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Abstract: Rootkits are malicious programs designed to conceal their activities on compromised
systems, making them challenging to detect using conventional methods. As the threat landscape
continually evolves, rootkits pose a serious threat by stealthily concealing malicious activities, making
their early detection crucial to prevent data breaches and system compromise. A promising strategy
for monitoring system activities involves analyzing volatile memory. This study proposes a rootkit
detection model that combines memory analysis with Machine Learning (ML) and Deep Learning
(DL) techniques. The model aims to identify suspicious patterns and behaviors associated with
rootkits by analyzing the contents of a system’s volatile memory. To train the model, a diverse dataset
of known rootkit samples is employed, and ML and deep learning algorithms are utilized. Through
extensive experimentation and evaluation using SVM, RF, DT, k-NN, and LSTM algorithms, it is
determined that SVM achieves the highest accuracy rate of 96.2%, whereas Execution Time (ET)
shows that k-NN depicts the best performance, and LSTM (a DL model) shows the worst performance
among the tested algorithms. This research contributes to the development of advanced defense
mechanisms and enhances system security against the constantly evolving threat of rootkit attacks.

Keywords: memory analysis; rootkits; deep learning; machine learning; execution time

1. Introduction

A rootkit is a malicious program with a highly deceptive nature. It operates by
concealing its presence in the system and enabling unauthorized root access to attackers,
allowing then to gain complete control over the compromised system. Rootkits are designed
to evade detection and this makes it challenging for anti-malware tools to detect their
infiltration. Once installed, a system may exhibit unusual behaviour, indicating remote
access by an attacker. Rootkits are particularly hazardous and can lead to significant data
loss and damage.

The term “rootkit” is derived from the combination of two words, “root” and “kit”. In
UNIX and Linux environments, “root” refers to the system administrator who possesses
the highest level of access. “Kit” denotes a collection of tools and techniques. Consequently,
a rootkit is defined as a set of tools or techniques enabling unauthorized individuals to
gain and sustain administrator-level access during an attack while evading detection by
authorized users and administrators [1].

Rootkits have been a significant concern for security engineers since the late 1980s.
Initially, they were primarily used to hide log files and application binaries. The early
generation of these malicious software targeted user-level programs, making them rel-
atively easy to detect using simple checksum methods. However, the threat landscape
has evolved, and modern rootkits pose more and more danger, as operating systems are
now widely employed in various devices such as smartphones, IoT nodes, computers,
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and embedded devices [2,3]. Consequently, researchers are actively working on devel-
oping efficient methods to detect these sophisticated rootkits that can evade traditional
detection techniques.

The frequency of rootkit attacks is also on the rise. According to reports from Avast, a
leading cybersecurity company, the number of users affected by rootkits increased from
10,000 in 2020 to 100,000 in 2021. Therefore, the main objective of this research is to
devise a reliable and efficient detection technique specifically tailored for rootkits that are
challenging to detect.

Rootkits are designed to conceal themselves from system administrators and users,
allowing them to operate covertly and pose significant security threats. They pose a threat
not only to the host systems, but also to the virtual machines [4]. Therefore, there is a
crucial requirement for a standardized mechanism that can efficiently detect rootkits. This
research aims to investigate the effectiveness of memory analysis techniques for rootkit
detection. Additionally, we aim to develop an automated tool utilizing Machine Learning
(ML) and Deep Learning (DL) for the quick and accurate identification of rootkits within
a system.

To overcome the limitations of previous research, this paper sets out to achieve the
following objectives:

• Introduce an effective technique that leverages memory analysis to detect concealed rootkits;
• Develop models and tools to automate the analysis of memory dumps for efficient

rootkit detection;
• Investigate and explore a novel set of features extracted from memory images, includ-

ing DLLs, handles, privileges, network connections, modules, injections, and services.

By fulfilling these objectives, this research aims to contribute to the advancement of
rootkit detection methods and overcome the existing limitations in the field.

The rest of the paper is organized as follows: Section 2 provides a background on basics
of ML and DL. Section 3 presents the related studies on malware and rootkit detection.
The proposed rootkit detection approach and the memory-based dataset are described
in Section 4. Section 5 explains the experimental results and discuss them and compares
them with the existing literature. Finally, the conclusion and future works are presented in
Section 6 .

