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Abstract: With the development of 5G vertical applications, a huge amount of unlabeled network data
can be collected, which can be employed for evaluating the user experience and network operation
status, such as the identifications and predictions of network anomalies. However, it is challenging
to achieve highly accurate evaluation results using the conventional statistical methods due to the
limitations of data quality. In this paper, generative adversarial network (GAN)-based anomaly
detection and forecasting are studied for 5G vertical applications, which can provide considerable
detection and prediction results with unlabeled network data samples. First, the paradigm and
deployment of the deep-learning-based anomaly detection and forecasting scheme are designed.
Second, the network structure and the training strategy are introduced to fully explore the potential
of the GAN model. Finally, the experimental results of our proposed GAN model are provided based
on the practical unlabeled network operation data in various 5G vertical scenarios, which show
that our proposed scheme can achieve significant performance gains for network anomaly detection
and forecasting.

Keywords: anomaly detection and forecasting; 5G vertical application; unlabeled data; network
quality; neural networks

1. Introduction

The transition of the industrial network infrastructure in the era of Industry 4.0 requires
that diverse communication requirements are fulfilled, including those of smart cities, man-
ufacturing technologies, and Industrial Internet of Things (IIoT) applications [1,2]. With
the advent of 5G networks, there is great potential to fulfill these requirements by offering
high-speed connectivity, ultra-low latency, and massive capacity [3]. However, the hetero-
geneity of vertical industries introduces various application scenarios such as healthcare,
smart grids, and intelligent transportation, each with diverse business characteristics and
network demands. These differences pose challenges for the successful implementation
and optimization of 5G networks in industrial environments [4,5]. As a result, optimizing
5G networks for industrial settings requires tailored approaches that consider the specific
requirements of each vertical sector. Efficient resource allocation, traffic management, and
quality of service (QoS) provisioning become critical factors that need to be addressed to
maximize the benefits of 5G technology in industrial applications [6]. Developing opti-
mization algorithms that can account for the interplay between the network infrastructure,
industrial applications, and dynamic workloads is essential for achieving optimal network
performance and meeting the unique demands of different industrial verticals. Future
research efforts should focus on developing innovative solutions for network monitoring
and optimization in industrial environments [7]. This includes exploring techniques for
data labeling and traffic analysis in industrial networks, as well as designing adaptive
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and dynamic optimization algorithms that can adapt to the changing needs of industrial
environments.

The large-scale connectivity of IoT devices in 5G vertical applications introduces
additional complexity to network monitoring. The sheer number of connected devices,
each generating data and contributing to the overall network traffic, presents a challenge
in effectively managing and analyzing the vast amount of information [8]. The diversity
and differentiation of 5G services and terminals further complicate the monitoring process.
Each vertical industry may have unique requirements and network demands, necessitating
tailored monitoring approaches to ensure their optimal performance and meet specific
needs [9]. Moreover, the dynamic nature of 5G networks and the real-time requirements
of certain vertical industries pose further challenges [10]. For instance, industries such
as intelligent transportation or healthcare demand real-time monitoring to enable timely
decision making and ensure the safety and efficiency of operations. Meeting these high
real-time requirements and providing actionable insights in a timely manner presents a
significant technical challenge for network monitoring in 5G vertical applications. However,
these challenges also present opportunities for advancements in network monitoring
techniques. Innovative approaches such as machine learning (ML), artificial intelligence
(AI), and data analytics can be leveraged to analyze unlabeled network data and effectively
detect anomalies [11]. By harnessing the power of these technologies, operators can
gain valuable insights into network performance, detect potential issues in advance, and
take proactive measures to optimize network resources and ensure reliable and efficient
operations.

In the realm of anomaly detection for time series network data, the identification of
unusual behavior within a sequence of interconnected data is of the utmost importance.
However, one of the major challenges faced in this field is the lack of anomaly labeling,
making supervised learning approaches infeasible. To tackle this challenge, researchers
have developed various unsupervised techniques in recent years. These techniques aim to
detect anomalies without relying on labeled examples. Among the commonly utilized unsu-
pervised methods, there are distance-based techniques such as K-nearest neighbors [12–16].
This approach measures the similarity between data points based on their distances, and
anomalies are identified as points that significantly deviate from their neighboring data
points. Clustering techniques, like K-means, group similar data points together and con-
sider points that do not belong to any cluster as potential anomalies [17–19]. Classification
techniques, such as one-class support vector machines (SVMs), create a model of normal be-
havior and classify instances that fall outside the learned boundaries as anomalies [20–22].
Probabilistic methods analyze the statistical properties of the data and identify instances
that have low probability under the learned distribution as anomalies [23]. However, tradi-
tional unsupervised methods have faced limitations over time. One significant challenge is
the exponential increase in the dimensionality and length of the acquired measurements
in modern network systems. As the complexity of the data grows, traditional techniques
struggle to effectively capture the intricate patterns and correlations present in the time se-
ries network data. Additionally, these methods may not perform optimally in capturing the
temporal correlation across different time steps, which is crucial for accurate anomaly de-
tection. The dynamic nature of network systems requires models to consider the sequential
dependencies and changes over time, which traditional techniques may overlook [24].

As a result, there has been a shift towards employing deep learning-based unsuper-
vised anomaly detection methods. These approaches leverage the power of deep neural
networks to automatically learn representations and infer correlations between time se-
ries [25–28]. Recurrent neural networks (RNNs) [29–31], such as the long short-term
memory (LSTM) network [32,33], have shown promise in capturing long-term dependen-
cies and temporal correlations in time series data. These can effectively model sequential
information and have been successfully applied to anomaly detection tasks. Additionally,
generating adversarial networks (GANs) have been explored in this domain [34]. GANs can
learn to generate synthetic data that closely resemble the normal behavior of the network
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system, allowing for the detection of deviations from this learned distribution as anomalies.
Despite the advantages of deep learning-based methods, they also face their own set of
challenges. The training of RNNs can be computationally expensive and time-consuming
due to the sequential nature of the network. GANs, on the other hand, can suffer from
issues such as pattern collapse and non-convergence during training, which can impact
their performance. Furthermore, deep learning-based methods often struggle with noisy
data in multivariate time series, as noise can introduce false positives and reduce the
accuracy of anomaly detection. Addressing these challenges is an active area of research.

