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Abstract: Integrated sensing and communication (ISAC) in the Industrial Internet of Things (IIoT)
presents unique challenges in terms of localization techniques. While three-dimensional (3D) environ-
ments offer extra challenges to enhanced accuracy and realism, research in this area remains limited.
To bridge this gap, we propose a novel localization technique assisted by a single base station (BS) in
3D IIoT scenarios. Our approach employs the MUltiple SIgnal Classification (MUSIC) algorithm to
jointly estimate the angle of arrival (AoA) in azimuth and elevation, as well as the time of arrival
(ToA). Compared to conventional multi-BS-assisted or MUSIC-based algorithms, our technique offers
flexibility, easy implementation, and low computational cost. To improve performance, we integrate
the Taylor-series into the iterative process after a MUSIC-based joint azimuth, elevation angle and
delay estimation (JAEDE), resulting in a significant 99% reduction in computational complexity com-
pared to a two-step MUSIC-based approach utilizing coarse-fine grid searching. Through numerical
simulations, we compare our algorithm with three other MUSIC-based joint or separate estimation
approaches, demonstrating its superior performance in azimuth angle of arrival (AoAz), elevation
angle of arrival (AoAe), TOA, and overall location estimation across varying signal-to-noise ratio
(SNR) conditions.

Keywords: single base station localization; joint angle delay estimation; industrial internet of things;
integrated sensing and communication

1. Introduction

The IIoT has transformed industries by integrated sensing and communication (ISAC)
technologies, enabling seamless data exchange and control in future wireless systems [1,2].
Localization, the ability to accurately determine the location of connected devices and
assets, is a crucial component of IIoT applications [3]. It helps optimize operations, enhance
safety, and drive automation. Intelligent industry examples highlight the significance
of localization in ISAC [4,5]. In manufacturing, precise localization is essential for the
navigation of automated guided vehicles (AGVs) and robots through intricate factory
layouts. It allows them to avoid obstacles, optimize material handling, and improve overall
efficiency. Smart warehouses leverage localization capabilities to efficiently locate and
retrieve goods, thereby reducing operational costs and enhancing fulfilment speed.

However, in the realm of ISAC applications, achieving accurate localization in the
challenging industrial environment requires addressing several factors that hinder the effec-
tiveness of localization techniques [3,6,7]. The complex indoor environments in industrial
settings, including obstacles like walls and shelves, pose a challenge to localization due
to reduced signal penetration and increased wireless signal degradation, shadowing, and
multipath effects. The dynamic nature of industrial environments, with fluctuating lighting
and background conditions, presents a challenge to localization algorithms requiring stable
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conditions for accurate results. High levels of interference and noise in industrial environ-
ments negatively impact localization algorithms relying on wireless signals or sound-based
techniques. The movement of metallic equipment and materials introduces magnetic field
interference, which affects localization methods dependent on magnetic fields. Overcoming
these challenges in industrial localization requires specialized solutions and technological
advancements. By addressing the challenges of localization in IIoT applications, industries
can achieve valuable benefits such as enhanced operational intelligence, improved produc-
tivity, and cost savings. Integrating localization with ISAC technologies provides seamless
connectivity and real-time control over industrial processes, unlocking the full potential of
the IIoT across various sectors [8].

Accurate localization in three dimensions plays a crucial role in IIoT applications,
as it provides a more comprehensive understanding of the physical world. Compared
to two-dimensional (2D) localization, which only considers horizontal positioning, three-
dimensional (3D) localization enables vertical positioning as well. This additional di-
mension brings about numerous benefits, including enhanced spatial awareness, im-
proved tracking accuracy, and better representation of the real-world environment. Three-
dimensional localization offers more precise depth perception, which is particularly valu-
able in scenarios where vertical positioning is essential, such as multilevel warehouses
or construction sites. Moreover, the ability to accurately localize in 3D has been shown
to significantly enhance the performance of various IIoT applications [9]. For instance, in
logistics and transportation, 3D localization allows for more efficient route planning, load
balancing, and collision avoidance.

Taking a look at the evolution of modern localization techniques, the advancements in
multiple-input multiple-output (MIMO) and multi-carrier technologies make great contri-
butions. Localization techniques have expanded their capabilities by leveraging additional
measurements on angle of arrival (AoA)- and time of arrival (ToA)-related information.
This evolution has resulted in enhanced performance and better localization outcomes. Tra-
ditional wireless localization techniques often rely on triangulation or trilateration methods,
which require three or more anchor points to perform the algorithm. However, in complex
industrial environments, ensuring stable connections between multiple BS inherently intro-
duces uncertainty. Moreover, unstable links, such as non-line-of sight (NLOS) transmissions
between anchor points and the target, pose challenging obstacles to localization accuracy
that are difficult to overcome [10,11] (see Figure 1). Therefore, in environments like factories
and warehouses, single BS-assisted localization can be considered as an effective solution.
In particular, joint angle and delay estimation (JADE) stands out as a promising solution, as
it reduces the involvement of base stations and minimizes localization overhead, making it
an excellent fit for various smart industry applications [12,13].