2. Background

Memory analysis is a critical aspect of cybersecurity, involving the examination of a
computer’s volatile memory to identify malicious activities, unauthorized processes, and
potential threats. It has emerged as a promising approach for detecting and classifying
malware, surpassing the limitations of static and behavioral analysis. Traditionally, memory
analysis has been a time-consuming and intricate manual process, requiring expert analysts
to sift through memory dumps and detect anomalies. However, the integration of ML
and DL techniques has revolutionized this field, enabling the automation of memory
analysis for faster and more accurate threat detection. More precisely, the benefits of this
automation include:

• ML- and DL-powered automation significantly accelerate memory analysis, allowing
security teams to detect threats faster and allocate resources more effectively.

• These technologies reduce the risk of human error and increase the accuracy of threat
detection by considering a wider range of patterns and behaviors.

• Automated memory analysis can handle a high volume of memory dumps simultane-
ously, making it suitable for large-scale environments.

• ML and DL models can provide real-time or near-real-time analysis of memory dumps,
enabling a rapid response to ongoing attacks.

2.1. Machine Learning (ML) in Memory Analysis

ML algorithms can analyze memory dumps and recognize patterns associated with
malware, rootkits, and other malicious activities. it has been used for over a past decade
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to detect the malwares [5]. By training on labeled data, ML models can learn to identify
anomalies and deviations from normal system behavior [6]. These algorithms can detect
memory-resident malware, unauthorized process injection, and other stealthy attacks by
detecting deviations from learned behavioral profiles [7]. For instance, ML algorithms
such as Random Forest (RF) or Support Vector Machine (SVM) can be trained on features
extracted from memory dumps, such as API calls, memory sections, and process relation-
ships. These models can then classify memory contents as malicious or benign, aiding in
the rapid identification of threats. A short explanation of four common ML algorithms is
given below:

• Random Forest (RF): Random Forest is an ensemble algorithm that combines multiple
decision trees to enhance accuracy and prevent over-fitting [8]. It creates diverse
decision trees and aggregates their predictions to improve model robustness. It
is resistant to over-fitting, handles both classification and regression tasks, works
well with high-dimensional data, and provides feature importance scores. It can be
computationally intensive and may not perform well on very small datasets and
usually outperformed SVM for the test dataset [7].

• Support Vector Machine (SVM): The Support Vector Machine aims to find a hyper-
plane that best separates different classes. It is effective in both linear and non-linear
scenarios and in high-dimensional spaces. It can be sensitive to the choice of kernel and
hyper-parameters and does not scale well to large datasets and usually outperformed
RF for the training dataset [7].

• Decision Tree (DT): Decision Trees partition the input space into segments based on
feature values, enabling intuitive decision-making. Recursive splits based on feature
importance create a tree structure [9]. It is easy to understand and interpret, handles
non-linear data well, and requires minimal data pre-processing. However, it can be
prone to over-fitting and can be sensitive to small variations in data.

• k-Nearest Neighbors (k-NN): k-Nearest Neighbors classifies data by comparing
a data point with its neighbors. It classifies or labels a data point by considering
the majority class of its k-nearest neighbors. The distance metric, often Euclidean
distance [9], determines “nearness” as defined below:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (1)

Intuitive and easy to implement, it adapts well to local data characteristics. How-
ever, it can be sensitive to irrelevant features and it is computationally expensive
during prediction.

2.2. Deep Learning (DL) in Memory Analysis

DL, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs), has shown promise in memory analysis. CNNs can learn visual patterns,
such as graphical user interface components, within memory dumps [10]. As we cannot
use CNN, we will consider the data obtained from the analysis step which is in numerical
format. Furthermore, DL models trained on memory dumps can automate the identifica-
tion of malware signatures, the extraction of code injection attempts, and the recognition
of malicious payloads embedded in memory. These models can process large amounts of
memory data in real time, enabling a rapid response to emerging threats. RNN, especially
LSTM (Long Short-Term Memory), models are effective in capturing sequential patterns,
which is crucial for detecting complex attacks such as multi-stage malware. Refs. [7,11] have
shown that the LSTM success rate/accuracy is better when compared to CNN; that is why
we have selected this model for our research. A brief description of LSTM is given below:

• Long Short-Term Memory (LSTM): LSTM is a specialized recurrent neural network
tailored for sequential data. Its unique architecture, with forget, input, and output
gates, enables it to retain information and capture temporal patterns [11]. The equa-
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tions given below show that the new state depends on the previous states. The new
cell state is a combination of the previous cell state and the updated cell state. The
output gate is calculated in the following steps.
1. Forget Gate:

ft = σ(W f · [ht−1, xt] + b f ) (2)