To the best of our knowledge, ref. [25] proposed a novel model called MSCRED that
addresses the challenges of anomaly detection, root cause identification, and anomaly
severity interpretation in multivariate time series data. MSCRED specifically focuses on
capturing the correlation between different variables in the time series, enabling more
accurate anomaly detection. By jointly considering these tasks, MSCRED offers a compre-
hensive solution for analyzing complex network systems. Similarly, ref. [28] introduced
OmniAnomaly, a multivariate time series recurrent neural network designed for stochas-
tic anomaly detection. OmniAnomaly utilizes reconstruction probabilities to determine
anomalies, providing a reliable and interpretable measure of anomaly severity. With its
stochastic nature, OmniAnomaly is well suited for capturing uncertainties in time series
data. However, one common limitation shared by these methods is the lack of consideration
for the time cost associated with training. Training complex deep learning models can be
computationally expensive and time-consuming, which may limit their practical applica-
bility. To address this concern, ref. [35] introduced the unsupervised anomaly detection
(USAD) method. USAD combines the power of autoencoders and generative adversarial
networks (GANs) to achieve more stable and efficient training. By leveraging the strengths
of both models, USAD improves the stability and speed of training for anomaly detection
in time series data. While these methods offer valuable contributions to the field, none of
them explicitly address the forecasting problem of future anomalies. Forecasting future
anomalies is crucial for proactive risk management and preventive actions. This aspect
is an important consideration for real-time monitoring and decision-making in dynamic
network systems. Incorporating forecasting capabilities into anomaly detection models
is an ongoing area of research and an important direction for further advancements in
the field.

In this paper, we introduce an approach for detecting and forecasting anomalies in
unlabeled network data recorded across various 5G vertical applications. As demonstrated
in Figure 1, the data processing procedure of unlabeled network data is first executed, which
is followed by two parallel modules, named anomaly detection and forecasting modules,
respectively. In the anomaly detection module, a GAN-based detection model is designed
to obtain the anomaly evaluation results. In the anomaly forecasting module, a prediction
model is employed to analyze the relationship between the input network status parameters
and the predicted data, and the final predicted anomaly results can be achieved by using
the anomaly detection model. Network anomaly detection and forecasting are critical to
guarantee the quality of services (QoS) of 5G vertical applications, especially for some
developing regions, such as South America, where the telecommunication infrastructure
construction is not adequate [36]. Our proposed scheme can significantly mitigate the
impacts of network anomaly with the restrictions of capital and operational expenditure,
which can accumulate the development of 5G vertical applications. The main contributions
of this paper are as follows:

• First, to achieve anomaly detection in 5G vertical applications, the strengths of the
autoencoder and the GANs are combined. The autoencoder efficiently distills the
significant characteristics of the data, while GAN provides robustness by generating
adversarial examples. This innovative combination greatly enhances both the accuracy
and stability of our anomaly detection model, ensuring the precise identification and
consistent performance across diverse data contexts.
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• Second, in order to proactively prepare for anomalies, we employ an LSTM model to
predict the 5G network quality data, followed by the use of unsupervised anomaly
detection methods to identify anomalies in the predicted data. By leveraging the
predictive power of the LSTM model, our approach seeks to anticipate anomalous
behavior in advance, and subsequently mitigate any potential negative impacts on
the network.

• Finally, the simulation results show that our method outperforms traditional anomaly
detection algorithms. Moreover, our method demonstrates a remarkable accuracy in
detecting and forecasting anomalies in unlabeled network data. Therefore, it has good
performance in network quality monitoring for 5G vertical applications.

Anomaly
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Anomaly Detection

Window
 data

 5G Vertical 
Applications

Prediction
Model Predicted 

data
Anomaly Forecasting

Window
 data
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Predicted
anomaly

label
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Figure 1. The illustration of the anomaly detection and forecasting problem.

The organization of this paper is as follows. In Section 2, we present the system
model and formulate the associated problems related to network anomaly detection and
forecasting. Section 3 provides a detailed exposition of the structure and algorithmic design
underpinning our anomaly detection scheme. The structural design and algorithms of
our anomaly forecasting scheme are the focus of Section 4. Simulation results and their
corresponding discussions are offered in Section 5. Finally, Section 6 concludes the paper,
summarizing key insights and findings.

2. System Model and Problem Formulation

We consider the network anomaly detection and forecasting problem in 5G vertical
applications, which consists of three essential components:

• Data process: For the unlabeled network data, we express the set of time periods and
that of data dimensions as T = {1, . . . , T} andM = {1, . . . , M}, respectively. On
this basis, the time series data of length T can be expressed as D = {dt}T

t=1, where
dt ∈ RM denotes the network data at a specific time point t with dimensions of M.
To capture the relationship between the current time point and its previous ones, a
processing procedure is necessary for the network data. This procedure transforms
the data into a series of window data, denoted by W = {wt}T

t=1. Each window
data at time point t is defined as a sequence of dt from t− K + 1 to t, expressed as
wt = {dt}t

t=t−K+1. It is worth noting that the length of each window data is K.
• Anomaly detection: Anomaly detection is applied to the processed window dataW

using an anomaly detection model. The underlying principle of anomaly detection
involves training the model on known data samples and assessing the abnormality
level of new data samples based on this learned representation. By establishing a
threshold η, when the abnormality level of a new data sample surpasses the threshold
at a given time point, it is classified as an anomaly. Hence, to identify the presence of
anomalies in the new data samples, it is crucial to obtain a series of anomaly labels,
which can be represented as L = {lt}T

t=1, where lt indicates whether there is an
anomaly in the sample at time point t.
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• Anomaly forecasting: In contrast to anomaly detection, anomaly forecasting focuses
on identifying anomalies in future time data. To accomplish this, the processed
window data W is initially used as input for a prediction model, which generates
the forecasts of the network data for the upcoming time points denoted by P =

{pt}T
t=1. Subsequently, an anomaly detection model is applied to the predicted data,

enabling the detection of abnormal patterns and providing a series of anomaly labels.
Consequently, this approach facilitates accurate anomaly forecasting.