There have been a number of mature studies that utilize JADE for localization in 2D
environments, such as MUSIC and estimation of single parameters via rotational invariance
techniques (ESPRIT), which offer their unique advantages [12,14,15]. For instance, the
ESPRIT-based method in [12] achieves a low computational cost by using the Hadamard
product, but it requires parameter pairing after the estimation, which introduces extra
errors to the performance. The MUSIC-based algorithm in [14] estimates AoA and ToA com-
ponents with relatively low complexity, but low signal-to-noise ratio (SNR) and sampling
rate are still challenging. Another MUSIC-inspired approach presented in [15] achieves
satisfactory accuracy using a two-step coarse and fine grid search. However, the fine search
significantly increases the computational overhead.

All of the aforementioned works consider only 2D scenarios, while for 3D contexts,
the addition of an extra dimension in 3D localization introduces an additional parameter
that needs to be estimated, increasing the complexity of the localization process. This,
in turn, leads to higher computational complexity and resource requirements. Another
major challenge arises from the design of the antenna array. In 2D scenarios, a linear array
configuration may suffice. However, in 3D environments, the array geometry must be more
elaborate to capture the necessary spatial diversity for accurate AoA estimation. In [16,17],
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the UCA has already been utilized to estimate azimuth and elevation angle of arrival (AoA)
jointly. They investigated the AoA estimation by MUSIC utilizing a uniform circular array
(UCA), but they did not consider the ToA estimation at the same time.

Server

Outdoor BS

Satellites

Figure 1. Illustration of the single BS-assisted JAEDE, compared with other outdoor (upper) and
indoor (lower) localization techniques.

In our previous publication [18], we have also proposed a single portable BS-assisted
localization technique based on MUSIC for smart security scenarios. Our focus was
on mitigating the computational burden associated with grid searching of the MUSIC
algorithm and addressing the subsequent grid bias issues. However, there are several
significant distinctions between our previous work and the current study. Firstly, our prior
work primarily concentrated on 2D scenarios, limiting its ability to accurately estimate
the vertical dimension or height of the target. Consequently, this limitation rendered
it unsuitable for applications requiring localization in multiple vertical layers, such as
warehouses. In contrast, the present study represents a notable advancement as we have
expanded our methodology from 2D to 3D, together with a comprehensive evaluation of
the performance of single BS-assisted localization techniques from various perspectives.
This expansion sheds light on the unique challenges and potential solutions associated
with 3D localization. Secondly, to accommodate the additional spatial dimension and
the consequent performance challenges, we have upgraded our antenna model from a
uniform linear array (ULA) to a UCA. This enhancement is a considerable improvement
that addresses the new complexities introduced by the inclusion of the third dimension.
By undertaking these enhancements and modifications, our current work substantially
surpasses the limitations of our previous research, offering a more comprehensive and
robust approach to 3D single BS-assisted localization techniques.

Table 1 summarizes all the aforementioned related works. Generally, the majority of
current JADE algorithms encounter the issue of grid constraints. This means that during
the search process, the estimated results are restricted to grid points. As a result, if the true
values are off-grid, bias will persist regardless of the grid resolution. Unfortunately, the
refinement process cannot be pushed to the extreme due to the resulting high computational
complexity. Furthermore, studies concerning 3D environments are considerably fewer
compared to those focusing on 2D scenarios, but the disparity between JAEDE and JADE
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cannot be ignored, since it is capable of providing accurate representation, enhancing
spatial awareness, enabling safety and risk assessment, and optimizing performance.

Table 1. Summary of Related Works.

Ref. Scenario Technique Description

[12] 2D ESPRIT-based JADE Low computational cost, but parameter
paring introduces extra errors

[14] 2D MUSIC-based JADE Low complexity, but sensitive to low SNR and
sampling rate

[15] 2D MUSIC-based JADE Two-step algorithm, but computationally
exhaustive in the fine grid searching

[18] 2D MUSIC-based JADE
Our previous work with two-step

MUSIC-Taylor algorithm, but utilizing ULA
for 2D scenario

[16,17] 3D MUSIC-based AoA Utilizing UCA for 3D scenario, but estimates
AoA only

Motivated by the aforementioned issues, we present a novel and computationally
efficient localization technique for 3D IIoT scenarios. Our approach relies on a single BS
and utilizes the MUSIC algorithm to estimate AoAz, AoAe, and ToA jointly. The key
contributions of our work are as follows:

• We propose a localization algorithm that addresses the challenges of stable connectivity
to multiple access points (AP) in IIoT scenarios, offering flexibility, easy implementa-
tion, and reduced computational cost compared to conventional multi-BS [19–21] and
MUSIC-based single-BS [15] algorithms.

• To enhance performance without extensive grid searching, our algorithm incorporates
Taylor-series in the iterative process, achieving a significant 99% reduction in compu-
tational complexity with slight improvements in localization accuracy compared to a
two-step MUSIC-based algorithm [15].