2. Input Gate:

C̃t = tanh(Wc · [ht−1, xt] + bc) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

3. Cell State Update:
Ct = tanh(WC · [ht−1, xt] + bc) (5)

4. New Cell State:
Ctnew = ft · Ct−1 + it · Ct (6)

5. Output Gate:

ot = σ(Wo · [ht−1, xt] + bo) (7)

ht = ot · tanh(Ct) (8)

where:

ft : Forget gate output (0 to 1)
it : Input gate output (0 to 1)
C̃t : Candidate cell state
Ct : Updated cell state
Ctnew : New cell state
ot : Output gate output (0 to 1)
ht : Hidden state (output)
W f , Wi, Wc, Wo : Weight matrices
b f , bi, bc, bo : Bias vectors

In Equation (2) The forget gate determines what information to discard from the cell
state. The input gate determines in Equations (3) and (4) what new information to store in
the cell state.The cell state is updated in Equation (5) using the input gate and candidate
cell state. Finally, the output gate determines what part of the cell state is exposed as the
hidden state in Equations (7) and (8).

In memory analysis, LSTM’s ability to learn from historical sequences makes it adept
at identifying complex threats such as rootkits and malware. Its capacity to remember and
analyze historical memory events equips it to automate the detection of subtle anomalies
and threats in memory analysis.

3. Related Work

In [12], Djenna et al. contribute to the detection of rootkits by integrating dynamic
DL-based methods and heuristic approaches within a malware detection framework. By
analyzing the behavior patterns and employing advanced detection techniques, their
model achieved effective identification and classification of rootkits, as well as enhanced
the overall capabilities of the malware detection system.

In [13] Sihwail et al. conducted a study on the effectiveness of extracting memory-
based images to detect malware. They created a binary memory-based dataset available
on GitHub [14] and employed classification algorithms such as SVM, RF, k-NN, Naïve
Bayes (NB), and DT. Their model achieved an accuracy of 98.5% using the Volatility
v2.6 framework.

Bozkir et al. [15] utilized computer vision and ML techniques to detect and classify
malware by analyzing memory dumps as RGB images. Their approach improved the
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detection of unknown malware by up to 20.78% across multiple ML algorithms. They
employed RF, SVM, and XGBoost algorithms and demonstrated the practicality of computer
vision-based schemes for protection against malicious applications.

Another study by [16] emphasized the significance of memory analysis in capturing
malware footprints and extracting hidden code from obfuscated malware. The authors
developed a Python-based plugin called VolMemLyzer for Volatility v2.6 that is capable
of extracting 36 features and converting the results into CSV format. The plugin showed
high accuracy in malware classification, and a dataset of approximately 1,900 instances was
created using the tool.

Addressing the challenges of detecting obfuscated and hidden malware, Carrier et al. [17]
transformed the VolMemLyzer framework to extract 26 new memory features, enhancing
its efficiency [17]. The plugin was employed to detect ransomware, Trojan Horses, and
spyware, and achieved an accuracy of 99% and an F1-Score of 99.02%. An extended dataset
was created, contributing positively to research in this field.

In [18], the Trusted Kernel Rootkit Detection (TKRD) system combined memory
forensic analysis with bio-inspired ML techniques to detect kernel rootkits. It achieved
very high accuracy. In [19], a hardware-assisted Virtualization-based Kernel-level Rootkit
Detection (VKRD) system was introduced. It employed ML techniques and dynamic
analysis to intercept and isolate the operations of kernel modules, albeit with performance
overhead. Nagy et al. [20] addressed the challenge of detecting rootkits in embedded
IoT devices by utilizing dynamic analysis within Trusted Execution Environments (TEE)
available in popular IoT platforms.

These studies highlight the significance of memory analysis and various detection tech-
niques, including ML, computer vision, and dynamic analysis, in combating the threat of
malware and rootkits. Collectively, these studies reveal that a multi-dimensional approach,
combining memory analysis and a range of detection methodologies, holds great promise
for addressing the evolving landscape of cyber threats. Table 1 presents a summary of the
research discussed in this section.

Table 1. Comparison of Related Work on Rootkit Detection using Memory Analysis.

Study Learning
Algorithm

Performance
Metrics Dataset Strengths Limitations

Djenna et al. [12] DNN, CNN, RF,
DT

Accuracy,
precision, recall,

F1-score

CICAndMal2017
[21]

Utilizes dynamic
deep learning and

heuristic.