It is evident that the key aspect of both anomaly detection and anomaly forecasting
problems revolves around identifying a suitable anomaly detection model, as anomaly
forecasting essentially entails performing anomaly detection on the predicted data. With
regard to the window data, assuming the historical data samples and new data samples
are denoted by W and W̃ , respectively, the primary objective of the anomaly detection
model is to determine the following anomaly scores, which enable the assessment of the
abnormality level of the new data samples:

Y = f
(
W ; W̃

)
(1)

After obtaining the aforementioned anomaly scores, it is possible to determine the
abnormality of a specific time point by comparing the anomaly score, denoted by †t, with a
threshold value η.

To achieve (1), traditional methods typically rely on sample classification and similar
techniques. However, in the context of 5G vertical applications, network data often lack
labeled information. To address this challenge, we propose a novel approach by combining
autoencoder and generative adversarial network (GAN). Leveraging the reconstruction
error from autoencoder and the adversarial framework of GAN, we successfully obtain
anomaly scores.

For clarity, the main notations are summarized in Table 1.

Table 1. Summary of notations.

Symbol Description

T The set of time periods
M The set of data dimensions

D, dt
Time series data, dt is the network data at a
specific time point t

W , wt
Window data, wt is the window data at a spe-
cific time point t

L, lt
The series of anomaly labels, lt is the anomaly
label at a specific time point t

P , pt
Forecasts of the network data, pt is the forecast
data at a specific time point t

3. Network Anomaly Detection

In this section, we introduce the proposed anomaly detection model. Anomaly detec-
tion tasks currently face several challenges: (1) imbalanced class distribution with a large
proportion of normal samples and a small number of anomalies, and (2) the lack of labeled
information in network data. These challenges make it difficult to cover various types of
anomalies that may arise in the future. To address these issues, the proposed anomaly
detection model is a machine learning model that learns from the data itself, without the
need for additional labels or prior knowledge about the data. In this section, we apply this
approach for anomaly detection.

3.1. Data Acquisition and Process

To further enrich the characteristics of 5G vertical applications from multiple dimen-
sions and to mine the features of different applications’ business, traffic, and network
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demands, it is first necessary to establish a contextual 5G vertical application feature li-
brary. This contextual feature library records the characteristics of network data in different
application scenarios and their typical feature values, which allows for the consolidation
of network data, the realization of unified network data management, and saves the data
processing time, thereby enhancing the efficiency of subsequent analysis.

3.1.1. Feature Library Construction Framework

The need and significance of establishing a 5G vertical application network demand
and traffic feature library based on the scenarios lies in the utilization of network data from
dedicated network platforms. This seeks to establish a comprehensive feature evaluation
method based on 5G private network business, network demands, and network traffic.
Afterwards, based on the proposed feature evaluation method, this will facilitate the
categorization of the network data features of 5G vertical applications in industry-specific
scenarios. Ultimately, based on the 5G vertical application network demand and traffic
feature library, recommendations for the deployment and planning of the 5G private
network platform can be given. This not only guarantees network performance but also
enhances the deployment efficiency and reduces the network planning costs.

In conclusion, the analysis of network demand and traffic features for contextual 5G
vertical applications includes two requirements: (1) establish a multi-dimensional feature
extraction and fusion method based on 5G private network business, network demand,
and network traffic; (2) design a classification method based on multi-modal features
of 5G private networks, and construct a 5G private network demand and traffic feature
library model.

The industry-specific 5G private network traffic feature analysis model performs traffic
feature analysis based on network-level data, and primarily consists of two parts. These
are: a method for multi-dimensional feature extraction and fusion based on 5G private
network business, network demands, and network traffic; and a method for constructing a
5G private network demand, business, and traffic feature library.

The multi-dimensional feature extraction and fusion scheme based on 5G private net-
work business, network demand, and network traffic, processes the original data collected
from the private network platform through a series of data-processing operations. This
yields index data representing business features, network traffic features, and network
demand. The 5G private network demand, business, and traffic feature library model, on
the other hand, build a feature library and perform the related result analysis based on the
dataset after the fusion of features, in accordance with the specific scenarios.

3.1.2. Feature Library Construction Methodology

Given the wealth of valid attributes within network data and the strong correlations
amongst these features, optimal network traffic feature extraction cannot simply be realized
based on coverage and information entropy. To satisfy the need for feature extraction
that eliminates irrelevant and redundant features while completely reflecting network
traffic characteristics, we build on business feature extraction based on information entropy
screening. To facilitate more effective feature compression and selection, we chose to
utilize the mutual information-based maximum relevance minimum redundancy (mRMR)
coefficient algorithm.

The mRMR coefficient algorithm addresses a type of feature selection problem. The
core idea of the algorithm is to find a group of features within the original feature data
that exhibit maximum correlation with the final output results, but minimum redundancy
amongst each other. The information quantity indicates how much information a feature
contains, while the redundancy quantity characterizes the interrelation between features.
The ultimate output of the algorithm, the mRMR coefficient, is the difference between
these two quantities. Thus, during the execution of the algorithm, the effective features of
overall network traffic are taken as inputs. In each iteration, the algorithm calculates the
information quantity, redundancy quantity, and mRMR coefficient for each feature based
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on mutual information metrics, ultimately yielding the mRMR coefficient for each network
traffic feature.

The features in the network data are denoted by FY = { f1, f2, . . . , }. The computation
of the mRMR coefficient via this algorithm primarily involves three steps. First, calculate the
information quantity. The feature data with more information reflect the overall business
characteristics better than the feature data with less information. Therefore, by comparing
the information size of different features, different business features can be further filtered.
Denoted by I( fi; fn), the mutual information between the features fi and fn, the information
quantity can be expressed by

E(FY, fn) =
1
|FY| ∑

fi∈FY

I( fi; fn). (2)

Furthermore, less redundancy among features indicates less correlation between data.
The redundancy quantity is given by

R(FY) =
1

|FY|2
∑

fi , f j∈FY

I
(

fi; f j
)
. (3)

The mRMR coefficient can be expressed as

rn = E(FY, fn)− R(FY). (4)

As per the aforementioned algorithm, the group of features selected according to the
mRMR coefficient maintain high correlation with the original data, thus ensuring that the
output low-dimensional features can fully represent overall network traffic characteristics.
Simultaneously, due to the smaller redundancy and less correlation between output features,
the algorithm effectively eliminates irrelevant and redundant features, further realizing
efficient feature compression.