• Through numerical simulations, we compare our algorithm with three others, including
MUSIC-based joint or separate angle and delay estimation. The results demonstrate that
our algorithm consistently outperforms the alternatives in terms of AoAz, AoAe, ToA,
and the overall location estimation accuracy across various SNR conditions.

Throughout the paper, capital boldface letters denote matrices; lowercase boldface
letters denote vectors, e.g., M ∈ Ca×b stands for a complex matrix of the dimension a× b;
I is the identity matrix; {·}H stands for transposition; E{·} is the expectation; and R{·}
represents the real part of a complex number.

2. System Model

The JAEDE localization method introduces the system model as the basis of our
approach. As depicted in Figure 2, the model consists of a mobile station (MS) located
in a 3D Cartesian coordinate system at an unknown position denoted as Pm = [xm, ym, zm].
Communication between the MS and the BS involves a set of UCA positioned at a known
location marked as Pb = [xb, yb, zb]. The main objective of the BS is to estimate the
AoAz, AoAe, and ToA of the modulated signals transmitted from the MS, thereby enabling
estimation of the MS’s coordinates. In accordance with our proposed approach, we consider
the MS to be positioned at a far-field distance from the BS to maintain the generality of
our framework.

In the analysis, we account for NL components contributing to multipath propagation.
These components consist of a single line-of-sight (LOS) path with a length of l0, as well
as NL − 1 NLOS paths, namely l1, l2, . . . , lNL−1. The i-th path, where i = 0, 1, . . . , NL − 1,
is characterized by its AoAz, AoAe, and ToA represented by θi, φi, and τi, respectively.
Notably, we express li = vcτi, where vc = 3× 108 m/s signifies the speed of light.
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Assuming the UCA consists of NA identical sensor elements arranged equidistantly
along a circle with a radius of r meters. The circle is positioned in the xy-plane of a local
coordinate system, where the origin coincides with the center of the circle. In the coordinate
system model represented in Figure 2, the azimuth angle, denoted as θ, is defined as the
angle within the xy-plane, starting from the x-axis and pointing towards the y-axis. The
elevation angle, denoted as φ, is defined as the angle starting from the xy-plane and moving
towards the z-axis. The angular separation between any two adjacent elements within the
array is ∆A = 2π/NA. Consequently, the phase difference between the a-th element and
the origin can be expressed as ∆Φa = 2πr

λ sin φa cos(θa − a∆A), where a = 0, 1, . . . , NA − 1,
and λ represents the wavelength of the signal.

Pb = [xb, yb, zb]

Pm = [xm, ym, zm]

x

y

z

l 0
=

v cτ
0

l1
l2

φ

θ

Figure 2. The 3D coordinate system, in which the propagation model is demonstrated with one MS
(the orange ball) and three propagation paths to the UCA mounted on a BS at the origin.

Given a transmitted signal u(t), the received signal on the a-th element of the UCA
can be expressed as

ra(t) =
NL−1

∑
i=0

giui(t− τi,a) + wa(t), (1)

where gi = |gi|ejΦi represents the complex attenuation of the i-th multi-path component,
with Φi ∈ [0, 2π] denoting the phase, and wa(t) representing the additive white Gaussian
noise (AWGN) on the a-th array element. In addition, we perform the discrete Fourier
transform (DFT) of the signal and consider NK sub-carriers with equal frequency increments.
Consequently, the received sequence on the a-th array element and the k-th sub-carrier can
be written as

Ra(k) = Ha(k)Uk +Wa(k), k = 0, 1, . . . , NK − 1, (2)

whereHa(k) andWa(k) are the corresponding channel frequency response and additive
white Gaussian noise (AWGN), respectively. Considering the features of the AoAz, AoAe,
and ToA of the UCA, the channel response yields

Hi,a,k =
NL−1

∑
i=0

hiej2πk∆ f τi+j2π r
λ sin φi cos(θi−a∆A) (3)

where ∆ f is the sub-carrier frequency interval, and hi the channel gain.
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Without loss of generality, we assume that the array elements of the UCA are identical
and there is no mutual coupling or non-uniformity among them. Thus, for simplicity,
we can normalize the gain in (3) [15]. Taking into account all the array elements of the
Uniform Circular Array (UCA), sub-carriers, and multipath components, we can express
(2) in matrix form as

R(θ, φ, τ) = S(θ, φ, τ)H + W (4)

with H ∈ CNL×1, W ∈ CNKNA×1. The steering matrix S(θ, φ, τ) ∈ CNKNA×NL is formed from
the steering element function:

s(θ, φ, τ|k, a, i) = ej2πk∆ f τi+j2π r
λ sin φi cos(θi−a∆A). (5)

The formation rule, as depicted in (6), shows only the indexes of k, a, i within brackets,
while omitting θ, φ, τ to simplify the notations. Now, we will introduce a three-step MUSIC-
Taylor-based method to jointly estimate the AoAz, AoAe, and ToA using the steering matrix
S(θ, φ, τ).

S(θ, φ, τ) =



s(0, 0, 0), s(0, 0, 1), . . . s(0, 0, NL − 1)
s(0, 1, 0), s(0, 1, 1), . . . s(0, 1, NL − 1)

...
...

