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Abstract: Drone simulations offer a safe environment for collecting data and testing algorithms.
However, the depth camera sensor in the simulation provides exact depth values without error, which
can result in variations in algorithm behavior, especially in the case of SLAM, when transitioning to
real-world environments. The aerodynamic model in the simulation also differs from reality, leading
to larger errors in drag force calculations at high speeds. This disparity between simulation and
real-world conditions poses challenges when attempting to transfer high-speed drone algorithms
developed in the simulated environment to actual operational settings. In this paper, we propose
a more realistic simulation by implementing a novel depth camera noise model and an improved
aerodynamic drag force model. Through experimental validation, we demonstrate the suitability of
our models for simulating real-depth cameras and air drag forces. Our depth camera noise model can
replicate the values of a real depth camera sensor with a coefficient of determination (R2) value of
0.62, and our air drag force model improves accuracy by 51% compared to the Airsim simulation air
drag force model in outdoor flying experiments at 10 m/s.

Keywords: environmental modeling; sensor modeling; aerodynamic model

1. Introduction

Autonomous drones, also known as unmanned aerial vehicles (UAVs), hold tremen-
dous potential across various domains due to their high-speed flight capabilities and
capacity to perform missions without human intervention [1]. These applications include
reconnaissance [2,3], security [4], transportation [5], agriculture [6], construction [7,8], and
mapping [9,10]. However, deploying and testing autonomous drones in real-world envi-
ronments poses challenges, including safety concerns [11,12], as well as the costs and time
required. Consequently, many studies on autonomous drones opt for simulation-based
experimentation over real-world scenarios [13].

Among numerous drone simulators, Airsim stands as a widely adopted environment
for autonomous drone testing, offering comprehensive components such as environment
models, vehicle models, physics engines, sensor models, and a rendering interface. It
harnesses the high-speed processing capabilities of the NVIDIA PhysX engine, performing
kinematic computations at 1000 Hz using state values, including position, orientation,
linear velocity, linear acceleration, angular velocity, and angular acceleration [14]. Airsim
can also simulate the standard temperature and pressure using the 1976 U.S. standard
atmosphere model. As seen in Figure 1, Unreal Engine, known for its exceptional rendering
quality, powers the simulation environment. Unreal Engine’s robust collision detection
system provides detailed information about collision impact positions, impact normals,
and penetration depths. This synergy enables Airsim to simulate camera sensors with high-
quality rendering when coupled with Unreal Engine. Regarding sensor models, Airsim
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features realistic representations of a barometer (MEAS MS5611-01BA), magnetometer
(Honeywell HMC5883), and IMU (InvenSense MPU 6000), complete with Gaussian noise
modeling. Additionally, Airsim includes GPS models with simulated vertical and horizontal
error, along with a 200 ms latency.

(a) (b)
Figure 1. (a) Simulation in Gazebo, (b) simulation in Unreal Engine.

Although Airsim with Unreal Engine simulator has many advantages, it still has
some disadvantages that need to be improved. In fact, for drones, the high-resolution
rendering does not replicate the sensing and control in the same way between a real-
world environment and in a simulation environment [15,16]. Compared to high-resolution
rendering, the accurate implementation of depth camera and air drag force models is
more important to make the simulation environment close to the real-life environment [17].
However, those models in Airsim simulation are unrealistic for accurately evaluating the
control and estimation algorithms of a drone flight [18,19]. Specifically, the depth camera
model is overly idealistic in the simulation since it provides the exact value without any
errors [20]. In contrast, the aerodynamic model is too simplified, so the external force
caused by air drag when the drone flies is unrealistic [21]. As a result, the algorithms for
filtering the noise from the depth sensor [22], one of the most common sensors in drones
to sense the surrounding environments [23], which are developed to test the drone in a
real-world environment, cannot be adequately verified through simulations. The control
algorithms tested in simulations, which aim to counter external forces like air drag, can
lead to significant issues when applied in real-world scenarios. Therefore, in order to
align the performance of autonomous drone algorithms developed in simulations with
real-world operation, enhancements to the simulation are required. These enhancements
should include a more realistic depth camera sensor and a dynamic air drag force model.