3.2. The Structure of Network Anomaly Detection

Our proposed approach integrates the concept of an autoencoder and adversarial
techniques, aiming to compute anomaly scores for network data at distinct time intervals
via feature transformation. In detail, this approach incorporates two specific autoencoder
models, referred to as the generating model AE1 and the discriminating model AE2. These
models are involved in a mutual adversarial interaction designed to optimize their functions.
The generator and discriminator are each composed of distinct decoder networks, namely
D1 and D2, that operate in conjunction with a commonly shared encoder, E. For better
comprehension, the architecture of the proposed network anomaly detection model is
visually presented in Figure 2, with further detailed explanations provided subsequently.

Generated 
Features

High-
Dimensional 

Features

Anomaly
ScoreEncoder 

(E)

Decoder 
(D1)

Decoder 
(D2)

Memory
Block1

Memory
Blockt

Memory
BlockT

Anomaly Detection Model

... ...

Prediction Model

Figure 2. The architecture of the anomaly detection model and the prediction model.
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3.2.1. Autoencoder-Based Feature Transformation

To start with, let us visualize the configuration composed of encoder E and decoder D1
as an individual autoencoder AE1. When deploying an autoencoder for anomaly detection
on unlabeled data, the input data serve as its own label. This prompts the neural network
to decipher a mapping relationship, consequently creating a reconstructed output. An
anomaly within the original input data can be suspected if the discrepancy between the
reconstructed output and the original input surpasses a certain threshold. Two fundamental
components encompass an autoencoder: the encoder and the decoder.

The encoder processes time window data W as an input and primarily focuses on
encoding the input data into a condensed latent representation Z. This process encourages
the neural network to discern the most informative features. The output generated by the
encoder can be characterized by a standard neural network function that is succeeded by
the rectified linear unit (ReLU) activation function, as expressed by:

Z = ReLU(aeW + be). (5)

where ReLU(·) stands for the ReLU activation function, while ae and be represent the
encoding weights and biases, respectively.

In order to reconstruct the latent representation back to its initial dimension, the
decoder generates the reconstructed features, which can be mathematically formulated as:

Ŵ = ReLU(adZ + bd), (6)

where Ŵ corresponds to the feature formed by the reconstruction, while ad and bd are the
decoding weights and biases, respectively.

However, the decoder attempts to reconstruct the data as accurately as possible,
thereby minimizing the reconstruction error

∥∥W − Ŵ∥∥2. This endeavor could inadvertently
overlook minor anomalies. Simply evaluating the possibility of anomalies by reconstructing
the errors alone is not good, so the model also needs to be refined based on the idea of
adversarial.

3.2.2. Enhancement via Adversarial-Based High-Dimensional Feature Transformation

Our methodology leverages the adversarial concept in conjunction with an autoen-
coder to bolster the detection sensitivity towards subtle anomalies. This section further
elucidates how this integration operates and the key components involved in this process.

Specifically, AE2 is composed of the encoder E and the decoder D2. This module
functions as the discriminator, initiating an adversarial competition with AE1. Analogous
to AE1, AE2 also aims to reconstruct the input data, taking the generated features W
delivered by AE1 as input and providing high-dimensional featuresW ′ as output. However,
a contrast to AE1 is that AE2 seeks to maximize the reconstruction error

∥∥W ′ − Ŵ∥∥2.
In this configuration, the generator AE1 strives to generate progressively realistic data,

while the discriminator AE2 improves its sensitivity and accuracy in distinguishing the
original features from the generated features. Through this adversarial learning process,
both the generator and discriminator mutually and iteratively refine their performances,
fostering their capabilities via a competitive dynamic. This procedure ultimately augments
the model’s ability to discern subtle anomalies.

The integration of these components forms a composite model, exhibiting enhanced
robustness. The model not only improves the anomaly detection accuracy of autoencoders,
but also addresses potential issues such as training non-convergence and pattern collapse
associated with the GANs.

In conclusion, the fusion of these processes and components forms an innovative
approach, enhancing the model’s overall robustness. The effectiveness of the autoencoder
in anomaly detection is amplified, and challenges typically associated with GANs are effec-
tively managed. This results in a more stable training process and improved performance
in anomaly detection.
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3.2.3. Acquisition of Anomaly Score

To obtain the anomaly score at any given time, we adopt a method based on the recon-
struction error. This approach incorporates two key components, namely the reconstruction
errors of AE1 and AE2, in the calculation of the anomaly score. Specifically, the score can
be formulated as follows:

Y = α
∥∥W − Ŵ ∣∣2 + (1− α)

∣∣Ŵ −W ′∥∥2 (7)

Here, the weight parameter α determines the contribution of each autoencoder’s
reconstruction error to the overall anomaly score. These reconstruction errors quantify
the discrepancy between the input data and the corresponding reconstructed output of
each autoencoder.

By appropriately combining the reconstruction errors from both AE1 and AE2, the
anomaly score provides a comprehensive evaluation of anomalies at each time point. This
approach capitalizes on the complementary capabilities of the two autoencoders, leading
to improved accuracy and robustness in detecting anomalies within the system.

3.3. The Algorithm of Network Anomaly Detection

In this section, we provide a separate elucidation for both the training and inference
processes. It is worth noting that the training process is divided into two distinct stages.
The specifics of these training and inference operations are detailed as follows.

3.3.1. The Two-Phase Training Process

The specific training process is described in the following. The reconstruction errors
for the two training phases can be specified as follows.

• Phase 1: Autoencoder training. Initially, the input data, represented by W, is subject
to compression by the encoder, symbolized as E. This procedure reduces the input
data into a latent space, denoted by Z. Following this, each of the two decoders
embarks on the task of reconstruction, with the outcomes manifesting as AE1(W)
and AE2(W), correspondingly. The errors incurred in this reconstruction process, can
hence be individually articulated as follows:

LossAE1 = ‖W − AE1(W)‖2 (8)

LossAE2 = ‖W − AE2(W)‖2 (9)

• Phase 2: Adversarial training. Subsequent to the initial reconstruction by the two
decoders, the output derived from AE1 is subjected to another compression by E, tran-
sitioning once more into the latent space Z. This compressed output is then conveyed
to AE2 for another round of reconstruction, resulting in the output AE2(AE1(W)).
This procedure allows AE1 to be conditioned in such a way as to deceive AE2, whereas
AE2 is trained to differentiate between the original data and the data generated from
AE1. Consequently, AE1 aspires to minimize the disparity between the original data W
and the outputs from AE2, while AE2 endeavors to maximize this distinction. Within
this adversarial framework, the reconstruction errors can be represented as follows:

LossAE1 = +‖W − AE2(AE1(W))‖2 (10)

LossAE2 = −‖W − AE2(AE1(W))‖2 (11)

Together, these two stages form a dynamic and robust training process that allows us to
effectively compress and reconstruct the data while leveraging the adversarial mechanism
to refine the quality of this reconstruction.