. . .
...

s(0, NA − 1, 0), s(0, NA − 1, 1), . . . s(0, NA − 1, NL − 1)
s(1, 0, 0), s(1, 0, 1), . . . s(1, 0, NL − 1)

...
...

. . .
...

s(NK − 1, NA − 1, 0), s(NK − 1, NA − 1, 1), . . . s(NK − 1, NA − 1, NL − 1)


(6)

3. A Three Step MUSIC-Taylor-Based Localization Approach

This section presents the proposed localization algorithm, which combines the MUSIC
and Taylor-series techniques. The algorithm consists of three key steps: (1) Coarse localiza-
tion using the MUSIC-based JAEDE algorithm; (2) Enhancement of the first step results
using a Taylor-series-based approach, which helps mitigate the searching grid constraints
introduced by the previous step; (3) Achieving precise localization with a single BS based
on the estimated angles and delays obtained from the JAEDE process.

3.1. Step 1, MUSIC-Based Coarse JAEDE

The covariance matrix, C(θ, φ, τ), of the received signal, R(θ, φ, τ), in (4) is given by

C(θ, φ, τ) = E{R(θ, φ, τ)R(θ, φ, τ)H} = HE{S(θ, φ, τ)S(θ, φ, τ)H}HH +E{WWH} (7)

Given that the noise is assumed to be a white Gaussian process with zero mean
and variance σ2, i.e., E{WWH} = σ2 I, and that it is independent among both the array
elements and the signal, we can simplify the covariance matrix as follows:

C(θ, φ, τ) = HCS(θ, φ, τ)HH + CW (8)

where CS(θ, φ, τ) and CW are the covariance matrix of the signal and the noise, respectively.
Additionally, let vS and vW represent diagonal matrices consisting of the eigenvalues of
CS(τ, θ) and CW , respectively. Given this, the covariance matrix can be decomposed as
follows:

C(θ, φ, τ) = VSvSVH
S + VvWVH

W (9)

where, VS and VW denote the signal and noise subspaces, respectively. It is important
to note that vS contains the top NL eigenvalues, while the remaining eigenvalues are
included in vW . Since MUSIC-based approaches concentrate solely on the noise subspace,
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in the subsequent discussion, V refers to VW unless specified otherwise. Consequently, the
spectral function can be formulated as follows:

f(θ, φ, τ) =
1

S(θ, φ, τ)HVVHS(θ, φ, τ)
(10)

Since these two subspaces are orthogonal, the JAEDE results can be determined by the
following object function,

[θ̃, φ̃, τ̃] = arg max
θ,φ,τ

f(θ, φ, τ), (11)

where the vector of the estimated AoAz, AoAe and ToA correspond to the NL− 1 multipath
components, and formed by θ̃ = [θ̃0, θ̃1, . . . , θ̃NL−1], φ̃ = [φ̃0, φ̃1, . . . , φ̃NL−1], and τ̃ =
[τ̃0, τ̃1, . . . , τ̃NL−1].

One approach commonly used for obtaining the pseudo-spectrum f(θ, φ, τ) is grid
searching. This involves constructing a three-dimensional mesh grid, [θ̇, φ̇, τ̇], which di-
vides the predefined range of AoAz ([θ̇min, θ̇max]), AoAe ([τ̇min, τ̇max]), and ToA ([φ̇min, φ̇max])
with equal spacing. The accuracy and complexity of the estimation depend on the number
of grid points and the spacing between them. A smaller number of grids with larger spac-
ing results in lower complexity but may lead to poorer accuracy. Therefore, in the initial
stage, a coarse estimation is performed for computational efficiency. Later, an enhancement
approach based on the Taylor-series is introduced to improve the estimation accuracy
while maintaining low complexity. A summarized step-by-step implementation of Step 1,
MUSIC-based coarse JAEDE is shown in Line 1 to 7, Algorithm 1.

Algorithm 1 MUSIC-Taylor-based Single BS Localization

1: Initialize NA, ∆A, NK, NT, Pb.
2: Get mesh grid [θ̇, φ̇, τ̇].
3: Construct S(θ, φ, τ) following (5) and (6).
4: Get received sequence R(θ, φ, τ).
5: C(θ, φ, τ)← E{R(θ, φ, τ)R(θ, φ, τ)H}.
6: V ← EVD{C(θ, φ, τ)}.
7: p0 = [θ̃, φ̃, τ̃]← arg max

θ,φ,τ
f(θ, φ, τ).

8: Initialize pt ← p0, t← 0, ∆ = 0.
9: while t ≤ NT do

10: ∆θt ← (20).
11: ∆φt ← (21).
12: ∆τt ← (22).
13: θ̃t+1 ← θ̃t + ∆θt.
14: φ̃t+1 ← φ̃t + ∆φt.
15: τ̃t+1 ← τ̃t + ∆τt.
16: if ∆θt+1 < θth and ∆φt+1 < φth and ∆τt+1 < τth then
17: Break.
18: end if
19: t← t+ 1
20: end while
21: (θ̃l , φ̃l , τ̃l)← LOS(θ̃t+1, φ̃t+1, τ̃t+1).
22: [x̃m, ỹm, z̃m]← (24).