In this paper, our objective is to enhance the realism and accuracy of the drone sim-
ulation environment in Airsim with Unreal Engine. We propose two novel models: one
for stereo IR depth camera noise and the other for air drag force, known as the rotor drag
force model. As previously mentioned, Airsim lacks a depth camera noise model, which
we address by introducing our own. In addition to considering noises caused by distance,
as proposed in [24], we contribute to depth camera noise modeling by also accounting
for noises caused by the materials of detected objects. This addition is significant as it has
been demonstrated to have a substantial impact on depth camera noise [25]. Regarding the
aerodynamic drag model, while Airsim currently uses only the velocity and rotation matrix
to calculate the aerodynamic drag force [26], we enhance the modeling by incorporating
thrust values. This enhancement has shown a substantial improvement in performance
compared to the embedded model in Airsim. Furthermore, in addition to proposing these
models, to the best of our knowledge, we are the first to implement these improved models
in a drone simulator such as Airsim. This implementation is expected to make a significant
contribution to drone research by providing a more effective platform for testing drone
algorithms and training reinforcement learning methods.

Specifically, the depth noise is modeled as Gaussian noise. To identify and verify the
parameters of the depth camera noise model, depth measurements were collected using
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the Intel RealSense D435 camera at distances ranging from 0.5 m to 8 m and on various
materials. Additionally, simulations and experiments were conducted at various flight
speeds to compare the accuracy of the proposed drag force model with the embedded model
in Airsim. Experimental results demonstrated that the depth camera model becomes more
accurate and realistic with varying distances and materials. Furthermore, the proposed
drag force model was shown to reduce acceleration errors by up to 51% when compared to
the Airsim-provided model during high-speed flights at 10 m/s in a real flight scenario.

In short, our contribution includes:

• Development of an improved model of the depth model by embedding a Gaussian
noise model, which was verified through experiments, into the depth camera model.
This modification makes the depth camera model more accurate and realistic across
various distances and materials.

• Development of an improved rotor air drag force model. By including thrust values in
addition to drone velocity and rotation, we create a force model that more accurately
represents real-world air drag forces.

• Providing an improved simulation environment that is more reliable for testing the
real-world behavior of autonomous drones compared with the existing Airsim simula-
tor, especially in high-speed drone flight experiments.

This paper is composed as follows. Section 2 presents depth camera modeling with
simulation implementation. Section 3 shows rotor drag force model implementation with
test results, and finally, Section 4 provides a conclusion.

2. Depth Camera Modeling and Implementation

In this section, we briefly introduce the stereo IR depth camera and propose the Stereo
IR depth camera noise model. For depth cameras, noises might originate from various
factors. Primary sources include the distance from the camera to the object. Lateral noise,
lighting conditions, and the materials of the detecting objects also play significant roles in
the noise profile [25]. For the active sensor D435, there is negligible lateral noise [25]. In this
paper, we focus particularly on two dominant noise sources: the distance from the camera
to the object and the noises originating from the materials of the detecting objects. The noise
model’s parameters will be identified and verified through experiments involving various
materials and distances. The depth camera model will be implemented in the simulation
and compared to the real camera values using the coefficient of determination.

2.1. Stereo IR Depth Camera

A Stereo IR depth camera comprises an IR projector and two IR cameras. The IR
projector emits a dot pattern on the front of the camera, and two IR cameras capture the
pattern. As in Figure 2a, the Intel realsense D435 camera has two IR cameras and an IR
projector. When detecting objects, the projected dot pattern from the IR projector is reflected
off the measured materials and detected by the IR cameras. Because of the distance between
the two cameras, the position of the pattern measured on the two cameras is different.
As in Figure 2b, The depth between the camera and an object can be calculated using the
disparity value from two camera measurements. The equation is written as follows [27]:

b
Z

=
(b + xL)− xR

Z− f
(1)

Z =
b · f

xR − xL
(2)

The Z is the depth value, xR is the measurement of the right camera, xL is the mea-
surement of the left camera, b is the distance between the two cameras, and f is the focal
length of the camera as shown in Figure 2b.



Appl. Sci. 2023, 13, 10631 4 of 20

(a) (b)
Figure 2. (a) Intel Realsense D435 depth camera, (b) stereo IR depth camera diagram.

