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Abstract: PET/CT can scan low-dose computed tomography (LDCT) images with morphological
information and PET images with functional information. Because the whole body is targeted for
imaging, PET/CT examinations are important in cancer diagnosis. However, the several images
obtained by PET/CT place a heavy burden on radiologists during diagnosis. Thus, the development
of computer-aided diagnosis (CAD) and technologies assisting in diagnosis has been requested.
However, because FDG accumulation in PET images differs for each organ, recognizing organ regions
is essential for developing lesion detection and analysis algorithms for PET/CT images. Therefore,
we developed a method for automatically extracting organ regions from PET/CT images using U-Net
or DenseUNet, which are deep-learning-based segmentation networks. The proposed method is a
hybrid approach combining morphological and functional information obtained from LDCT and PET
images. Moreover, pre-training using ImageNet and RadImageNet was performed and compared.
The best extraction accuracy was obtained by pre-training ImageNet with Dice indices of 94.1, 93.9,
91.3, and 75.1% for the liver, kidney, spleen, and pancreas, respectively. This method obtained better
extraction accuracy for low-quality PET/CT images than did existing studies on PET/CT images
and was comparable to existing studies on diagnostic contrast-enhanced CT images using the hybrid
method and pre-training.

Keywords: organ segmentation; PET/CT; U-Net

1. Introduction

Cancer is a major cause of death in many countries and an important obstacle in
extending life expectancy. According to the World Health Organization (WHO), cancer
is the first or second leading cause of death in people under the age of 70 years in 112 of
183 countries [1].

In today’s medical care, various diagnostic imaging examinations, such as computed
tomography (CT) and magnetic resonance imaging (MRI), are used for the early detection
and treatment of cancer. Notably, PET/CT examinations that scan low-dose computed
tomography (LDCT) and positron emission tomography (PET) play important roles in
cancer diagnosis. Specifically, LDCT images provide morphological information, such as
the shape and location of organs, whereas PET images provide functional information,
such as glucose metabolism in organs. 18F-Fluorodeoxyglucose (FDG), mainly used in
PET/CT examinations, is a radioactive tracer that acts as a glucose analog to localize
tissues with altered glucose metabolism. Importantly, the amount of FDG accumulated in
each organ indicates the function of glucose metabolism, and the standard uptake value
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(SUV) is widely used as a semiquantitative index of glucose metabolism in clinical settings.
Furthermore, fusion images created from LDCT and PET images can be used to identify
the exact anatomical location of abnormal FDG uptake observed on PET images.

Based on the morphological and functional information obtained from LDCT, PET,
and fusion images, PET/CT examinations can contribute to the diagnosis of cancer and
other diseases. However, PET/CT examinations require the use of a large number of
medical images in a single examination, which places a heavy burden on radiologists
during diagnosis. This has led to the development of computer-aided diagnosis (CAD) and
other image diagnosis-assisted technologies that use artificial intelligence (AI) to reduce
the burden on radiologists.

In recent years, with the development of computer technology, CAD methods for
various modalities have been actively studied [2–5]; however, few of them have been
developed for PET/CT examinations because PET/CT examinations target the whole body
and the different patterns of FDG uptake in each organ require different algorithms for
detecting and analyzing lesions in different organs. To develop such an algorithm, it is
necessary to recognize each organ region. Therefore, we developed an automated organ
segmentation technique for PET/CT images as a fundamental technology for developing
CAD for each organ.

1.1. Related Works

Many researchers have proposed various methods for organ segmentation in diagnos-
tic CT images. Wolz et al. and Tong et al. proposed an atlas-based organ segmentation
method [6,7]. However, the accuracy of organ extraction in this model is highly depen-
dent on the accuracy of the image registration, which requires a wide variety of atlas
datasets. Moreover, Gauriau et al. and Criminisi et al. proposed machine learning-based
methods [8,9], which are beneficial for detecting and estimating the location of anatomical
structures; however, manually set features are important, and setting the appropriate fea-
tures represents a heavy burden. Recently, segmentation methods based on deep learning
that can automatically learn features obtained from image data have become the standard
segmentation methods.