3.2. Step 2, Taylor-Series Based Enhancement

Consider one of the points estimated in the previous MUSIC-based step, denoted as
p̃0 = (θ̃0, φ̃0, τ̃0). Let ∆0 = (∆θ0, ∆φ0, ∆τ0) represent the difference between this initial
point and the true values, given by ∆0 = (θ − θ̃0, φ− φ̃0, τ − τ̃0). The three-dimensional
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first-order Taylor-series expansion of the steering function around this initial point can be
expressed as:

s(θ, φ, τ) ≈ s(p̃0, ∆0) = s(p̃0) + s′θ(p̃0)∆θ0 + s′φ(p̃0)∆φ0 + s′τ(p̃0)∆τ0, (12)

where s′θ , s′φ and s′τ are the first derivative with respect to θ, φ and τ, respectively. By
substituting Equations (6), (11) and (12) into (10), the object function can be rewritten as a
function of p̃0 and ∆0,

(θ̃, φ̃, τ̃) = arg min
∆0

S(p̃0, ∆0)
HVVHS(p̃0, ∆0). (13)

If S is continuous, the minimization can be achieved by taking the first derivatives
of (12) with respect to ∆. To simplify the notation, we will omit the estimated point p0 as
variables, and also omit the subscript ‘0’ in the following equations. Let F(∆) represent the

object function in Equation (13), A denote the derivative ∂s′θ(p̃0)
∂∆θ , E denote the derivative

∂s′φ(p̃0)
∂∆φ , and T denote the derivative ∂s′τ(p̃0)

∂∆τ . The first-order partial derivatives of the object
function in (13) with respect to ∆θ, ∆φ, and ∆τ can be expressed as:

F′∆θ(∆) =
∂

∂∆θ

(
S(p̃0, ∆0)

HVVHS(p̃0, ∆0)
)

=2
(

AHVVH A∆θ + sHVVH A + THVVH A∆τ + EHVVH A∆φ
)
,

(14)

F′∆φ(∆) =
∂

∂∆φ

(
S(p̃0, ∆0)

HVVHS(p̃0, ∆0)
)

=2
(
EHVVHE∆φ + sHVVHE + THVVHE∆τ + AHVVHE∆θ

)
,

(15)

F′∆τ(∆) =
∂

∂∆τ

(
S(p̃0, ∆0)

HVVHS(p̃0, ∆0)
)

=2
(
THVVHT∆τ + sHVVHT + AHVVHT∆θ + EHVVHT∆φ

)
.

(16)

∆θ, ∆φ, and ∆τ can be solved by combining the linear functions (14)–(16), which can
be written in determinant forms as,AHVVH A THVVH A EHVVH A

AHVVHE EHVVHE THVVHE
AHVVHT EHVVHT THVVHT

∆θ
∆φ
∆τ

 = −

sHVVH A
sHVVHE
sHVVHT

. (17)

The augmented matrix of (17) is given byAHVVH A THVVH A EHVVH A −sHVVH A
AHVVHE EHVVHE THVVHE −sHVVHE
AHVVHT EHVVHT THVVHT −sHVVHT

, (18)

and denoted with simple notations as

a =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

. (19)

Consequently, ∆θ, ∆φ, and∆τ of this iteration can be solved by the augmented matrix,
and expressed in (20)–(22). Details of derivation can be found in Appendix A.

∆θ = R
{
(a22a33 − a32a23)(a22a14 − a12a24)− (a22a13 − a12a23)(a22a34 − a32a24)

(a22a33 − a32a23)(a22a11 − a12a21)− (a22a13 − a12a23)(a22a31 − a32a21)

}
, (20)
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∆φ = R
{
(a31a23 − a21a33)(a21a14 − a11a24)− (a21a13 − a11a23)(a31a24 − a21a34)

(a31a23 − a21a33)(a21a13 − a11a23)− (a21a13 − a11a23)(a31a22 − a21a32)

}
, (21)

∆τ = R
{
(a22a31 − a32a21)(a22a14 − a12a24)− (a22a11 − a12a21)(a22a34 − a32a24)

(a22a31 − a32a21)(a22a13 − a12a23)− (a22a11 − a12a21)(a22a33 − a32a23)

}
. (22)

After obtaining the values of ∆θ, ∆φ, and ∆τ, these values can be used to calculate the
new pair of estimated points in the next iteration. Let the iteration begin with the point
p̃0. Assuming that p̃t represents the current state, the current steering function can be
obtained by replacing p̃0 with p̃t in Equation (12). Consequently, ∆θt, ∆φt, and ∆τt can be
calculated step-by-step. Therefore, the estimation of the next state is given by:

θ̃t+1 = θ̃t + ∆θt,

φ̃t+1 = φ̃t + ∆φt,

τ̃t+1 = τ̃t + ∆τt.