Lack of in-depth
analysis on

potential false
positives. Limited

exploration of
feature

engineering.

Sihwail et al. [13] SVM, Naïve Bayes,
k-NN, RF, DT

Accuracy,
precision, recall,
F1-score, False
positive rates

Sihwail [14]

Utilizes memory
features extracted

from memory
images.

Incorporates
feature

engineering and
binary vectors for

training and
testing.

Potential
over-fitting due to
high accuracy rate
on training data.
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Table 1. Cont.

Study Learning
Algorithm

Performance
Metrics Dataset Strengths Limitations

Bokzir et al. [15] CNN

Accuracy,
precision, recall,

F1-score,
ROC-AUC

Dampware10 [22]

Comprehensive
dataset with
malware and

benign samples.
Inclusion of GIST
descriptors and
HOG features.

Limited
explanation of

dataset creation
process. Limited

discussion on
feature extraction

methods.

Lashkari et al. [16] Adaboost, RF,
k-NN, DT

False positives,
False negatives,

Accuracy, F1-
Score, Precision

VolMemLyzer [23]

Handles feature
selection

automatically.
Resistant to
over-fitting.

Could be
computationally

expensive.

Carrier et al. [17]
RF, DT, k-NN,

Naïve Bayes, SVM,
Logistic Regression

Accuracy, F1-
Score, Precision,

Recall

CIC-MalMem-
2022
[24]

High accuracy and
fast classification.

Prone to
over-fitting.

Wang et al. [18] RF, DT, Bayesian
TPR, FPR, AUC,

F-measure,
Accuracy

[18]
Integration of

memory forensics
analysis.

Limited
exploration of

feature selection.

4. Methodology

Figure 1 presents an overview of the steps used in this research and Figure 2 lists the
tools used.

Figure 1. Overview of Methodology for Rootkit Detection using Memory Analysis.

Figure 2. Tools Used for Rootkit Detection using Memory Analysis.

4.1. Data Acquisition

In this step, data are collected to build the rootkit detection model. This involves
capturing the memory image (including RAM) using the Dumpit.exe tool. The generated
memory dumps serve as the primary data source for further analysis.
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4.1.1. Collection of Rootkit Samples

The rootkit binary files were collected from VirusShare and VirusTotal. A total of
400 binary files from various categories of rootkits (e.g., kernel rootkits, memory rootkits,
etc.) were collected.

4.1.2. Creation of Memory Dump

Each rootkit sample was executed in a virtual machine running Windows 11 (guest
OS) and a memory image was captured using the Dumpit.exe tool. Precautions were
taken to ensure a secure environment, including Windows activation, separate network
segmentation, and disabling Windows Defender. Similarly, a benign image was also
captured, i.e., one without any rootkit running.

4.1.3. Feature Extraction and Memory Analysis

The Volatility v3.2 tool, installed in a Kali Linux environment, was employed for
memory analysis. The memory dumps were transferred to this virtual machine for analysis.
Features such as processes, DLLs, handles, modules, injected codes, networks, services,
callbacks, and privileges were investigated using specific Volatility commands. The ob-
tained information is categorized into sub-features for further analysis. Table 2 shows the
features and sub-features that make up the final dataset.

• Processes: This involves identifying and examining the various processes running
within the memory and their attributes. By analyzing the processes, it is possible
to detect any suspicious or malicious programs that may be present. Rootkits often
disguise themselves as legitimate processes, making the analysis of processes crucial
in identifying potential threats.

• Dynamic Link Libraries (DLLs): DLLs are modules that contain code and data that
multiple programs can use simultaneously at run time. In memory analysis, the
DLLs loaded by processes are analyzed to detect any anomalous or malicious DLLs.
This helps in identifying rootkit activities that involve injecting malicious code into
legitimate processes through DLLs.

• Handles: Handles provide a way to access system resources, such as files, devices, and
synchronization objects. During memory analysis, the handles utilized by processes
are examined. This analysis can reveal any suspicious or unauthorized access to
system resources, which can indicate the presence of rootkits.

• Modules: Modules refer to the executable code and associated data loaded into the
memory. In memory analysis of modules, the focus is on their characteristics to
identify any abnormal or unauthorized modules. Rootkits often modify modules to
gain control over system processes and execute malicious activities. By analyzing the
modules, potential rootkit-related modifications can be detected.