Hu et al. proposed an end-to-end 3D convolutional neural network (CNN)-based seg-
mentation method [10]. In that study, the number of training cases changed, suggesting the
importance of the number of training cases in deep learning-based methods. Furthermore,
Zhou et al. proposed a fully convolutional network (FCN) voting method that performed
organ segmentation from axial, coronal, and sagittal cross-sections and combined the re-
sults of these three cross-sections for each pixel value [11]. The training data were increased
using three cross-sections, and organ segmentation was performed considering the organ
information in the body’s axial direction. Furthermore, Roth et al. proposed organ segmen-
tation focusing on small organs such as the pancreas and gallbladder, which are difficult
to extract, using multiple 3D FCNs in stages [12]. These existing studies have utilized CT
images, contrast-enhanced CT images with a sufficient dose on a diagnostic CT scanner, or
MR images, and various segmentation techniques that can extract organ regions with high
accuracy have been developed.

In contrast, there are few studies on organ segmentation for LDCT images obtained
using a PET/CT scanner. In an existing study on LDCT images, Wang et al. proposed a
multi-atlas segmentation (MAS) framework [13]. Specifically, the organs were segmented
for LDCT images using the MAS method, and the abdominal region of the PET image
was automatically cropped. Next, MAS was applied to the fused PET and LDCT images
to accurately extract the organs. Notably, Zhang et al. proposed an organ segmentation
method using deep learning [14]. Their endeavor involved utilizing two 3DVNets in a
stepwise process to achieve more accurate organ extraction from processed LDCT images.
However, when compared to studies on diagnostic CT images, the accuracy of extraction
in existing PET/CT image studies was inadequate. This emphasizes the need to focus on
improving extraction accuracy. LDCT images are acquired without contrast agents and at
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low doses; thus, they have a lower resolution than diagnostic CT images, and the margins
of the organs are unclear. In addition, because LDCT images are used for attenuation
correction of PET images they are captured with a wide field of view (FOV), and the
proportion of organs in the FOV is small. Therefore, highly accurate organ segmentation for
PET/CT images is more difficult than it is for diagnostic CT images. Therefore, improving
the extraction accuracy of organ segmentation methods for PET/CT images is necessary.

1.2. Purpose

In this study, we aimed to improve the extraction accuracy of organ segmentation
from PET/CT images using deep learning. We focused on the fact that although LDCT
images contain abundant anatomical (morphological) information, the image contrast of
soft tissue organs in the abdomen is significantly lower than that of diagnostic CT images.
In addition, PET images offer higher image contrast for soft tissue organs based on FDG
uptake (functional information); however, their spatial resolution is lower. To address these
challenges, we proposed a hybrid organ segmentation method that focuses on morphologi-
cal and functional information. We used two networks: one using only LDCT images and
the other using both LDCT and PET images as inputs.

Moreover, this study used fewer cases to train the networks than did existing studies.
Therefore, we aimed to achieve highly accurate organ segmentation on a small number of
datasets using a pre-trained model. In many studies using deep learning, ImageNet [15],
which consists of natural images, has been used as a pre-training dataset, and good results
have been reported [11]. However, within a study utilizing deep learning for medical
images, findings indicated that employing a pre-trained dataset (RadImageNet) containing
a substantial number of labeled medical images captured across various imaging modalities
led to improved accuracy when compared to the use of ImageNet. [16]. Therefore, we
applied RadImageNet as a pre-training dataset and compared its accuracy with that of
ImageNet.

1.3. Contribution

The contributions of this study are as follows.
We propose a hybrid method using two segmentation networks for PET/CT images,

focusing on anatomical information (morphological information) and FDG uptake (func-
tional information). This method enabled us to obtain better extraction accuracy than
existing studies of organ segmentation techniques for PET/CT images and equivalent
extraction accuracy compared to existing studies for high-quality diagnostic CT images.

We compared the organ extraction accuracy using two pre-trained datasets consisting
of natural and medical images. The results show the pre-training’s efficacy with limited
training data or using medical images to enhance organ segmentation techniques.

2. Methods
2.1. Overview of the Proposed Method

Figure 1 shows a schematic of this study. LDCT images only and both LDCT and
PET images were provided to the U-Net, and two types of output were obtained; these
were defined as CandidateLDCT and CandidatePET/CT, respectively. CandidateLDCT and
CandidatePET/CT were combined and defined as Outputproposed for the proposed output
region. The accuracy of the organ extraction was evaluated for the Outputproposed.
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Figure 1. Overview of the proposed method.

2.2. Dataset
2.2.1. Target Data

The target data consisted of LDCT and PET images of 48,092 patients taken between 2006
and 2020 at the Jinseikai MI Clinic. From these cases, 88 healthy subjects’ images taken in
2019 were randomly selected, and their data were used. Patients with a history of anatomical
impacts and those who had underdone surgical treatment were excluded. The matrix size of
LDCT images was 512 × 512 pixels, and the voxel size was 0.98–1.17 × 0.98–1.17 × 3.27 mm3.
The matrix size of PET images was 128 × 128 or 192 × 192 pixels, and the voxel size was
3.12–4.67 × 3.12–4.67 × 3.27 mm3.