Summarily, both autoencoders serve dual roles. In the first phase, AE1 aims to mini-
mize the reconstruction discrepancy of the original data W, while in the second phase, it
seeks to minimize the difference between W and the reconstructed output derived from
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AE2. Similarly, AE2 also endeavors to minimize the reconstruction error of W during the
first phase; however, in the second phase, it strives to maximize the reconstruction error
of the input data as reconstructed by AE1. As the training advances through multiple
iterations, the reconstruction error per epoch can be articulated as follows:

LossAE1 =
1
n
‖W − AE1(W)‖2 +

(
1− 1

n

)
‖W − AE2(AE1(W))‖2 (12)

LossAE2 =
1
n
‖W − AE2(W)‖2 −

(
1− 1

n

)
‖W − AE2(AE1(W))‖2 (13)

where n denotes the training epoch.

3.3.2. The Inference Process

During the inference phase, the input data are represented by an unknown window
data, denoted by Ŵ. We propose to consider the reconstruction error obtained during this
process as the anomaly score. This score can be mathematically expressed as:

S(W̃) = α
∣∣W̃ − AE1(W̃)

∣∣
2 + (1− α)

∣∣W̃ − AE2
(

AE1(W̃)
)∣∣

2 (14)

The specific values of α greatly influence the quantity of results that we deem positive
predictions. Setting a smaller α value tends to increase the count of instances classified
as positive. This stringent criterion is particularly suitable for scenarios requiring high
detection sensitivity. Conversely, if a lower sensitivity is appropriate for the situation, we
can decrease the instances predicted as positive by tuning these parameters.

These adjustable parameters allow the anomaly detection algorithm to be well suited
for various circumstances, notably those of a 5G private network quality monitoring
system, which often requires scenario-based adjustments. By effectively manipulating α, the
algorithm can better meet the distinctive needs of various anomaly detection applications
within this context. For the ease of understanding, we summarize the anomaly detection
algorithm in Algorithm 1.

Algorithm 1 Anomaly detection algorithm.

Input: Historical window dataW = {wt}T
t=1, new window data W̃ = {w̃t}T̃

t=1, epoch N,
threshold η, weight parameter α

Output: Anomaly labels L = {lt}T̃
t=1

1: Initialize E, D1 and D2
2: for n = 1→ N do
3: for t = 1→ T do
4: LossAE1 = 1

n‖wt − AE1(wt)‖2 +
(

1− 1
n

)
‖wt − AE2(AE1(wt))‖2

5: LossAE2 = 1
n‖wt − AE2(wt)‖2 −

(
1− 1

n

)
‖wt − AE2(AE1(wt))‖2

6: Update the weights of E, D1 and D2 using LossAE1 and LossAE2
7: end for
8: end for
9: for t = 1→ T̃ do

10: S(w̃t) = α‖w̃t − AE1(w̃t)‖2 + (1− α)‖w̃t − AE2(AE1(w̃t))‖2
11: if S(w̃t) > η then
12: lt = 1
13: else
14: lt = 0
15: end if
16: end for
17: return L = {lt}T̃

t=1
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4. Network Anomaly Forecasting

In order to enable effective anomaly forecasting, it is necessary to predict the future
network data based on historical performance data. The 5G vertical applications provide
a diverse set of indicators, which can be used to conduct a comprehensive evaluation
of network quality from multiple dimensions. These indicator data are presented in the
form of continuous time series data, which can be utilized to predict the future network
status and further achieve anomaly forecasting. To accomplish this, we employ a classic
predictive network model called long short-term memory (LSTM) to predict the future
network indicator data. LSTM is a type of recurrent neural network that is well suited
for processing sequential data such as time series data. By training the LSTM model
on historical performance data, we are able to generate accurate predictions of future
network performance. In this section, the structure and algorithm of the network anomaly
forecasting scheme are described in detail.

4.1. The Structure of Network Anomaly Forecasting

As shown in Figure 2, by leveraging the unique properties of LSTM as the prediction
model, we can accurately predict future network indicators, which is critical for achieving
the function of network anomaly forecasting.

4.1.1. Network Data Prediction

In pursuit of forecasting anomalies in unlabeled network data, we tailored our ap-
proach to primarily focus on two crucial aspects. These elements reflect our strategic
utilization of available historical data and the application of advanced predictive network
modeling techniques. As we dive into these sections, we will be shedding light on the
in-depth processes and methodologies used in our study.

The historical data of 5G vertical applications with length T is utilized as input, where
each certain time t contains M kinds of features. These input data provide us with a rich
history of network performance that can be used to forecast future network activity. We
predict future time series data of length T0 from historical data, in which T0 < T. This
prediction allows us to project future network performance based on past performance
and current network conditions. Once we have obtained the predicted data, we divide
it into multiple time windows. This allows us to examine the network performance in
discrete, manageable chunks, rather than as a continuous stream of data. Each time window
represents a unique snapshot of network performance.

In the context of predictive network modeling, LSTM is a type of recurrent neural
network (RNN) that has shown excellent performance in sequence prediction tasks due to
its ability to retain information over a longer period of time. LSTM is composed of multiple
memory blocks, each of which has a cell state and a hidden state that are used to generate
the output related to the input.

At each time step t, the matrix of historical indicator data feature Xt is fed into the
LSTM network. The network then generates the cell state Ct and hidden state ht, which
provide the LSTM network with a sort of “memory” of past network conditions. The
previous cell state Ct−1 and hidden state ht−1 are also utilized to compute ht, allowing the
network to retain information over time. This temporal memory is one of the key features
that make LSTM networks so effective for time series prediction tasks.

In addition, LSTM memory blocks iteratively update themselves through the gating
signals from the three gate controllers of the forget gate, input gate, and output gate. Each of
these gates serves a unique function in the LSTM network: the forget gate determines which
information to discard from the cell state, the input gate determines which information to
update in the cell state, and the output gate determines which information to output as the
final prediction.