• Injected Codes: Injected code refers to the malicious code injected into a legitimate
process’s memory space. During memory analysis, this involves searching for any
signs of injected code, such as unexpected modifications or additional code segments.
Detecting injected code is crucial in identifying the presence of rootkits, as they often
use this technique to hide their activities and evade detection.

• Networks: The analysis of network-related information within memory dumps helps
in identifying any suspicious network connections or communications. This involves
examining network-related data, such as open ports, established connections, and
communication protocols. Detecting unusual or unauthorized network activities
can provide insights into the presence of rootkits and their communication with
external entities.

• Services: Services are background processes that run independently of user interactions.
In memory analysis, the services running within the memory are examined to identify
if they are suspicious or unauthorized. Rootkits can manipulate services to gain
persistence or execute malicious activities. Analyzing services helps in detecting such
manipulations and identifying potential rootkit activities.
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• Callbacks: Callbacks are functions that are registered by processes to be executed when
certain events occur. During memory analysis, registered callbacks are inspected to
identify any anomalies or unauthorized changes. Rootkits can tamper with callbacks
to gain control over system events and execute malicious actions. Analyzing callbacks
helps in detecting such modifications and potential rootkit presence.

• Privileges: Privileges refer to the rights and permissions granted to processes to per-
form specific operations. In memory analysis, the privileges assigned to processes
are examined to identify any unauthorized or elevated privileges. Rootkits often
elevate privileges to gain higher system access and execute malicious activities. Ana-
lyzing privileges helps in detecting unauthorized privilege escalations and potential
rootkit activities.

4.1.4. Creation of Dataset

Based on the analyzed memory dumps, a dataset is compiled by recording the values
for specific features in a CSV file. The dataset includes features extracted from both benign
and rootkit samples. Statistical analysis is conducted using Microsoft Excel 2019 to obtain
values for sub-features, resulting in a comprehensive dataset for further analysis.

4.2. Data Pre-Processing

Data pre-processing plays a vital role in preparing the acquired data for subsequent
analysis. This phase involves several steps.

4.2.1. Exploratory Data Analysis (EDA)

Typically, EDA is conducted to gain a comprehensive understanding of the dataset
and its key characteristics. In this study, statistical and graphical methods were employed
to explore the data and identify any patterns, anomalies, or correlations. Additionally,
descriptive statistics and visualizations were utilized to gain insights into the dataset,
identify patterns, and detect anomalies. EDA was conducted using Python v3.9 and
libraries such as Pandas v 2.1.0 and Matplotlib v 3.7.2.

4.2.2. Data Cleaning and Labeling

Data cleaning is performed to remove inaccurate or duplicate entries from the dataset.
It is also used to handle missing values by either replacing them with appropriate values
or removing them from the dataset, depending on the nature and extent of the missing
data. This step helps in preparing a clean dataset for further analysis. Furthermore, various
techniques and methods were employed to ensure data integrity. Finally, data labeling
was carried out to assign appropriate labels to the data entries, such as classifying them as
B (benign) or M (malicious).

4.2.3. Data Normalization

Data normalization is applied to standardize the dataset and bring it into a defined
range. This process enhances the cohesiveness of the data and facilitates subsequent
analysis and modeling. By normalizing the data, the accuracy and detection rates can
be improved. This process enhances the accuracy and consistency of the data. Min-
max normalization is commonly used (defined in the equation below), scaling the values
between 0 and 1.

xnormalized =
x − xmin

xmax − xmin
, (9)
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Table 2. List of Features and Sub-features.

Sr No. Features Volatility Commands Sub Features

1 Processes windows.pslist

pslist.nprocc
pslist.nppidd

pslist.avg_threadss
pslist.nprocs64bitt

pslist.avg_handlerss

2 DLLs windows.dlllist dlllist.ndllss
dlllist.avgdllsperprocc

3 Handles windows.handles

handles.nhandless
handles.avghandlesperprocc

handles.nportt
handles.nfilee

handles.neventt
handles.ndesktopp

handles.nkeyy
handles.nthreadd

handles.ndirectoryy
handles.nsemaphoree

handles.ntimerr
handles.nsectionn
handles.nmutantt

Handles.nsymboliclinkk
Handles.nkeyedeventt

Handles.nprocesss
Handles.ntokenn

Handles.nwindowstationn
Handles.niocompletionn

Handles.nwmiguidd
handles.nwaitableportt

Handles.njobb

4 Injected Codes windows.malfind malfind.ninjectionss
malfind.commitChargee

5 Modules windows.modules modules.nmoduless

6 Services windows.svcscan

svcscan.nservicess
svcscan.kerneldriverss

svcscan.fsdriverss
svcscan.processservicess

svcscan.sharedprocessservicess
svcscan.interactiveprocessservicess

7 Callbacks windows.callbacks callbacks.ncallbackss

8 Network windows.netscan Netscan.nudpp
Netscan.ntcpp

9 Privileges windows.privileges

Priv.nprocesss
Priv.avgprivperprocc

priv.SeSystemEnvironmentPrivilegee
priv.SeSystemProfilePrivilegee
priv.SeSystemtimePrivilegee