2.2.2. Data Preparation

This study used PET/CT scans of the whole body. Therefore, axial images for this
study were manually selected such that four organs (liver, kidney, spleen, and pancreas)
were included, and the number of slice images per case ranged from 62 to 120. LDCT
and PET images saved in the DICOM format were converted to the 8-bit PNG format.
Furthermore, the pixel values of the PET images were normalized such that the SUV
ranged from 0 to 5. In addition, the PET images were resized to a matrix of 512 × 512 pixels
using linear interpolation. Moreover, the labeled images of each organ were created by
a qualified radiological technologist or a student on a training course who had acquired
knowledge of anatomy, using a tool developed by the authors. Finally, one radiological
technologist checked and modified all organ labels. An example of an organ label is shown
in Figure 2.
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2.3. Organ Segmentation

In this study, we used two types of segmentation networks. The first was a custom
version of U-Net [17], which was proposed by Ronneberger et al. In 2015 for segment-
ing medical images. U-Net consists of three blocks: encoder, bottleneck, and decoder.
In general, when multiple convolutional integrations are performed in a CNN, down-
sampling is likely to result in a loss of spatial information. However, U-Net has a skip
connection that combines the feature map obtained by the encoder with that obtained by
the decoder, thereby enabling the preservation of local and spatial positional information,
which is important in medical imaging. In this study, we used a customized network of
the original U-Net. A regularized linear unit (ReLU) was used as the activation function.
Batch regularization was also used as a regularization technique to stabilize learning and
improve generalization. And maximum pooling was used for downsampling and nearest
interpolation for upsampling. Furthermore, LDCT images only and LDCT and PET images
were provided to U-Net, and two types of organ regions were outputted. When inputting
the LDCT and PET images, each image was divided into separate channels and input
into U-Net. However, this network’s weights are randomly initialized, which reduces the
learning stability for a small number of datasets. Notably, this study used fewer datasets to
train the network than did existing studies. Therefore, we aimed to achieve highly accurate
organ extraction from a small number of datasets using pre-training.

For the second network, DenseUNet with a DenseNet121 encoder was used for pre-
training. DenseNet121 has been reported to perform well as a feature extractor in organ
segmentation networks [18]. Moreover, the sizes of the input and output images and
the input method in DenseUNet were the same as those in U-Net, as shown in the first
example. Notably, in many existing studies using deep learning, ImageNet, which consists
of natural images, has been used as a pre-training dataset. However, better results have
been obtained for medical studies using a pre-training dataset consisting of medical images.
Hence, within this study, we compared the full-scratch model, which begins with random
weight initialization, to the fine-tuning model. The latter initializes network weights using
both ImageNet and RadImageNet weights.

The combination loss [19] reported by Taghanaki et al. was used as the loss function.
Furthermore, combo loss consists of Dice loss and weighted cross-entropy loss and has two
parameters, α and β. α adjusts the weights of Dice loss and weighted entropy loss, while β

affects weighted cross-entropy loss and can change the sensitivity of the output. In this
study, α = 0.5, which is similar to that of the study by Taghanaki et al. Furthermore, the
combo loss is more strongly penalized for false negatives when the value of β is set to a
value higher than 0.5.

PET/CT images were acquired with a wide FOV; therefore, the organ area was smaller
than that of the input image. Thus, the output tends to be underestimated in cases with
small body sizes and in the pancreas, which has a small organ area and large individual
differences. Therefore, we performed a grid search in the range of β = 0.5 to 1.0 and selected
β = 0.6, which gave the best results.

2.4. Shaping of Output Labels and Composition

LDCT images only and LDCT and PET images were given to U-Net, and two types
of candidate regions were obtained. The final organ regions were obtained by combining
these two regions. This section describes the combined method in detail. Specifically,
two types of morphological processing were used to shape the output regions of the U-
Net. The output image was then opened and closed. The Outputproposed was obtained by
combining the candidate regions, CandidateLDCT and CandidatePET/CT, when the input
images were LDCT images only and LDCT and PET images, respectively. In this study,
Outputproposed was defined as the region where either CandidateLDCT or CandidatePET/CT
was output (CandidateLDCT or CandidatePET/CT).
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2.5. Evaluation Matrices

The extraction accuracy of each organ was evaluated using the three indices (Dice
index, sensitivity, and false positive rate) shown in the Formulas (1)–(3) below: the number
of voxels in the output region that matched the correct region was defined as a true positive
(TP), and the number of voxels in the output region that were not included in the correct
region (i.e., the number of voxels in the over-extracted region) was defined as a false
positive (FP). Finally, the number of voxels in the correct regions that were not included in
the output regions (i.e., the number of voxels in the undetected regions) was defined as a
false negative (FN).