(23)

Figure 3 illustrates a simplified demonstration of the enhancement process for grid
bias reduction through iterations. The ball represents the ground truth position of the
target MS. The initial coarse estimation falls on the grid point at coordinates [36, 44, 64],
where the grid constraints (i.e., the distance between the coarse estimation and the ground
truth) are observable. The proposed Taylor-series-based enhancement method is then
applied, which effectively eliminates the mis-distance through iterations. Please note that
the figure provides a condensed view of the iterative process, and the actual simulation
may involve denser iteration results. If the maximum number of iterations reaches NT

or ∆t+1 is less than a predefined threshold ∆th, the iteration will come to the end. The
summarized implementation of the Taylor-series-based refinement can be found in lines 8
to 20 of Algorithm 1.

34
35

36
43

44
63

63.5

64

64.5

θ◦
φ◦

τ
(n

s)

True MS position
Final estimation

1st step estimation
2nd step estimations

Figure 3. A demo of the Step 1 coarse estimation, and Step 2 enhancement process.
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3.3. JAEDE-Based Localization

In the final step of localizing the target MS using a single BS, the output AoAz, AoAE,
and ToA are utilized. Among all the multipath components, it is highly likely that the path
with the lowest time delay corresponds to the LOS path. For exceptional cases, specialized
methods such as the PEak TRacking Algorithm (PETRA) can be employed to distinguish
the LOS path from the NLOS multipath clusters [22]. However, these methods are beyond
the scope of this discussion. Let (θ̃l , φ̃l , τ̃l , ) represent the estimated LOS AoAz, AoAe,
and ToA, as illustrated in Figure 2. The coordinates of the MS can be estimated using the
following expression:

x̃m = xb + τ̃lvc sin φ̃l cos θ̃l ,

ỹm = yb + τ̃lvc sin φ̃l sin θ̃l ,

z̃m = zb + τ̃lvc cos φ̃l .

(24)

Algorithm1 and the flow chart in Figure 4 summarize the full proposed localization
technique step-by-step.

START

System initialization
Get NA, ∆A, NK, Pb

Received signal
R(θ, φ, τ)

Step 1

The covariance matrix
in (7)

Decompose subspaces
in (9)

Construct the mesh grid
[θ̇, φ̇, τ̇]

Get the steering matrix
from (6)

Apply peak searching
based on the mesh grid

Step 1 output
[θ̃, φ̃, τ̃]given by (11)

Step 2 Initialization
pt ← p0, t← 0, ∆ = 0

∆θt ← (20)
∆φt ← (21)
∆τt ← (22)

θ̃t+1 ← θ̃t + ∆θt
φ̃t+1 ← φ̃t + ∆φt
τ̃t+1 ← τ̃t + ∆τt

Yes

No

∆θt+1 < θth
∆φt+1 < φth
∆τt+1 < τth

Step 2 output
[∆θt+1, ∆φt+1, ∆τt+1]

LoS decision
(θ̃l , φ̃l , τ̃l)

Location output
[x̃m, ỹm, z̃m]← (24)

Step 2

Step 3

END

Figure 4. Flow chart of the MUSIC-Taylor-based Single BS Localization algorithm.

It is important to note that the constraints of the algorithm should be considered when
discussing the limitations and challenges faced in the proposed JAEDE approach. In this
context, two key points can be highlighted. Firstly, accurate location estimation heavily
depends on the determination of LOS. Any errors in LOS determination can significantly
impact the accuracy of localization results. Therefore, improving LOS estimation techniques
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is essential for enhancing the overall performance of localization algorithms, particularly
for IIoT scenarios where multipath effects can be severe. Secondly, the initial step of
MUSIC-based coarse JAEDE acts as a crucial starting point that sets the stage for the
entire algorithm, laying a robust foundation for its overall performance. The results of
the first step should align closely with the grid points and be faithful to the available
grid points, although grid spacing may be sparse. Otherwise, subsequent steps may not
be able to effectively reduce the grid bias. There exists a performance bar for the Taylor
expansion used in the second step, and surpassing this bar can be a potential direction for
future research.

4. Performance Evaluation

In this section, the performance of the proposed localization algorithm is evaluated
through Monte Carlo simulations, which take into account different SNR conditions and
multipath activity patterns. The simulation parameters are detailed in Table 2, following a
typical orthogonal frequency division multiplexing (OFDM) system setup. It is important
to note that the coordinates of the MS should be calculated using the AoAz, AoAe, and ToA
of the LOS path per Monte Carlo realization.

The performance is evaluated by the root mean square error (RMSE) metric averaged
over multiple Monte Carlo realizations under different scenarios in terms of two major
aspects, the accuracy of JAEDE estimation, and the mis-distance of the localization. For
a given estimated result γ̃n under one realization and the corresponding ground truth γ,
with NM runs of Monte Carlo realizations, the RMSE is given by

Eγ =

√
∑NM
n=1 D{γ̃n, γ}2

NM
(25)

where the operator D{γ̃n, γ} = ||γ̃n − γ||2 (the L− 2 norm) when the case is with regard
to the location evaluation, and D{γ̃n, γ} = γ̃n − γ with the angle and delay estimation.