priv.SeTakeOwnershipPrivilegee
priv.SeTcbPrivilegee

priv.SeTimeZonePrivilegee
priv.SeUndockPrivilege
Priv.SeSecurityPrivilege
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4.2.4. Feature Selection

Feature selection is a crucial step in which features that significantly impact the
results are identified. This process is typically performed in conjunction with EDA and
data normalization, as it helps in improving accuracy, reducing computational time, and
optimizing the overall performance of the models. Recursive elimination is employed as a
feature selection method, eliminating less important features from the dataset. This step
improves the efficiency of the subsequent analysis and reduces computational complexity.

4.3. Model Creation (Training)

Once data pre-processing is completed, the dataset is ready for model training. In
this phase, a suitable ML or DL algorithm is selected based on the research objectives
and characteristics of the dataset. The selected algorithm is trained using a portion of the
pre-processed dataset to learn patterns and make predictions.

For the purpose of rootkit detection, we have selected four ML algorithms, namely
SVM, RF, k-NN, and DT, along with one DL algorithm called the Long- and Short-term
Memory (LSTM) Model.

To train the models, the dataset is divided into two parts: 75% for training and 25% for
testing. This split allows us to train the models on a significant portion of the data while
reserving a separate portion for evaluating their performance.

The Algorithm 1 shows the steps for DT. Before training the model, the time is calcu-
lated, and after the model is executed, the time is again calculated, along with accuracy
and other evaluation metrics. A similar method is performed for the RF, SVM, and KNN.
The Algorithm 2 shows steps for LSTM.

4.4. Model Evaluation

The trained model’s performance is evaluated in this phase. Testing data, separate
from the training data, is used to assess the model’s accuracy and generalization ability. It
is crucial to ensure that the evaluation data is distinct to avoid over-fitting. If the model
does not meet the required criteria, model tuning is performed by adjusting the algorithm’s
parameters to optimize its performance and enhance the accuracy of the results.

The evaluation process is a critical step in assessing the effectiveness of the proposed
method. Several evaluation measures are used to measure the performance of the models,
including the confusion matrix, accuracy, precision, recall, and F1-score. An explanation of
these measures is given below:

Algorithm 1 Algorithm for DT.

1. Import necessary libraries (NumPy, Matplotlib, Pandas, Seaborn, Category Encoders, Scikit-
Learn, Time).

2. Import the dataset from a CSV file.
3. Separate the dataset into features (X) and the target variable (y).
4. Split the dataset into training and testing sets.
5. Normalize the dataset using MinMaxScaler to scale values between 0 and 1.
6. Encode categorical features using an ordinal encoder.
7. Create a Decision Tree Classifier with the Entropy criterion and a maximum depth of 3.
8. Train the Decision Tree Classifier with the Entropy criterion.
9. Make predictions on the test data.
10. Calculate and print the accuracy score using the Entropy criterion.
11. Measure and print the execution time for this model.
12. Create a confusion matrix for evaluating model performance.
13. Visualize the confusion matrix using a heatmap.
14. Print a classification report for model evaluation.
15. End of the Code.
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Algorithm 2 Algorithm for LSTM.

1. Import Libraries
2. Load the dataset from a CSV file
3. Label encode the ’Class’ column using LabelEncoder.
4. Convert the values in the dataset to float32.
5. Split Dataset, Define train_size as 75% of the data and test_size as the remaining 25% of

the data.
6. Normalize the dataset using MinMaxScaler to scale values between 0 and 1.
7. Define a function create_dataset(dataset, look_back) to prepare the data for LSTM:

• Initialize empty lists dataX and dataY.
• Loop over the dataset with a sliding window of size look_back.
• Append the input sequence (dataX) and the corresponding output value (dataY).
• Return dataX and dataY.