Dice index =
2TP

2TP + FP + FN
× 100[%] (1)

Sensitivity =
TP

TP + FN
× 100[%] (2)

False positive rate =
FP

TP + FP
× 100[%] (3)

The Dice index indicates the relative volume overlap between the output and correct
regions. Furthermore, the sensitivity indicates the percentage of correct outputs among the
correct regions, and the FP rate indicates the percentage of outputs that are not in the organ
region out of all the outputs.

2.6. Learning Environment and Parameter

In this study, we used LDCT and PET images of 88 cases with four defined organ
regions taken at the same facility, and trained and predicted them using a 5-fold cross-
validation method. The segmentation models (U-Net and DenseUNet) were created using
Keras and TensorFlow, and PCs equipped with NVIDIA RTX A6000 GPUs and AMD
Ryzen 9 5900X CPUs were used. The learning rate was 1 × 10−4, the number of training
epochs was 100, the batch size was 8, regularization technique was batch normalization,
and the Adam optimization algorithm was used to train the segmentation model. Also,
weights were initialized randomly when using U-Net, and weights were initialized utilizing
ImageNet or RadImageNet weights when using DenseUNet.

3. Results

The results of multiple segmentation networks confirmed different trends between
candidate regions obtained using only LDCT images as inputs (CandidateLDCT) and those
obtained using LDCT and PET images as inputs (CandidatePET/CT). Table 1 shows the
extraction accuracy of CandidateLDCT, CandidatePET/CT, and the Outputproposed full-scratch
models trained on four target organs using U-Net with randomly initialized network
weights. The mean, standard deviation (SD), median, minimum, and maximum values of
the Dice are shown in Table 1. Furthermore, examples of each output are shown in Figure 3.

Table 1. Prediction results of CandidateLDCT and CandidatePET/CT and Outputproposed from Full-Scratch.

Organ Evaluation Metrics CandidateLDCT CandidatePET/CT Outputproposed

Liver
Dice [%]

Mean 94.1 94.2 94.0
SD 4.1 4.1 4.1

Median 94.9 94.7 94.7
Min 59.4 59.4 59.5
Max 97.0 96.9 96.7

Sensitivity [%] 95.4 95.6 96.6
False positive rate [%] 7.1 7.2 8.4
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Table 1. Cont.

Organ Evaluation Metrics CandidateLDCT CandidatePET/CT Outputproposed

Kidney
Dice [%]

Mean 94.3 94.6 94.1
SD 3.7 3.1 3.6

Median 95.6 95.5 95.2
Min 70.7 76.0 72.1
Max 97.5 97.8 97.3

Sensitivity [%] 96.3 96.7 97.7
False positive rate [%] 7.5 7.3 9.1

Spleen
Dice [%]

Mean 91.2 91.2 90.9
SD 8.3 8.4 8.3

Median 92.9 92.8 92.6
Min 20.0 20.0 20.7
Max 96.6 96.5 96.4

Sensitivity [%] 93.9 93.8 95.4
False positive rate [%] 11.0 10.9 12.9

Pancreas
Dice [%]

Mean 69.5 70.5 71.9
SD 16.2 15.7 14.0

Median 73.1 75.0 75.9
Min 0.0 22.3 21.7
Max 89.1 89.6 88.4

Sensitivity [%] 67.8 69.9 75.7
False positive rate [%] 25.0 25.8 29.2Appl. Sci. 2023, 12, x FOR PEER REVIEW  8  of  13 
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Additionally, we compared the training and prediction results using three segmenta-
tion models (full-scratch, ImageNet, and RadImageNet). Table 2 presents the extraction ac-
curacies, where full-scratch is the Outputproposed network initialized with random weights
using U-Net, and ImageNet and RadImageNet are the Outputproposed networks initialized
with ImageNet and RadImageNet, respectively, using DenseUNet. In Table 1, the Mean,
SD, Median, Min, and Max indicate the Dice index’s mean, standard deviation, median,
minimum, and maximum values, respectively. Examples of the outputs of the three models
are shown in Figure 4.
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Table 2. Prediction results of full-scratch, ImageNet, and RadImageNet.