When the detecting object is close to the depth camera, the disparity value is high,
and an accurate depth value can be calculated [28]. Conversely, when the detecting object
is far from the depth camera, the error of the calculated depth is increased due to a small
disparity value [29]. Moreover, since different materials have different surface structures,
they will affect the visibility of the pattern leading to variations in depth error.

2.2. Experimental Setup

To investigate the impact of distance and material of the detecting object on the depth
error, indoor experiments using Intel Realsense D435 depth camera have been conducted to
collect the depth values with 3 different materials. Our experimental setup is similar to the
setup proposed in [30]. While we also vary the distance in the experiment, the significant
difference between our setup and the setup in [30] is that we adopt different wall materials
(plastic, cement, formboard) to analyze their effects on the depth noise. The experimental
setup can be seen in Figure 3.

Figure 3. Experimental setup to calculate standard deviation values in both simulation and real exper-
iment using Intel Realsense D435 depth camera. The depth camera was positioned to perpendicularly
face a wall, and the distance was set from 0.5 m to 8 m at 1 cm step. A depth image with the size of
460× 320 was taken at each distance.

Before conducting the experiment, we calibrated the D435 depth camera by utilizing
Intel’s Dynamic Calibration tool, following the connection of the D435 camera to a laptop
via a USB3 cable [30]. During the calibration process, the program analyzes all depth values
within the full field of view. In addition, we assessed the depth quality using the depth
quality tool provided by the Intel RealSense SDK [30,31]. To confirm depth quality, the
camera needed to have more than 50% valid depth points, without the requirement for
a flat or perpendicular surface. Following calibration, we employed the Realsense ROS
program to publish the sensor data from the depth camera to our laptop. For each material,
the distance of the depth camera to the wall was manually set from 0.5 m to 8 m at 1 cm
step (751 camera positions in total) using a roller. The distance was measured with the
accuracy of 1 mm. After calibrating the camera’s position, we check again if the camera is
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perpendicular to the wall using the depth image. Using the real-time data streaming from a
ROS topic, we divided the depth image into four sections; the perpendicular condition is
then guaranteed if the average depth values of all sections were the same. A depth image
with the size of 460× 320 pixels was obtained at each distance. For 751 camera positions,
751 corresponding depth images can be obtained for each material.

2.3. Depth Noise Modeling

It was pointed out that the depth noise from Intel Realsense D435 can be modeled as a
Gaussian model [25,30]. The standard deviation of the noise model is calculated based on
the depth data obtained in Section 2.2 as follows. Since the true distance value is known,
the depth error at each pixel can be calculated as in Equation (3).

Deptherror = Depthmeasured − Depthtrue (3)

The standard deviation value of the 460× 320 Deptherror values can then be computed.
Figure 4 illustrates the calculated standard deviation values of the depth error for all
three materials. It was observed that the standard deviation values for each material
increase exponentially with distance. This trend is exhibited by all three materials, albeit
with different specific patterns. Based on this observation, multiple candidate functions,
including exponential functions and other polynomial functions, were tested to find the
best fit for the data. The exponential function model in Equation (4) was ultimately selected
because it yielded the smallest Root Mean Square Error (RMSE) values.

stdnoise = 0.005em×d (4)

where stdnoise is the standard deviation of the depth error, m is the material value with the
unit of 1/m, d is the distance value with the unit of meter, and 0.005 is the fitting coefficient
with the unit of meter.

(a) Cement wall with material value of 0.35 m−1.

(b) Formboard wall with material value of 0.5 m−1.

Figure 4. Cont.
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(c) Plastic wall with material value of 0.85 m−1.

Figure 4. Comparison between real standard deviations of the depth errors and simulated stan-
dard deviations of the depth using our depth noise model for (a) cement, (b) formboard, and
(c) plastic materials.

The graph depicted in Figure 4 illustrates how the standard deviation of the depth
value varies with different material values. Additionally, there is another type of error
known as the fill-rate error, which arises when the depth camera cannot calculate the depth
value for certain pixels due to the absence of a detectable dot pattern. These pixels are
assigned a depth value of 0, and this error occurs randomly in 1% of the depth camera
pixels [32], as demonstrated in Figure 5. This fill-rate error is simulated by setting 1% of the
depth values to 0.

(a) (b)
Figure 5. (a) Simulation depth camera value, (b) value with fill-rate error implemented.