Once we have obtained the predicted data, we conduct anomaly detection using the
method introduced in Section 3 to achieve network anomaly forecasting.
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4.1.2. Anomaly Forecasting Function

Utilizing the method introduced in Section 3, we conduct anomaly detection on these
predicted network data. This involves comparing the predicted network performance with
expected performance levels. Any deviations from the expected performance that exceed a
certain threshold are considered anomalies.

Similarly, by calculating an anomaly score for each predicted time window, we are
able to evaluate the quality of the future network and detect any potential anomalies. This
anomaly score serves as a quantifiable measure of network performance, allowing us to
objectively evaluate the health of the network.

By utilizing the anomaly score of the future network, we are able to achieve the
function of anomaly warning. This proactive warning system alerts network administrators
to potential problems before they have a significant impact on network performance.
Specifically, if the anomaly score exceeds a certain threshold, the system can issue an alert
to network administrators. These alerts indicate that corrective action may be necessary to
prevent network downtime or degradation. This enables administrators to take proactive
steps to address potential issues before they become more serious problems.

4.2. The Algorithm of Network Anomaly Forecasting

Utilizing the historical data, the data prediction model updates the cell state and
hidden state, and forecasts the future network data. The cell state at the current moment
determines which features are retained for transmission to the next memory block for
prediction based on the input and hidden state at the current moment, while the hidden
state decides which features of input data are not required for prediction and can be
discarded. Obtaining the future network data as the input of anomaly detection model
introduced in Section 3, we obtain the anomaly scores of future networks and achieve
the function of anomaly warning. The anomaly warning algorithm is summarized in
Algorithm 2 and the specific procedure of anomaly forecasting is as follows.

Algorithm 2 Anomaly forecasting algorithm.

Input: Historical window dataW = {wt}T
t=1, threshold η, weight parameter α

Output: anomaly labels of predicted data
{

l̂1, . . . , ˆlT0

}
1: Initialize C0 and h0
2: for t = 1→ T do
3: Z f = fsig(w f ∗ f jt(Xt, ht−1))

4: Z = ftanh(w ∗ f jt(Xt, ht−1))

5: Zi = fsig(wi ∗ f jt(Xt, ht−1))

6: Ct ← Z f � Ct−1 + Zi � Z
7: Zo = fsig(wo ∗ f jt(Xt, ht−1))

8: ht ← Zo � ftanh(Ct)
9: Ŷt = fsig(w′ ∗ ht)

10: end for
11: for t = 1→ T0 do
12: S(Ŷt) = α

∥∥Ŷt − AE1(Ŷt)
∥∥

2 + (1− α)
∥∥Ŷt − AE2

(
AE1(Ŷt)

)∥∥
2

13: if S(Ŷt) > η then
14: ŷt = 1
15: else
16: ŷt = 0
17: end if
18: end for
19: return

{
l̂1, . . . , l̂T0

}
• Data Input: Utilizing the historical data in the past time as the input, the input gate of

a memory block in LSTM can make full use of temporal information in all time points
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to identify changes in features and provide a basis for subsequent feature screening by
updating the cell state. In other words, input gates Zi determine what feature from the
network input Xt at the current moment is saved to the cell state Ct. How it updates is
shown as follows:

Z = ftanh(w ∗ f jt(Xt, ht−1)) (15)

Zi = fsig(wi ∗ f jt(Xt, ht−1)) (16)

Ct = Z f � Ct−1 + Zi � Z (17)

where Z represents the current information of input and � represents the Hadamard
product. ftanh represents the activation function called the hyperbolic tangent function,
while w and wi are the weight matrix for current information Z and input information
Zi

• Feature screening: In the time windows of input, there are some KPI features that
contribute little to prediction because they are correlated to other features, which
can be inferred by other important features. Thus, a forgetting gate can filter out the
features that contribute more to prediction, where the weight matrix w f is used to
achieve this function, and then combine these features and input information at the
current moment to complete the prediction. The forgetting gate Z f determines how
much of the unit state Ct−1 at the previous moment is retained to the current state Ct.
The definition of a forgetting gate is:

Z f = fsig(w f ∗ f jt(Xt, ht−1)) (18)

where w f is the weight matrix for forgetting information Z f , and fsig means that Xt

and ht−1 are concatenated together in a column and fsig is the activation function
sigmoid.

• Predicted results output: Combining the filtered features and current input, the
memory block output the predicted data at current time and hidden state through
output gate. The hidden state is transmitted to the next memory block to predict the
data of the next time point. After traversing multiple memory blocks, the final memory
block receives the cell state and hidden states which contain all the information on
historical time, and it outputs the final result of prediction. The output gate Zo decides
the next ht, which will be pass with the new cell state Ct to the next memory block.
The process of updating is presented as follows:

Zo = fsig(wo ∗ f jt(Xt, ht−1)) (19)

ht = Zo � ftanh(Ct) (20)

Yt = fsig(w′ ∗ ht) (21)

where Yt is the output related to Xt and w′ is the weight matrix for Yt.

5. Experiments and Results
5.1. Experimental Setup

In this study, we examine the performance of three distinct 5G vertical applications,
namely the Internet of Vehicles, Industrial Internet, and intelligent manufacture. The
data are collected from the practical operation of the experimental 5G network for the
three aforementioned typical vertical applications, which are the most important scenarios
of 5G vertical applications for China Unicom that can provide enough network data
for generating high-quality deep learning models. Moreover, unlike the conventional
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evaluation methods by generating data via software simulation, our experiment results are
more convincing. Finally, our three scenarios studied herein have diverse requirements
in terms of user experiences and network quality, and thus our experiment results can
cover most of typical 5G vertical applications, which can provide more useful insights
for the deployment potential of our proposed scheme. To this end, we obtained a total
of 10,500 data samples from each of the three scenarios for seven days, of which the
first 80% were used as the training dataset and the remaining data were used as the test
dataset, then utilized to evaluate the quality detection and forecasting performance. We
select several metrics with the highest correlation from the derived multi-metric data,
and process the multi-dimensional time series data to serve as input data for quality
monitoring. Specifically, concerning the 5G key performance indicators (KPIs), we focus on
the airport traffic, wireless resource utilization, average user uplink/downlink rates, CQI,
RRC connection success rate, and the packet loss rate.