Organ Evaluation Metrics Full-Scratch ImageNet RadImageNet

Liver
Dice [%]

Mean 94.0 94.1 93.7
SD 4.1 4.2 4.1

Median 94.7 94.9 94.6
Min 59.5 58.9 59.4
Max 96.7 96.8 96.7

Sensitivity [%] 96.6 97.0 96.8
False positive rate [%] 8.4 8.6 9.1
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Table 2. Cont.

Organ Evaluation Metrics Full-Scratch ImageNet RadImageNet

Kidney
Dice [%]

Mean 94.1 93.9 93.1
SD 3.6 4.1 4.1

Median 95.2 95.2 94.5
Min 72.1 71.1 72.1
Max 97.3 97.1 97.1

Sensitivity [%] 97.7 98.0 97.9
False positive rate [%] 9.1 9.6 10.9

Spleen
Dice [%]

Mean 90.9 91.3 90.3
SD 8.3 8.2 7.9

Median 92.6 92.6 92.0
Min 20.7 20.6 24.1
Max 96.4 96.3 95.8

Sensitivity [%] 95.4 95.8 95.6
False positive rate [%] 12.9 12.6 14.2

Pancreas
Dice [%]

Mean 71.9 75.1 70.6
SD 14.0 12.5 15.8

Median 75.9 78.9 75.2
Min 21.7 25.1 3.6
Max 88.4 89.4 86.4

Sensitivity [%] 75.7 82.3 77.3
False positive rate [%] 29.2 29.3 33.4

4. Discussion

Figure 3 shows the difference between CandidateLDCT and CandidatePET/CT in terms
of output regions. In the axial image at the end of the organ, the organ region was correctly
extracted on CandidateLDCT, whereas it tended not to be extracted on CandidatePET/CT.
The reason for the low extraction accuracy of CandidatePET/CT is thought to be the imaging
mechanism of the PET images, which are less sensitive at the edges of organs, leading to a
lower FDG uptake. Therefore, we believe that the organ region was not extracted from the
axial image at the ends of organs in CandidatePET/CT-given PET images. An example of
this in the liver is shown in Case 1 of Figure 3. Here, the liver was divided into two regions
in the axial image, and the liver in the smaller organ regions showed lower FGD uptake
in the PET image than did that in the larger organ region. Thus, we believe that the liver
in the smaller organ region was not correctly extracted in the CandidatePET/CT because
of this effect. Furthermore, because LDCT images were captured at low doses, streak
artifacts were sometimes observed in cases with large body sizes, such as Cases 1 and 2 in
Figure 3. In such cases, the spleen and pancreas were extracted using CandidatePET/CT,
but could not be extracted using CandidateLDCT. These results suggest that morphological
information, such as organ shape and CT values, were used in CandidateLDCT, whereas
functional information, such as glucose metabolism, was mainly used in CandidatePET/CT
for organ segmentation.