2.4. Simulation Implementation and Results

The depth camera model is implemented in the Airsim simulation to provide realistic
depth camera functionality for drone simulations. As shown in Figure 6, the depth camera
model (Equation (4)) generates a noise model based on the simulated depth value and
subsequently applies it to the simulated depth value. In our work, we conducted simula-
tions with a MSI laptop (Taipei, Taiwan) equipped with the following specifications: Intel
i7-10750H processor, 16 GB DDR4 RAM, and an NVIDIA GeForce GTX 1660 Ti (laptop
version). The simulation is run on Ubuntu 18.04 with ROS melodic version, Unreal Engine
4, Airsim, and PX4 programs [33]. Unreal Engine 4 was responsible for visualization of
the simulation and enabled the creation of simulation environments with obstacles. On
the other hand, PX4, an open-source drone control program, provided simulated internal
sensors such as IMU and barometer [34,35]. Airsim links PX4 to Unreal Engine 4 and allows
for the attachment of GPS, RGB camera, and depth camera to the simulated drone [26],
as well as the ability to perform collision detection and map-scanning. When a control
command is input into PX4, the control value is calculated, and the simulated drone be-
gins to move [35]. The simulated drone’s position, velocity, and rotation are calculated
in Airsim and visualized in Unreal Engine 4. Figure 5a illustrates that all pixels of the
depth camera from the simulation have true depth values, while Figure 5b demonstrates
the implementation of the fill-rate error in the simulation. Figure 6 provides an overview
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of the implementation of our depth camera noise model in simulation. We subscribe to
the depth camera topic from Airsim to obtain depth information for the camera depth
noise model. This information is used in our ROS package to compute Gaussian noise,
following Equation (4). Subsequently, we publish the resulting noise values back to Airsim
through another topic. The depth noise calculation at each pixel includes 2 multiplications
and 1 exponential calculation. Its required calculation time depends on the processor’s
capabilities. The complexity of the algorithm is then O(n), where n is the number of depth
points. Using our hardware setup, it takes approximately 0.0121 s to calculate the depth
noise data for 460 × 320 pixels. The depth camera noise topic is then published back to
Airsim at a rate of about 30 Hz, enabling real-time usage.

Figure 6. Stereo IR depth camera error implementation in simulation.

Figure 7a,b demonstrate how the depth value appears as a pointcloud when the
material value is altered, causing the simulated measurement of a wall to appear thicker
due to increased noise. To further evaluate our model, the coefficient of determination
(R2) value was calculated between two standard deviation data sets for each material.
One set is the standard deviation values calculated from a real environment using Intel
Realsense D435 depth camera, while the other set is standard deviation values calculated
from simulation using our depth camera model. Each set has 751 values as described
in Section 2.2. R2 values are shown in Table 1. The average coefficient of determination
(R2) value is 0.6204, indicating that the depth camera noise model can accurately simulate
different noise levels for different materials. However, it is important to note that the model
errors tend to increase with distance. It is observed that the model performs optimally in
the distance range from 0.5 m to 3 m (ideal range for D435 [36]) with an average R2 of 0.92
for all materials (0.89 for plastic walls). In the range from 0.5 m to 6 m (the maximum range
for drones), those values decrease to 0.73 and 0.5948, respectively.

Table 1. Coefficient of determination (R2) between standard deviations of the depth errors and
simulated standard deviations of the depth using our depth noise model for different materials.

Plastic Cement Formboard
m = 0.85 (1/m) m = 0.50 (1/m) m = 0.55 (1/m)

R2 Value 0.26049 0.7126 0.5438

The realism of our simulator can be visually verified as seen in Figures 7–9. In
Figures 7 and 8, the depth data obtained from the real wall with different materials closely
resemble the simulation depth data generated using the depth camera noise model. As
shown in Figure 9, the depth camera noise model exhibits larger noise levels with increasing
distance. To validate the proposed model, we conducted another indoor experiment using
a Realsense D435 depth camera. The camera was stationary, capturing static objects from a
perpendicular angle, as described in the experimental setup Section 2.2. For this experiment,
we used a different cement wall than the one described in Section 2.2. The experimental
setup remained consistent with the previous section. To vary the lighting conditions in
real-world experiments, we utilized different LED lights (3000 Lumens, Z-9020M (Nanjing,
China)). Light density was measured using a cellphone, and the recorded light density
represented the average value measured in the testing area when the cellphone camera
was directed from the wall towards the Realsense camera in a perpendicular direction.
Three different light conditions were observed: 160 Lux, 230 Lux, and 300 Lux, all falling
within the typical range of indoor lighting conditions [37]. It is worth noting that the light
condition can be easily adjusted in the simulator.
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(a) (b)
Figure 7. Pointcloud visualization of depth value with noise implemented when (a) m = 0.35 (1/m),
(b) m = 0.55 (1/m).