8. Set look_back to 1 (defining the sequence length).
9. Create training and testing input sequences and output values using create_dataset.
10. Modify the shape of trainX to (train_samples, time_steps, features).
11. Modify the shape of testX to (test_samples, time_steps, features).
12. Compile the LSTM model using ’adam’ optimizer and ’mse’ loss function.
13. Fit the model to training data (trainX, trainY).
14. Predict testX using the trained model.
15. Inverse transform the scaled predictions and true values to their original scales.
16. Calculate accuracy using accuracy_score between testY_classes and

testPredict_classes.
17. End of Code.

Confusion Matrix: This is a 2 × 2 matrix that contains the actual and predicted values
as defined below:

• True Positive (TP)—represents the correctly predicted positive instances;
• True Negative (TN)—represents the correctly predicted negative instances;
• False Positive (FP)—represents the incorrectly predicted positive instances;
• False Negative (FN)—represents the incorrectly predicted negative instances.

Accuracy: This is a measure of the overall correctness of the predictions and is calcu-
lated as the ratio of the sum of TP and TN to the total number of instances.

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

Precision: This is the percentage of correctly predicted positive instances out of all
positive predictions.

Precision =
TP

TP + FP
, (11)

F1-score: This is a harmonic mean of precision and recall. It provides a balanced
measure of model performance.

F1_score =
2 × (Precision × Recall)

Precision + Recall
, (12)

Recall: This is also known as sensitivity or true positive rate. It represents the percent-
age of actual positive instances that are correctly classified.

Recall =
TP

TP + FN
, (13)

Finally, the Execution Time (ET) is another important measure that indicates the time
taken by the model to process the dataset. It was calculated using the time() function
in Python.
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5. Results and Discussion
5.1. Results

This section presents the evaluation metrics for the DT, RF, SVM, k-NN, and LSTM
models. The models were trained and evaluated using a 75/25 split of the dataset, with
75% used for training and 25% for testing. Feature selection reduced the initial 53 features
to 47. Based on the confusion matrix, the accuracy, precision, recall, and F1-score were
calculated for each model and summarized in Table 3. It is easy to see that SVM achieved
the highest accuracy of 96.2%, followed by RF with an accuracy of 95.5%. LSTM, a DL
model, had an accuracy of 85.8%, demonstrating its potential for rootkit detection. These
results are graphically shown in Figure 3.

Table 3. Performance Comparison of Models for Rootkit Detection.

Algorithms Accuracy Recall Precision F1-Score Execution
Time

Machine Learning

Random Forest 95.5% 93% 98% 95% 0.25 s
K-Nearest
Neighbor 92.8% 91.5% 93.8% 92.7% 0.03 s

Decision Tree 95% 93% 97% 95% 0.04 s
Support Vector

Machine 96.2% 94% 99% 96% 0.1 s

Deep Learning
Long- and
Short-Term

Memory
85.8% 83% 87% 85% 124.02 s

Figure 3. Comparison of Accuracy, Precision, Recall, and F1-score of Models for Rootkit Detection.

With regard to execution time, it is clear from Table 3, that k-NN provides the minimum
time of 0.03 s. DT is also quite faster with an execution time of only 0.04 s. The LSTM
model, on the other hand, shows the maximum execution time of 124.02 s.

Confusion matrix is also an important way to visualize the results. It is used in
machine learning and classification tasks to describe the performance of a classification
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model on a set of data for which the true values are known. Figure 4 shows the confusion
matrices of the models.

Figure 4. Confusion Matrices of Models for Rootkit Detection.

5.2. Discussion

The trained models were evaluated using metrics, such as accuracy, precision, recall,
and F1-score. The SVM model showed the highest accuracy of 96.2%, followed by RF with
an accuracy of 95.5%. SVM also had a shorter execution time compared to RF. K-Nearest
Neighbor (k-NN) exhibited the lowest execution time among all the models. The DL model,
LSTM, achieved an accuracy of 85.8%. However, LSTM had a significantly longer execution
time compared to the ML classification algorithms because of the computationally intensive
operations involved in DL.

One of the reasons why LSTM showed the worst results is because small datasets can
pose challenges when used to trained complex models such as LSTM. Limited data often leads
to over-fitting, causing the model to memorize noise rather than learn meaningful patterns.
Moreover, the variance in performance on such datasets makes generalization difficult.