Moreover, in this study, the regions that were extracted in either of the two types of
candidate regions were defined as Outputproposed. As shown above, different regions were
extracted from the two types of candidate regions, and some trends in Outputproposed were
observed. As shown in Table 1, there was no significant difference in the Dice index of
Outputproposed for the liver, kidney, and spleen between the two candidate regions. How-
ever, there was a slight increase in sensitivity and FP rate. In contrast, the FP rate in the
pancreas increased, but the Dice index increased by 2.4% and 1.4%, and the sensitivity in-
creased by 7.9% and 5.8% compared to CandidateLDCT and CandidatePET/CT. These results
confirmed that the extracted pancreas region was significantly increased in Outputproposed,
in comparison with the two candidate regions. Thus, we believe organ segmentation
focusing on morphological and functional information was performed for the PET/CT
images in Outputproposed, in which CandidateLDCT and CandidatePET/CT were combined.
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However, the accuracy of organ extraction is lower in patients with smaller body
sizes. Figure 5 shows an example of the extraction results for the case with small body
size. The reason for the low extraction accuracy of the pancreas is thought to be the unclear
margins of the organ, which is a feature of LDCT images. In addition, because the images
were captured with a wide FOV, the organ regions in the images were small, and the
features of the pancreas were likely to be lost. For the spleen, only the extraction accuracy
of the CandidatePET/CT was low. The axial image in Figure 5 shows the edge of the spleen,
which was not correctly extracted because of low FDG uptake.
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Furthermore, this study used fewer datasets than the existing studies. Therefore,
we compared the extraction accuracy using pre-trained datasets to improve the learning
stability and increase the generalization ability. As shown in Table 2, when evaluated using
the Dice index, there was no significant difference between full-scratch and ImageNet
for the liver, kidney, and spleen; moreover, the RadImageNet was lower than that of the
other two models. For the pancreas, ImageNet was 3.2% and 4.5% more accurate than
full-scratch and RadImageNet, respectively; furthermore, ImageNet showed only 3.2%
and 4.5% higher Dice indices than did full-scratch and RadImageNet, respectively. This is
because ImageNet and RadImageNet were better at improving sensitivity than full-scratch
for all organs, and were able to extract more regions of the organs. However, the FP rate
increased significantly only for RadImageNet. Notably, Case 1 in Figure 4 is a small-bodied
case in which the pancreas was not extracted correctly by full-scratch, whereas ImageNet
and RadImageNet partially extracted it. However, FPs were observed in the pancreas
using RadImageNet. In conclusion, ImageNet performs best among the three segmentation
models. However, in contrast to the other organs, the pancreas had a high average of
the FP rate in all three models. Nevertheless, the average FP rate was small compared to
the average of the Dice index, and we believe that pancreas extraction performance has
achieved acceptable accuracy.

Several researchers have proposed various methods for organ segmentation, which is
an important technique in the medical field. However, it is difficult to directly compare
them because the number of training datasets used in each study and the quality of the
images differ depending on the target modality. Table 3 presents existing studies using
various methods. The proposed method showed the best results with the highest extraction
accuracy in the experiments (DenseUNet, which was pre-trained using ImageNet). Notably,
the proposed method achieved better extraction accuracy for all organs than did existing
methods using PET/CT images. In particular, the extraction accuracy of the proposed
method was approximately 15% higher than that of the other methods for the pancreas.
Furthermore, the extraction accuracy of the proposed method was comparable to those
of existing studies that used diagnostic CT images of four different organs. However,
there are existing studies that have achieved better extraction accuracy than the proposed
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method for each of the four organs. We believe that the reason for this is that LDCT and
PET images have significantly lower image contrast and spatial resolution than diagnostic
contrast-enhanced CT images used in existing studies. Nevertheless, this method provided
acceptable extraction accuracy because it used not only the morphological information
obtained from the LDCT images but also the functional information obtained from the PET
images. Moreover, soft-tissue organs neighboring other organs, such as the pancreas, have
better contrast than LDCT images do, which is considered to provide useful information
for organ segmentation.

Table 3. Comparison with existing studies using the Dice index.

Author
Methods Dataset Dice Index [%]

Model Validation Modality Contrast
Enhance

Number
of Cases Liver Kidney Spleen Pancreas

Tong et al.
(2015) [7] Atlas LOO D-CT CE 150 94.9 93.6 92.5 71.1

Hu et al.
(2017) [10] 3D CNN 5-fold CV D-CT Mixed 140 96.0 95.4 94.2 —

Roth et al.
(2017) [12] 3D FCN Testing D-CT CE 331 95.4 — 92.8 82.2

Gibson et al.
(2018) [20] DenseVNet 9-flod CV D-CT Mixed 90 95 93 * 95 75

Wang et al.
(2019) [13]

Multi
Atlas LOO PET/CT NCE 69 88 79 74 —

Zhang et al.
(2022) [14] VNet Hold out PET/CT NCE 175 90.7 89.9 89.1 60.3

Proposed
method DenseUNet 5-flod CV PET/CT NCE 88 94.1 93.9 91.3 75.1

LOO: leave-one-out; CV: cross-validation; Testing: use of cases taken at different institutions for learning and
prediction; D-CT: diagnostic-CT; CE: contrast agents were used in all cases; NCE: contrast agents were not used
in all cases; Mixed: a mixture of cases in which contrast agents were used and those in which they were not.
* Extracted from the left kidney alone.

The proposed method demonstrates enhanced organ segmentation capabilities on
low-quality and contrast PET/CT images, outperforming existing PET/CT studies in terms
of extraction accuracy. Furthermore, its extraction accuracy aligns closely with that of
established studies focusing on contrast-enhanced CT images for diagnostic applications.