(a) (b)
Figure 8. Pointcloud visualization of real world wall (a) with wallpaper, and (b) with reflective plastic.

(a) (b)
Figure 9. Simulation depth camera (a) without noise, and (b) with noise.

The distance between the depth camera and the wall was manually adjusted from
0.5 m to 8 m, resulting in a total of 29 camera positions, using a roller. At each distance, we
captured five depth images, each with a size of 460× 320 pixels. The standard deviation
values of the depth errors and their deviations can then be achieved. Using the depth
camera model with noise for a cement wall (material value 0.5 1/m) obtained in Section 2.3,
the comparison between the real standard deviations of the depth errors and the simulated
standard deviations of the depth using our depth noise model for cement walls is shown
in Figure 10. It is observed from Figure 10 that the average value of R2 is 0.74 for three
light conditions, validating the accuracy of our depth noise model. Furthermore, it is also
observed that the noise model is not affected by the lighting condition under 300 Lux.
Similar results were also observed with the same depth camera D435 tested under different
lighting conditions under 540 Lux, but at shorter distances (1 m, 1.5 m) [38].

It was shown that incorporating a noise model results in better performance in SLAM
and reconstruction algorithms [38], object recognition [39], segmentation [40], 3D reconstruc-
tion [41], and camera tracking [42]. Our depth noise camera model for those applications
will be validated in our future work.
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(a)

(b)

(c)
Figure 10. Depth noise standard deviation value of cement wall in real environments and noise model
using material value 0.5 m−1 in (a) 160 Lux light density, (b) 230 Lux light density, and (c) 300 Lux
light density.
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3. Rotor Drag Force Model Implementation

This section presents the development of the model for rotor air drag force. As our
improved model is based on the embedded model in Airsim, we will first provide an
overview of the Airsim drag force model, followed by an introduction to our proposed
rotor drag force model in Section 3.1.

The process to verify our aerodynamic drag model is as follows. First, thrust exper-
iments will be carried out to find the relationship between thrust and PWM inputs sent
from Pixhawk (high-level controller) to the ESC (electronic speed controllers), as presented
in Section 3.2.1. Because drag force cannot be measured directly, we will verify the model
indirectly by comparing the calculated acceleration, which is the resulting acceleration
caused by the thrust and drag force, and the measured acceleration of the drone, which
is obtained using IMU and GPS sensors, as in Section 3.2.2. Both models are compared
through both simulation and outdoor experimental tests at different speeds.

3.1. Rotor Drag Force Model

The air drag force model calculates the air friction in simulation. In Gazebo and Airsim
simulator, the air drag force model [43] is implemented using the equation below.

Fa = −DRTV (5)

where Fa is the air drag force, D is the coefficient matrix, R is the rotation matrix of a drone,
and V is the velocity of a drone. However, Equation (5) is too simplified for high-speed
drone flight. To accurately simulate high-speed drone flight, we calculate more realistic
aerodynamic forces by considering the forces acting on the drone’s rotor. The following
equation demonstrates how air drag force acts on one rotor [44]:

Fi
a = −

√
Ticd1πe3Vi

a (6)

where Ti is the thrust generated by rotor i, Vi
a is relative air velocity expressed in the body

frame, πe3 = I − e3e>3 , and e3 is
[
0 0 1

]
. Due to

√
Ti in Equation (6), the rotor drag

force does not satisfy differential flatness [45]. As shown in Figure 11, to satisfy differential
flatness,

√
T is linearized as below.

Figure 11. Linearization of
√

T to kT + b.√
Ti ≈ kTi + b, k, b > 0 (7)

where k and b are coefficients. Using the approximation in Equation (7), we can write
Equation (6) as below:

Fi
a = −(kTi + b)cd1πe3Vi

a (8)
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Since there are four rotors in a quadrotor, and the total air drag force can be expressed
as follows.