For the parameters in the anomaly detection algorithm, the window data length is
set at 12 and the number of epochs is set at 100. Additionally, the parameters α = 0.5 is
also utilized. When performing tests, we search for the optimal threshold λ by utilizing
the ROC curve. We note that the optimal value is crucial in terms of enhancing the overall
performance of the model. The LSTM model is a three-layer neural network. The first two
layers are with 64 and 32 neurons, respectively, and a fully connected layer is employed as
the output layer. The ReLu function is used as the activation function. During the training
process, the size of the mini-batch and learning rate are set to 32 and 0.001, respectively.

To assess the efficacy and generalization of our proposed approach, we conducted an
anomaly detection experiment on network data in three distinct settings. The performance
evaluation of our method was based on three well established metrics: precision (P), recall
(R), and F1-score (F1). Among these metrics, precision denotes the fraction of actual
anomaly samples identified as such by our method, while recall indicates the fraction of
true anomaly samples correctly classified as “abnormal” by our algorithm. To provide a
comprehensive picture of the detection performance, we further calculated the F1-score,
which balances precision and recall. The use of these evaluation metrics enabled us
to quantitatively gauge the effectiveness and robustness of our method across different
scenarios. They can be represented as

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2 · P · R
P + R

(22)

where TP denotes true positives; FP denotes false positives; and FN denotes false negatives.

5.2. 5G Vertical Applications Platform

The specific details about the 5G vertical applications platform, such as the exact source
of their network data (data access interfaces) and the detailed characteristics of various
application scenarios (e.g., the number of base stations per scenario), vary depending on
the specific implementation, standards, and configurations defined by different operators
and technology providers. Generally speaking, network data from 5G dedicated networks
can come from several sources, including:

• Network equipment: This includes data collected from base stations, switches, routers,
and other hardware elements that make up the network infrastructure.

• Network management systems: These systems monitor and manage the operation
of the network, and can provide data about network traffic, faults, performance, and
security.

• User equipment: This includes data from user devices connected to the network,
which can provide data on usage patterns, performance, and service quality.

As for the specific scenarios and the number of base stations involved, this would
greatly depend on the needs of the application being supported by the dedicated network.
For example, a dedicated network supporting an industrial automation application in a
factory might be quite dense with a large number of base stations to provide high-capacity,
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low-latency communication within a small area. Conversely, a dedicated network for a
rural telecommunication service might have a much lower density of base stations covering
a larger geographic area.

To obtain the most accurate and up-to-date information, one may refer to the technical
specifications and guidelines provided by the relevant standards bodies (like 3GPP for 5G),
technology providers, and network operators, or consulting with experts in the field.

5.3. Performance of the Proposed Anomaly Detection Method

The results depicted in Figures 3–5, which were obtained by simulating the proposed
network anomaly detection model with a weight parameter value of α = 0.5, demonstrate
the convergence behavior of the algorithm. It can be observed that, over time, the algorithm
gradually converges towards a stable state. The convergence process is characterized by a
decreasing trend in the loss function, as shown in Figures 3–5. In intelligent manufacture,
convergence is slightly less effective due to a slight lack of data volume. Remarkably, the
algorithm exhibits an impressive convergence speed, achieving convergence in less than
10 epochs for intelligent manufacturing and Industrial Internet. This rapid convergence is
a notable advantage of the proposed network anomaly detection model. By converging
quickly, the algorithm is able to efficiently and effectively detect and identify network
anomalies. This attribute is particularly valuable in real-time network monitoring scenarios
where prompt anomaly detection is crucial for maintaining network security and stability.
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Figure 3. The loss of network anomaly detection algorithm in the Internet of Vehicles.
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Figure 4. The loss of network anomaly detection algorithm in intelligent manufacturing.
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Figure 5. The loss of network anomaly detection algorithm in the Industrial Internet.

Furthermore, we scrutinize the performance of anomaly detection based on precision,
recall, and F1-score using network data derived from three distinct 5G vertical applications.
A critical factor in this analysis is the role of the weight parameter in the calculation of
the anomaly score. To fully understand its impact, we initially fine-tune this parameter
within our proposed anomaly detection method, taking into consideration the distribution
of network data across different application scenarios.
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Table 2 provides a comprehensive summary of the accuracy of anomaly detection
in network data across different small regions within three distinct application scenarios:
Internet of Vehicles, intelligent manufacturing, and Industrial Internet. The table presents
the results obtained using various weight parameter settings.

Table 2. The performance of the proposed network anomaly detection method for three 5G vertical
applications: Internet of Vehicles, intelligent manufacturing and Industrial Internet.

Cell Index
The Proposed Scheme Autoencoder-Only

P R F1 Average
F1 P R F1 Average

F1

Internet of Vehicles

0 0.933 0.921 0.927

0.926

0.836 0.821 0.828

0.830

1 0.938 0.913 0.925 0.827 0.831 0.829
2 0.917 0.941 0.929 0.851 0.817 0.834
3 0.926 0.926 0.926 0.826 0.832 0.829
4 0.942 0.908 0.925 0.831 0.826 0.828

Intelligent manufacturing

0 0.864 0.919 0.891

0.894

0.811 0.876 0.842

0.840

1 0.863 0.923 0.892 0.817 0.874 0.845
2 0.860 0.937 0.897 0.815 0.871 0.842
3 0.856 0.939 0.896 0.809 0.867 0.837
4 0.849 0.944 0.894 0.808 0.866 0.836

Industrial Internet

0 0.861 0.918 0.889

0.888

0.796 0.867 0.830

0.825

1 0.858 0.925 0.890 0.795 0.865 0.829
2 0.853 0.927 0.888 0.791 0.862 0.825
3 0.849 0.928 0.887 0.786 0.859 0.821
4 0.847 0.932 0.887 0.785 0.857 0.819

The findings indicate that anomaly detection using network data from these three
application scenarios consistently achieves a high F1-score. This suggests that the proposed
anomaly detection algorithms effectively identify and classify anomalies in diverse network
environments. Moreover, the average F1-score across all scenarios indicates a generally
high level of accuracy in the detection of network anomalies.