However, this study had three limitations. First, the data set used in this study was
obtained at a single institution. Therefore, it is necessary to evaluate its robustness by
conducting additional studies using data obtained at multiple institutions with different
equipment and imaging protocols. However, since there is no open data set of PET/CT
images for which organ labels have been created, it will be necessary to collaborate with
other institutions to create image data and organ labels to evaluate the robustness and
feasibility of the proposed method. Second, two-dimensional processing was used for
organ segmentation. By extending the proposed method to 3D processing, information
regarding the direction of the body axis can be retained, and more accurate organ extraction
is expected. Third, only U-Net or DenseUNet was used in this study, thus the validation is
limited. Today, convolutional neural network architectures for medical-image segmentation
are being developed. Therefore, we believe that the effectiveness of the proposed method
can be further proven by using those state-of-the-art architectures. Furthermore, in clinical
practice, the extraction of organ regions is used in treatment planning for radiotherapy.
Therefore, as a future study, we would like to compare the results of the proposed method
with the accuracy of organ region extraction performed by trained workers in order to
conduct a quantitative evaluation more in line with clinical practice.
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5. Conclusions

We developed a hybrid method for organ segmentation of PET/CT images. Fur-
thermore, we pre-trained using ImageNet and RadImageNet, and compared the results.
The best accuracy was obtained using DenseUNet, which was pre-trained with ImageNet.
Additionally, by using morphological and functional information obtained from LDCT
and PET images, the extraction accuracy was better than that of existing studies using
PET/CT images and was comparable to that of existing studies using contrast-enhanced
CT images for diagnostic purposes. Therefore, it was suggested that the proposed method
could be a fundamental technology for CAD development such as in lesion detection for
PET/CT images.

Author Contributions: Conceptualization, Y.S. (Yuta Suganuma) and A.T.; formal analysis, Y.S. (Yuta
Suganuma) and A.T.; methodology, Y.S. (Yuta Suganuma) and A.T.; software, Y.S. (Yuta Suganuma)
and A.T.; writing—original draft preparation, Y.S. (Yuta Suganuma) and A.T.; writing—review and
editing, K.S., H.F., Y.S. (Yuuki Suzuki), N.T. and S.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Osaka University (HM19-549).

Informed Consent Statement: Informed consent was obtained via an opt-out process at the Osaka
University and Jinseikai MI Clinic, and all data were anonymized.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to retention of patient information.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Teramoto, A.; Fujita, H.; Yamamuro, O.; Tamaki, T. Automated detection of pulmonary nodules in PET/CT images: Ensemble
false-positive reduction using a convolutional neural network technique. Med. Phys. 2016, 43, 2821–2827. [CrossRef] [PubMed]

3. Alakwaa, W.; Nassef, M.; Badr, A. Lung cancer detection and classification with 3D convolutional neural network (3D-CNN).
Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2017, 8, 409–417. [CrossRef]

4. Trebeschi, S.; van Griethuysen, J.J.M.; Lambregts, D.M.J.; Lahaye, M.J.; Parmar, C.; Bakers, F.C.H.; Peters, N.H.G.M.; Beets-Tan,
R.G.H.; Aerts, H.J.W.L. Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR.
Sci. Rep. 2017, 7, 5301. [CrossRef] [PubMed]

5. Salama, W.M.; Aly, M.H. Deep learning in mammography images segmentation and classification: Automated CNN approach.
Alex. Eng. J. 2021, 60, 4701–4709. [CrossRef]

6. Wolz, R.; Chu, C.; Misawa, K.; Fujiwara, M.; Mori, K.; Rueckert, D. Automated abdominal multi-organ segmentation with
subject-specific atlas generation. IEEE Trans. Med. Imaging 2013, 32, 1723–1730. [CrossRef] [PubMed]

7. Tong, T.; Wolz, R.; Wang, Z.; Gao, Q.; Misawa, K.; Fujiwara, M.; Mori, K.; Hajnal, J.V.; Rueckert, D. Discriminative dictionary
learning for abdominal multi-organ segmentation. Med. Image Anal. 2015, 23, 92–104. [CrossRef] [PubMed]

8. Gauriau, R.; Cuingnet, R.; Lesage, D.; Bloch, I. Multi-organ localization with cascaded global-to-local regression and shape prior.
Med. Image Anal. 2015, 23, 70–83. [CrossRef] [PubMed]

9. Criminisi, A.; Robertson, D.; Konukoglu, E.; Shotton, J.; Pathak, S.; White, S.; Siddiqui, K. Regression forests for efficient anatomy
detection and localization in computed tomography scans. Med. Image Anal. 2013, 17, 1293–1303. [CrossRef] [PubMed]