Fa =
4

∑
i=1

Fi
a =

4

∑
i=1
−(kTi + b)cd1πe3Vi

a (9)

where Fa is the total air drag force acting on the quadrotor. The position vector of each rotor,
represented as di, is a combination of the horizontal position vector d(x,y,i) and the vertical
position vector d(z,i). By incorporating this information, Equation (9) can be expressed in
the following form:

Fa =
4

∑
i=1

Fi
a =

4

∑
i=1
−(kTi + b)cd1πe3(RTVa + ω× (di)) (10)

Fa =
4

∑
i=1

Fi
a =

4

∑
i=1
−(kTi + b)cd1πe3(RTVa + ω× (dx,y,i + dz,i)) (11)

where ω is angular velocity of quadrotor. It is common practice to place rotors symmetrically
around the center of gravity and at the same height. This arrangement implies the use of an
even number of rotors. According to [46], the effect of the wind, with speeds below 4 m/s,
on the drone’s position can be considered negligible. In our experiments, the wind speed
was consistently below 4 m/s, so we assumed there was no wind. Therefore, Equation (11)
can be simplified as below:

Fa = −(kT + b)cd1πe3v− kcd1πe3

i=1

∑
n/2

(Ti − Ti+n/2)(ω× dx,y,i) (12)

where v is the quadrotor’s velocity. Since the thrust difference is primarily used to adjust
the thrust vector when there is a change in the trajectory direction, it is assumed to be
significantly smaller compared to the total thrust, which is responsible for hovering and
following the trajectory. Equation (12) can then be rewritten as below:

Fa = −(kT + b)cd1πe3v (13)

As shown in Figure 12, to implement rotor drag force in Airsim simulation, PX4 and
Airsim program are used. The PX4 program subscribes to thrust, rotation, velocity topics
published from Airsim. And we use the information from the topics to calculate the air drag
force in our air drag force ROS package following Equation (13). The calculated result is then
published back to the Aisim through another air drag force topic. Since the rotor drag force
model involves only 21 basic calculations (multiplications and addition) as in Equation (13),
it typically executed nearly instantly on current processors. With our hardware setup, the
model takes only 4.36× 10−6 s, making it suitable for real-time applications.

Figure 12. Rotor drag force implementation in Airsim simulation.

3.2. Experiments

To validate the drag force model, we conducted both simulated and real experiments
using the F450 quadrotor equipped with a Sunnysky V3508 700 Kv BLDC motor (Shenzhen,
China) and an 11× 4.7 inch propeller, as shown in Figure 13a. Due to its simple structure
and relatively small surface area, the drag force generated by the rotor is significant in
comparison to the drag force originating from other parts of the drone, such as the drag force
caused by the frame’s surface area. As shown in Figure 13b, the drone’s system architecture
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comprises an Nvidia Jetson TX2 with a J120 carrier board serving as the high-level controller
and a Pixhawk2 as the low-level controller. The drone can operate in either manual mode
or auto-pilot mode. In manual mode, commands are transmitted from a remote controller
(RadioLink T8FB (Shenzhen, China)) to a remote controller receiver via 2.4 GHz radio
communication. The receiver then relays signals to the low-level controller using the SBUS
protocol. In auto-pilot mode, as depicted in Figure 13b, the drone’s position and speed are
controlled by the high-level controller (Nvidia Jetson TX2 (Taipei, Taiwan)). The high-level
controller subsequently sends commands to the Pixhawk using the MavROS package.
In both modes, the Pixhawk manages the drone’s target attitude values, sending Pulse
Width Modulation (PWM) values to the electronic speed controllers (ESCs) responsible
for controlling the drone’s rotors. Flight data, including PWM signals sent to ESCs and
the drone’s position, can be transmitted from the low-level controller to a ground station
through telemetry using radio communication at 433 MHz or via a USB connection. The
experiment utilized an Ubuntu 18.04 operating system, ROS Melodic, Mavlink, ROS, and
PX4 programs. The IMU employed in flight experiments was integrated into the Pixhawk
module, and a GPS device (CubePilot HERE2 M8N GPS (Xiamen, China)) was directly
connected to the Pixhawk.