Table 2. Simulation Parameters.

Parameters Values

The BS location PB = [0, 0, 0]m
The carrier frequency fc = 2.4 GHz

The bandwidth BW = 20 MHz
The number of sub-carriers NK = 64

The sampling number NSP = 200
The number of UCA elements NA = 12

The UCA radius r = λ
The number of multi-path components NL = 3

The number of Monte Carlo realizations NM = 1000
The number of maximum iterations NT = 500

The breakout threshold φth = τth = θth = 10−5

The 1st step grid spacing ∆θ = ∆φ = 5◦

∆τ = 5ns

The performance of the proposed JAEDE-based localization technique (referred to as
J-MT) is further compared with three other techniques:

1. J-2M [15]: A two-step MUSIC-based algorithm, with coarse-fine grid spacing. In the
following simulations, we extend the original 2D JADE method to 3D JAEDE, and
choose coarse, find grid spacing of [∆θ, ∆φ, ∆τ] as [1◦, 1◦, 1 ns] and [0.1◦, 0.1◦, 0.1 ns],
respectively.

2. S-MT: Using a MUSIC-Taylor algorithm similar to J-MT, but the angles and delay are
estimated separately. The grid spacing for the 1st step MUSIC is the same as J-MT,
[5◦, 5◦, 5 ns].



Appl. Sci. 2023, 13, 10768 12 of 16

3. S-2M [15]: A two-step MUSIC-based algorithm, similar to J-2M, but the angles and
delay are estimated separately, following the same grid spacing as J-2M.

In the first comparison, we evaluate the performance of the proposed J-MT algo-
rithm and compare it with a two-step classic MUSIC-based JAEDE algorithm called J-2M.
The objective is to demonstrate the improvement achieved by reducing the grid con-
straints in the J-MT algorithm. The ground truth values for the three paths are deliberately
set off-grid. Specifically, the AoAz, AoAe and ToA are l0 = [45.411◦, 30.402◦, 10.637 ns],
l1 = [−34.222◦, 12.511◦, 118.46 ns], and l2 = [78.538◦, 60.816◦, 195.86 ns]. As shown in
Figure 5, the proposed J-MT method exhibits a stable downward trend. In terms of AoAz
and ToA, the J-MT method consistently performs better than the J-2M method. In the case of
AoAe, the J-MT method gradually outperforms the J-2M method as the SNR exceeds 15dB.
The slight upward tails of the J-2M method represent the performance limitation imposed
by the grid constraints, which is effectively eliminated by the proposed J-M method.

Figure 6 depicts the RMSE for the four candidate algorithms, with respect to AoAz,
AoAe, ToA, and the overall location estimation under varying SNR conditions. To sim-
ulate the ground truth values of AoAz, AoAe, and ToA, we generate random variables
distributed uniformly within a reasonable range, specifically, θ ∈ [0, 180]◦, φ ∈ [0, 90]◦, and
τ ∈ [3, 300]ns. These ranges ensure that the MS is situated approximately 1 to 100 meters
away from the BS. Additionally, the minimum gap between any two components is set as
15 ns and 15◦ (equal to three grid spacings), and any two paths closer than the minimum
gap could be regarded as one cluster.
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Figure 5. The comparison on the grid bias elimination between J-MT and J-2M [15] for (a) AoAz,
(b) AoAe, and (c) ToA estimation.

Analyzing the sub-figures within Figure 6, we observe several common trends. As
the SNR increases, all four algorithms consistently exhibit a decrease in RMSE, with
the proposed J-MT method consistently outperforming the others. This highlights the
superior performance of our proposed joint estimation approach. Moreover, the joint
estimation methods (marked with ‘J’) consistently outperform the separate estimation
methods (marked with ‘S’) in both angle and delay estimation. since the steering matrix
adopted by the joint estimation takes advantage of both the antenna array and the sub-
carrier frequency array, which is equivalent to an improvement in the antenna capability.
Consequently, the joint estimation provided by the algorithms outperforms the separate
estimation. However, it is noteworthy that the S-MT method does not exhibit significant
superiority over the S-2M method. This limitation primarily arises from the initial MUSIC
estimation. While the second-step Taylor enhancement can reduce estimation errors, its
effectiveness is limited by the accuracy of the first step’s results. If the initial estimations
deviate significantly from the ground truth, the second step may not fully compensate
for those discrepancies. Additionally, the estimation of AoAz consistently outperforms
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that of AoAe. This can be attributed to two reasons: Firstly, AoAz contributes more to the
phase difference at different array elements of the UCA compared to AoAe; Secondly, the
elevation angle spread only spans from 0 to 90 degrees, which is half the azimuth angle
range, posing additional challenges to the algorithm resolution in our specific setup.
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Figure 6. Comparison of the (a) AoAz, (b) AoAe, (c) ToA, and (d) the overall location estimation
performance under various SNR for J-MT, J-2M [15], S-MT, and S-2M.

