale multi-objective optimization methodology for driving
motors based on the clustering technique under different operating conditions is proposed
for electric vehicle applications. The clustering approach has been introduced to identify
energy weights and RPs in the torque-speed profile for two vehicle driving cycles. To
evaluate the effectiveness of the system-scale optimization design of the driving motor,
a comparative study has been carried out based on the semianalytical efficiency model
and torque model of IPMSMs, where the motor was optimized for UDDS, HWFET, and
the rated operating point. Finally, a prototype of IPMSM with an MPTA-flux weakening
controller was investigated to verify the proposed method. From the discussion, the
following conclusions could be drawn:

First, compared with the optimization design under the rated operation point, the
solution from the proposed optimization considering driving cycles has a larger sweet
region with higher efficiency and lower torque ripple.

Second, the control parameters are considered in the proposed system-scale optimiza-
tion as well as the motor parameters, which can ensure the system’s dynamic performances
and are valuable for engineering batch production. Third, the proposed clustering opti-
mization of driving motors considering inverter control strategy could well be applied
for the rapid development of serialized motors in other applications, e.g., ship propulsion
motors and robot motors.

The future work will be extended to more structural forms of motors with more
diverse control strategies, e.g., axial-flux PMSM with direct torque control. Moreover,
the multidisciplinary approach for system-scale optimization will be investigated in the
following, which will consider the effects of thermal and mechanical factors from the
perspective of practical engineering applications.
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Nomenclature

Br Radial magnetic density component Ploss Motor power loss
Bt Tangential magnetic density component Pout Motor output power
d Total level number PFe Iron loss
f Magnetic field alternates frequency PCu Copper loss
is Stator phase current Rs Phase resistance
J Moment of inertia Ts Sampling period
ks Fill factor of winding Tr Motor torque ripple
Kc Eddy current loss coefficient ulim Motor phase voltage limitation
Ke Additional loss coefficient w Energy weights
Ky Hysteresis loss coefficient W

′
m Co-energy

Ksp Proportion coefficient of speed controller Wm Stored energy
Ksi Integration coefficient of speed controller zi Data point of sample i
Kip_d Proportion coefficient of d-axis current controller l(t)i Centroid of sample i in the tth iteration

Kii_d Integration coefficient of d-axis current controller S(t)
i Cluster of sample i in the tth iteration

Kip_q Proportion coefficient of q-axis current controller pO(i) Average motor performance of factor O at level i
Kii_q Integration coefficient of q-axis current controller δ Angle between the current vector and the d-axis
nmax Motor maximum speed θ Rotor position
nN Motor rated speed λ Flux linkage
p Pole pair number λpm Permanent magnet flux linkage
pt Overall mean of motor performance data Ω Rotor mechanical angular velocity
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