(a)

(b)
Figure 13. Image of the drone used in the experiment and its system architecture. (a) Top-view image;
(b) system architecture of the drone.
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3.2.1. Thrust Experiments

To calculate the drag force in our model, the thrust value of the rotor is needed.
Therefore, experiments have been conducted to determine the relationship between the
PWM signals sent from Pixhawk to the ESC and the thrust produced by the rotor. The
experimental setup can be seen in Figure 14. We used a Sunnysky V3508 700 Kv BLDC
motor (Shenzhen, China) with an 11× 4.7 inch propeller, the same as what was used in our
drone. This motor was attached to a metal base fixed to a scale using tape. A 14.8 V battery
powered the ESC. Throttle commands to adjust the rotor speed were sent from a remote
control (RC) transmitter to an RC receiver, which then transmitted corresponding PWM
signals to the electronic speed controller (ESC) responsible for regulating the rotor’s speed.
We monitored the PWM values on a notebook through a ROS topic, received directly from
the Pixhawk controller via USB connection. During experiments, we manually adjusted the
remote controller to vary the PWM values from 1000 to 1950 in steps of approximately 20.
We recorded thrust values displayed on the scale’s screen with a 1 g resolution. For each
PWM value, we recorded five thrust values over 5 s, with measurements taken every 1 s.
The test results are presented in Figure 15.

Figure 14. Experiment to find out the relationships between PWM (to ESC) and the rotor thrust.

Figure 15. Box plot of the experiment results of PWM-thrust relationships using a battery of 14.8 V.

3.2.2. Rotor Drag Force Experiments

To validate our model, simulated experiments in an indoor environment at five dif-
ferent speeds of 1.5 m/s, 7.5 m/s, and 26 m/s have been carried out. These experiments
included circular and lemniscata trajectories, which are commonly used to assess tracking
error performance due to their balanced motion on all axes and trajectory aggressiveness.
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The Root Mean Square Error (RMSE) results for both our model and the Airsim model are
presented in Figure 16. Figure 16 clearly demonstrates that our proposed rotor drag force
model exhibits significant improvements over the Airsim drag force model, especially at
high speeds. On average, the RMSE error when using our model was 4.58 times smaller
than that of the Airsim model across all speeds. The accuracy of our model relative to
the Airsim model increased with higher speeds, reaching a reduction in RMSE errors by
7.3 times at a wind speed of 26 m/s. These results validate the effectiveness of our model in
accurately representing the drag force. A real-world experiment was conducted to compare
the rotor and air drag force at various speeds.

Figure 16. RMSE of drag force models at different speeds of 1.5 m/s (circular trajectory), 7.5 m/s
(circular trajectory), 15 m/s (leminiscata trajectory), 20 m/s (leminiscata trajectory), 26 m/s
(circular trajectory).

The drone flew back and forth at a straight distance of 80 m at an altitude of 15 m, and
at speeds of 5 m/s and 10 m/s. Data were acquired using IMU and GPS sensors as shown
in Figure 17. The force acting on the drone during flight can be written as follows:

ainput = Finput/m = R
4

∑
i=1

Ti/m (14)

where ainput is acceleration calculated by thrust input from the quadrotor’s controller,
m is the mass of the quadrotor, and Finput is the input force acting on the drone by the
quadrotor’s rotors.

acal = ainput − Fa/m ∼= ameasured

{
Fa = Fairsim
Fa = Frotor

(15)

where ameasured is the measured acceleration of the quadrotor by IMU and GPS sensors
and Fairsim is Airsim’s air drag force as shown in Equation (5), Frotor is rotor drag force
as shown in Equation (13). To figure out the accuracy of the two different air drag force
models, RMSE error is used as below:

RMSE = (ameasuredx − acalx)
2 +

(
ameasuredy − acaly

)2
+ (ameasuredz − acalz)

2 (16)

The comparison of the rotor drag force model and the Airsim drag force model
reveals significant differences in accuracy when the drone undergoes acceleration. We also
conducted outdoor experiments at speeds of 5 m/s and 10 m/s, the results of which are
presented in Table 2 and Figures 18–20. At a speed of 5 m per second, the two models
exhibited similar accuracy, with only a minor discrepancy between predicted values and
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real-world data. However, at a higher speed of 10 m per second, the rotor drag force model
demonstrated significantly less error, achieving a 51% reduction compared to the Airsim
drag force model.