Using the estimation results of Aoaz, AoAe, and ToA, along with the LOS judgment
principle mentioned earlier, the location of the MS can be calculated. Consequently, the
RMSE of the localization is depicted in Figure 6d for the four different algorithms, con-
sidering various SNR conditions. As anticipated, the accuracy of localization follows a
similar trend to the accuracy of AoAz, AoAe, and ToA estimation. Our proposed algorithm
consistently outperforms the other methods across different SNR conditions.

The last part of the performance evaluation is the computational complexity analysis.
We mainly focus on the two MUSIC-based JAEDE algorithms, J-MT and J-2M [15]. Let G
denote the number of grid points. Specifically, Gθ , Gφ, Gτ for the grid number of the coarse
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estimation in the J-MT method; and Gθ1, Gφ1, Gτ1, Gθ2, Gφ2 and Gτ2 for the grid number of
the two steps in the J-MM method. Thus, the computational complexity for J-MT is

O
(

N3
AN3

K + N2
AN2

KNSP + NANK(NANK − NL)GθGφGτ

+ (NANK − NL)GθGφGτ +
(
9NANK(NANK − NL)

+ 9(NANK − NL) + 4NANK

)
NT

)
and for J-2M,

O
(

N3
AN3

K + N2
AN2

KNSP +
(

NANK(NANK − NL)+

(NANK − NL)
)
(Gθ1Gφ1Gτ1 + Gθ2Gφ2Gτ2)

+ 6(Gθ1Gφ1Gτ1 + Gθ2Gφ2Gτ2)
)

Adopting the settings for Figure 5, and assuming the maximum iterations NT = 500 for
J-MT (the worst case in our simulations), for one Monte Carlo realization, the computational
complexity of J-MT (2.80× 1010) takes up only 0.97% of MM-2D complexity (2.89× 1012).

5. Conclusions

In this paper, we propose the J-MT localization algorithm for the IIoT, aiming to
address the challenges of indoor positioning using a single BS. The proposed method
leverages the benefits of MUSIC-based JAEDE to effectively estimate the angle of azimuth,
elevation, and time delay of the target. Moreover, the proposed approach eliminates the
grid constraints that arise from the grid peak searching of conventional MUSIC-based
methods, employing the Taylor-series method with a notable 99% reduction in compu-
tational cost compared to the conventional two-step coarse-find grid searching MUSIC
method. This advancement not only enhances accuracy but also improves the efficiency of
the overall localization process. The comprehensive numerical results obtained through
simulations have demonstrated the superiority of our proposed algorithm across vari-
ous SNR conditions. It consistently outperforms other existing methods, including both
separate angle and delay estimation, and two-step joint MUSIC localization algorithms.

Although the J-MT algorithm is originally proposed for indoor IIoT scenarios, it can
also serve as a valuable inspiration for outdoor non-terrestrial network (NTN) applications
with appropriate enhancements in both the antenna array and the algorithm design. In
NTN scenarios, the longer distances between the airborne BS and the target introduce
new challenges that need to be addressed. Firstly, the antenna array design must be
improved to achieve higher angular sensitivity, while also considering compact size and
low energy consumption. This is necessary to ensure accurate localization performance
over extended distances. Secondly, the mobility of the BS, such as unmanned aerial vehicles
(UAVs), presents additional obstacles that must be overcome. These include addressing
link robustness, handover mechanisms, and potential interferences. By incorporating these
improvements, the J-MT algorithm can be effectively adapted for NTN environments,
enabling accurate localization even over large outdoor areas.
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Appendix A

∆θ, ∆φ, and ∆τ can be calculated from the augmented matrices in (18) and (19),
by the following rules: a22{a}1 − a12{a}2, a22{a}3 − a32{a}1, a21{a}1 − a11{a}2, and
a31{a}2 − a21{a}3. Denoting the derived matrices with b and c, we have

b =

b11 b12 b13 b14
a21 a22 a23 a24
b31 b32 b33 b34

 =

a22a11 − a12a21 0 a22a13 − a12a23 a22a14 − a12a24
a21 a22 a23 a24

a22a31 − a32a21 0 a22a33 − a32a23 a22a34 − a32a24

, (A1)

c =

c11 c12 c13 c14
c21 c22 c23 c24
a31 a32 a33 a34

 =

 0 a21a12 − a11a22 a21a13 − a11a23 a21a14 − a11a24
0 a31a22 − a21a32 a31a23 − a21a33 a31a24 − a21a34

a31 a32 a33 a34

. (A2)

Consequently, ∆θ, ∆φ, and ∆τ can be calculated by the above augmented matrices as

∆θ = R
{

b33b14 − b13b34

b33b11 − b13b31

}
, (A3)

∆φ = R
{

c23c14 − c13c24

c23c12 − c13c22

}
, (A4)

∆τ = R
{

b31b14 − b11b34

b31b13 − b11b33

}
. (A5)

Hence, the results in (20)–(22) can be obtained by substituting (A1) and (A2) into
(A3)–(A5).
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