Furthermore, the consistent performance across the three application scenarios sug-
gests that the proposed approach is robust and adaptable. The ability to achieve accurate
anomaly detection in various IoT contexts is vital for maintaining network security and
integrity. These results contribute to the advancement of anomaly detection techniques and
provide valuable insights for network administrators and researchers in the field of IoT
security.

In order to provide a more comprehensive evaluation of the proposed anomaly detec-
tion method, we compare its performance against a baseline model, i.e., autoencoder-only
method. This baseline model serve as a standard measure to evaluate the accuracy of
detection using the F1-score as the metric. For the purposes of this comparison, we set the
weight parameter α used in the calculation of the anomaly score in our proposed method
to be 0.5.

Table 2 visually presents the performance of anomaly detection across three distinct ap-
plication scenarios: Internet of Vehicles, intelligent manufacturing, and Industrial Internet.
Here, our proposed anomaly detection approach is contrasted with the autoencoder-only
and adversarial-only methods. The data displayed in Table 2 lead us to conclude that,
irrespective of the application scenario, our proposed network anomaly detection method
consistently outperforms the autoencoder-only method in terms of detection accuracy. This
superior performance can be ascribed to our method’s integration of the autoencoder and
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the GAN. By leveraging the strengths of both networks, our proposed method enhances
detection precision, surmounting limitations such as GAN non-convergence.

These results provide strong support for the effectiveness of our proposed anomaly
detection method. By bridging the capabilities of the autoencoder and GAN, the proposed
method not only improves the detection accuracy across various 5G vertical applications,
but also mitigates some of the key challenges commonly faced in network anomaly de-
tection. However, as with all models, the performance of the proposed method could
be influenced by various factors, and thus further investigations are warranted to fully
understand its potential and limitations in different contexts.

5.4. Performance of the Proposed Anomaly Forecasting Method

In this subsection, we evaluate the performance of the proposed anomaly forecasting
method in terms of accuracy, using the F1-score as the evaluation metric. To examine the
advantages of the proposed anomaly forecasting method, we apply it to forecast anomalies
in network data from three different 5G vertical applications. Table 3 presents the test accu-
racy for datasets obtained from the Internet of Vehicles, intelligent manufacturing, and the
Industrial Internet. We compare the proposed anomaly forecasting method with a baseline
approach using historical network data as network data at future periods for anomaly
detection. It can be observed that the accuracy of the predicted results is comparable to the
baseline in most cases, and in some instances, it may even surpass the baseline approach.

Table 3. The performance of the proposed network anomaly forecasting method for three 5G vertical
application.

Method
F1

The Proposed scheme The Baseline Scheme

Internet of Vehicles 0.912 0.701
Intelligent manufacturing 0.899 0.687

Industrial Internet 0.869 0.669

In this subsection, Table 3 elucidates the test accuracy for datasets hailing from the
Internet of Vehicles, intelligent manufacturing, and Industrial Internet verticals. In our
study, we juxtapose the proposed anomaly forecasting method with a baseline approach
that directly harnesses real data for anomaly detection.

Upon the close inspection of Table 3, we can observe that, in most instances, the
accuracy of the forecasted results closely aligns with, if not outperforms, the baseline ap-
proach. This underscores the effectiveness of the proposed anomaly forecasting method, as
it showcases an ability to yield accuracy levels that are not just on par with, but occasionally
surpass, the performance of the baseline approach.

These results are quite encouraging, suggesting that the proposed anomaly forecasting
method holds promise in enhancing anomaly detection in 5G vertical applications. The
method’s ability to consistently match or outdo the accuracy of the baseline approach
underlines its potential as a valuable tool for 5G network data anomaly detection and
forecasting. However, it is worth noting that the effectiveness of the anomaly forecasting
method could vary depending on the specific characteristics of the dataset and the nature
of the anomalies present, necessitating further investigations into its applicability across a
wider range of scenarios.

In order to provide a more explicit evaluation of our proposed anomaly prediction
method, we conducted a 24-hour-per-day case study aimed at highlighting the differences
in the anomaly scores obtained based on real versus predicted data. Figures 6–8 depict
the anomaly scores for anomaly detection using real or predicted network data from the
Internet of Vehicles, intelligent manufacturing, and Industrial Internet, respectively.
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Figure 6. The anomaly score of network anomaly forecasting in the Internet of Vehicles.
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Figure 7. The anomaly score of network anomaly forecasting in intelligent manufacturing.
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Figure 8. The anomaly score of network anomaly forecasting in the Industrial Internet.

A closer look at these results shows that the performance of anomaly prediction results
is comparable to direct anomaly detection. However, it is important to note that anomaly
warnings can be subject to false detections. As shown in Figure 6, the Internet of Vehicles
shows that in some instances, the anomaly scores of both methods spike dramatically.
These instances represent potential anomalies in the system, highlighting the ability of
anomaly prediction and anomaly detection to flag these instances. In contrast, in other
cases, we can observe that one method may flag potential anomalies while the other does
not, indicating a difference in the detection capabilities of the two methods. Similarly, the
anomaly scores for the intelligent manufacturing and Industrial Internet data shown in
Figures 7 and 8 highlight the same interesting phenomenon. While the overall trends in
anomaly scores for both methods are very close, there are still significant differences. These
inconsistencies remind us of the inherent limitations of each method—some anomalies may
be misidentified.

In summary, while our proposed anomaly forecasting method demonstrates a compa-
rable performance in direct anomaly detection, it also highlights the unique advantages
and shortcomings of each approach. These findings suggest the need for further research
into optimizing and possibly integrating these two methodologies to maximize anomaly
detection and forecasting accuracy.

6. Conclusions

In this paper, a framework for network quality monitoring has been proposed for both
network anomaly detection as well as anomaly forecasting functions. The framework is
designed to model the time dependence of unlabeled network data. An anomaly detection
method is first used for anomaly detection, combining the autoencoder with GAN while
compensating for the stability problems associated with GAN. Then, the LSTM model is
used to predict network quality data and detect anomalies in the predicted data using the
anomaly detection model to achieve anomaly forecasting. Finally, the proposed quality
monitoring method is demonstrated through simulation experiments on network data mea-
sured in various 5G vertical scenarios, an our proposed method can provide 10%/5%/6%
F1-score gain in terms of network anomaly detection and 21%/21%/20% F1-score gain in
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terms of network anomaly forecasting in three scenarios, highlighting its superior accuracy
and stability.
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