10. Hu, P.; Wu, F.; Peng, J.; Bao, Y.; Chen, F.; Kong, D. Automatic abdominal multi-organ segmentation using deep convolutional
neural network and time-implicit level sets. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 399–411. [CrossRef] [PubMed]

11. Zhou, X.; Takayama, R.; Wang, S.; Hara, T.; Fujita, H. Deep learning of the sectional appearances of 3D CT images for anatomical
structure segmentation based on an FCN voting method. Med. Phys. 2017, 44, 5221–5233. [CrossRef]

12. Roth, H.R.; Oda, H.; Hayashi, Y.; Oda, M.; Shimizu, N.; Fujiwara, M.; Misawa, K.; Mori, K. Hierarchical 3D Fully Convolutional
Networks for Multi-organ Segmentation. arXiv 2017, arXiv:1704.06382.

13. Wang, H.; Zhang, N.; Huo, L.; Zhang, B. Dual-modality multi-atlas segmentation of torso organs from [18F]FDG-PET/CT images.
Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 473–482. [CrossRef]

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1118/1.4948498
https://www.ncbi.nlm.nih.gov/pubmed/27277030
https://doi.org/10.14569/IJACSA.2017.080853
https://doi.org/10.1038/s41598-017-05728-9
https://www.ncbi.nlm.nih.gov/pubmed/28706185
https://doi.org/10.1016/j.aej.2021.03.048
https://doi.org/10.1109/TMI.2013.2265805
https://www.ncbi.nlm.nih.gov/pubmed/23744670
https://doi.org/10.1016/j.media.2015.04.015
https://www.ncbi.nlm.nih.gov/pubmed/25988490
https://doi.org/10.1016/j.media.2015.04.007
https://www.ncbi.nlm.nih.gov/pubmed/25974326
https://doi.org/10.1016/j.media.2013.01.001
https://www.ncbi.nlm.nih.gov/pubmed/23410511
https://doi.org/10.1007/s11548-016-1501-5
https://www.ncbi.nlm.nih.gov/pubmed/27885540
https://doi.org/10.1002/mp.12480
https://doi.org/10.1007/s11548-018-1879-3


Appl. Sci. 2023, 13, 10765 13 of 13

14. Zhang, J.; Wang, Y.; Liu, J.; Tang, Z.; Wang, Z. Multiple organ-specific cancers classification from PET/CT images using deep
learning. Multimed. Tool Appl. 2022, 81, 16133–16154. [CrossRef]

15. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

16. Mei, X.; Liu, Z.; Robson, P.M.; Marinelli, B.; Huang, M.; Doshi, A.; Jacobi, A.; Cao, C.; Link, K.E.; Yang, T.; et al. RadImageNet:
An open radiologic deep learning research dataset for effective transfer learning. Radiol. Artif. Intell. 2022, 4, e210315. [CrossRef]
[PubMed]

17. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci.
2015, 9351, 234–241. [CrossRef]

18. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid densely connected UNet for liver and tumor
segmentation from CT volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [CrossRef] [PubMed]

19. Taghanaki, S.A.; Zheng, Y.; Kevin Zhou, S.K.; Georgescu, B.; Sharma, P.; Xu, D.; Comaniciu, D.; Hamarneh, G. Combo loss:
Handling Input and Output Imbalance in multi-organ Segmentation. Comput. Med. Imaging Graph. 2019, 75, 24–33. [CrossRef]
[PubMed]

20. Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C.
Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med. Imaging 2018, 37, 1822–1834.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-022-12055-3
https://doi.org/10.1145/3065386
https://doi.org/10.1148/ryai.210315
https://www.ncbi.nlm.nih.gov/pubmed/36204533
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/TMI.2018.2845918
https://www.ncbi.nlm.nih.gov/pubmed/29994201
https://doi.org/10.1016/j.compmedimag.2019.04.005
https://www.ncbi.nlm.nih.gov/pubmed/31129477
https://doi.org/10.1109/TMI.2018.2806309
https://www.ncbi.nlm.nih.gov/pubmed/29994628

	Introduction 
	Related Works 
	Purpose 
	Contribution 

	Methods 
	Overview of the Proposed Method 
	Dataset 
	Target Data 
	Data Preparation 

	Organ Segmentation 
	Shaping of Output Labels and Composition 
	Evaluation Matrices 
	Learning Environment and Parameter 

	Results 
	Discussion 
	Conclusions 
	References