Table 4 shows a comparison of our model with the existing literature in terms of
approches and dataset properties, whereas Table 5 shows a comparison of our model with
the existing literature in terms of the accuracy of different models and execution time. Our
research stands out in terms of giving importance to memory analysis for rootkit detection,
utilizing Volatility 3.2 and considering a DL algorithm in addition to ML algorithms. The
inclusion of execution time is also a unique aspect of our research. By addressing these
gaps, our research aims to contribute to the field of rootkit detection and enhance the
effectiveness of malware detection approaches.
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Table 4. Comparison of Approaches and Data Sources.

Ref. Approach Data Source Benign Rootkit

[25] Dynamic VirusTotal 24,000 4500
[19] Dynamic Rootkit.com 473 418

VirusShare
VX Heaven

[26] Dynamic × 1300 700
[18] Memory Forensics MalShare 2600 10,500

VirusShare
Our Approach Memory Analysis VirusTotal 400 400

VirusShare
VX Heaven

× = Not applicable.

Table 5. Comparison of Results (Accuracy and Execution Time).

Ref.
ML Algorithms DL Algorithms

Execution Time
SVM DT k-NN RF NB FNN LSTM

[25] 99.9 83.71 × × 75.35 × × ×
[19] × 95.11 91.85 96.74 × × × ×
[26] × × × × × 67.7 × ×
[18] 94.09 96.5 × × × × × ×

Our Approach 96.2 95 92.8 95.5 × × 85.8 X

SVM = Support Vector Machine, DT = Decision Tree, k-NN = K nearest neighbor, RF = Random Forest, NB = Naive
Bayes, FNN = Forward Neural Networks, LSTM = Long and Short Term Memory, × = Not applicable, X = Per-
formed the Metric.

There are a few more important points to note from Table 3. Firstly, in [25], the SVM
model achieves 99.9% accuracy. This is higher than the accuracy of our SVM model (96.2%).
It is important to note that our study uses a memory approach, whereas [25] uses a dynamic
approach. Therefore, a straightforward comparison cannot be made. It is also strange
that [25] has very average results with DT (83.71%) and NB (75.35%). Secondly, the only
other study to use memory forensics is [18]. Our best results (96.2% for SVM) are very close
to theirs (highest accuracy of 96.5% with DT). Their dataset, although larger than ours, is
very unbalanced and the accuracy is very sensitive to unbalanced categories.

It is also important to point out that our DL model has a higher accuracy than the
accuracy of the DL model in [26]. The FNN model in [26] has an accuracy of 67.7%, whereas
our LSTM model has an accuracy of 85.8%. Moreover, we have calculated the execution
time, which has not been reported in any other study on rootkit detection. The fastest time
is reported by k-NN and the slowest by the DL model LSTM.

6. Conclusions and Future Work

The insidious nature of rootkits poses a significant threat to system security and data
integrity. The existing approaches for rootkit detection have limitations, and there is a need
for an efficient and automated mechanism to identify these malicious programs.

In this study, the potential approach for rootkit detection using memory analysis and
ML/DL algorithms was explored. The research methodology involved data acquisition,
data pre-processing, model creation, and model evaluation. Memory dumps were captured
using Dumpit.exe and then analyzed using volatility. Relevant features were extracted,
collected, pre-processed, and compiled into a dataset that was subsequently used to train
different ML and DL models.

The results demonstrated the efficiency of the proposed approach in accurately de-
tecting rootkits. SVM emerged as the most effective model, achieving the highest accuracy
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rate of 96.2%. K-NN was the fastest model, with a minimum execution time of 0.03 s. Our
study is also the first to report the execution time of rootkit detection models. Furthermore,
our DL model has almost 18% higher accuracy than the accuracy of the DL model reported
in the existing literature.

The findings of this research contribute to the field of rootkit detection by showcasing
the potential of memory analysis combined with ML and DL algorithms. By leveraging
memory analysis, the proposed approach can detect rootkits that may go undetected by
traditional detection tools. The incorporation of ML and DL algorithms further enhances
the accuracy and efficiency of rootkit detection.

This research opens avenues for further exploration and improvement in rootkit de-
tection techniques. Future work can focus on refining the models, exploring additional
features, expanding the dataset to enhance the overall performance of the detection system,
the family classification of rootkits, and reducing the time of memory analysis. The pro-
posed approach can be integrated into existing security systems to bolster their capabilities
in identifying and mitigating rootkit threats, thereby enhancing the security of computer
systems and protecting against potential data breaches. However, there are some limitations
too. The small dataset creates overhead and causes the DL to get low accuracy values.
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