Figure 17. Drone flight trajectory.

(a) (b)
Figure 18. (1) Distance, (2) X-axis measured acceleration, and (3) X-axis calculated acceleration with
rotor drag force model and (4) Airsim drag force model at (a) 5 m/s flight and (b) 10 m/s flight.

(a) (b)
Figure 19. (1) Distance, (2) Y-axis measured acceleration, and (3) Y-axis calculated acceleration with
rotor drag force model and (4) Airsim drag force model at (a) 5 m/s flight and (b) 10 m/s flight.
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(a) (b)
Figure 20. (1) Distance, (2) Z-axis measured acceleration, and (3) Z-axis calculated acceleration with
rotor drag force model and (4) Airsim drag force model at (a) 5 m/s flight and (b) 10 m/s flight.

Table 2. RMSE errors of Airsim drag force model and rotor drag force model in outdoor experiments.

Speed Airsim Drag Force Model Rotor Drag Force Model

5 m/s 0.57 m/s2 0.64 m/s2

10 m/s 1.48 m/s2 0.98 m/s2

4. Conclusions and Discussion
4.1. Conclusions

In this work, we present a realistic drone simulation that incorporates accurate models
for the depth sensor and air drag force. In our work, the depth sensor model incorporates
the noise behavior of the depth camera as a Gaussian process and factors in the impact of
various materials at different distances. Additionally, the enhanced rotor drag force model
incorporates thrust values along with the drone’s velocity and rotation to enhance drag force
accuracy. These models were identified, validated through experiments, and subsequently
implemented in Ubuntu with ROS and PX4 programs. They were then visualized using
Unreal Engine 4, creating a valuable simulation tool for testing and evaluating autonomous
drone systems.

4.2. Comparison with Other Drone Simulators

In Table 3, we compared our proposed simulator with popular drone simulators such
as Gazebo [47], Hector [20,48], RotorS [49] and FlightGoogles [50] across several criteria:
visual quality (which is related to the rendering Engine), provided sensors and sensor noise
models, interface to configure multiple vehicle models (the number of vehicles), support
for virtual reality (VR) headset, and embedded aerodynamic drag force models. It is seen
from the table that, compared to other simulators, Airsim stands out as a notable drone
simulation tool in all listed criteria. It excels in providing high visual quality, supporting VR
headset interfaces, and offering a wide range of sensor models commonly used in drones,
including IMU, GPS, RGBD, and Lidar. Airsim’s application program interface (API)
facilitates the easy launch and control of multiple vehicles, providing an advantage over
other simulators like Gazebo, Hector, RotorS, and FlightGoogles. Although all simulators
offer embedded aerodynamic drag force models, the specific inputs required for each
model vary.

In comparison to the current Airsim simulator, we introduced two significant contri-
butions. Firstly, we presented a novel depth camera noise model, which is not available in
Airsim, offering an advantage over other simulators, as indicated in Table 3. Additionally,
we introduced an enhanced aerodynamic drag force model, which we proposed and veri-
fied in Section 3. Our focus was on improving the existing aerodynamic drag force model
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in Airsim, so we did not assess our model against other aerodynamic drag force models in
different simulators. Nevertheless, this will be a direction for our future work.

Table 3. Comparison of drone simulators.

Simulation Dynamics Visual Quality Sensor Type
Sensor
Noise
Model

VR
Headset Vehicles Aerodynamic

Drag Force Model

Gazebo [47] Gazebo-based Low(OpenGL) IMU, GPS, RGBD, Lidar X X Single
Velocity (drone),
rotation dependent
coefficients (drone)

Hector [20,48] Gazebo-based Low (OpenGL) IMU, GPS, RGBD, Lidar GPS, IMU X Single Velocity (drone)

RotorS [49] Gazebo -based Low (OpenGL) IMU, GPS, RGBD, Lidar IMU, GPS,
RGB X Single

Velocity (drone),
angular velocities
(rotors)

FlightGoggles [50] Flexible High (Unity) IMU, GPS, RGB IMU, RGB O Single Velocity (drone)

Airsim [26] PhysX High (Unreal
Engine) IMU, GPS, RGBD, Lidar IMU, GPS,

RGB O Multiple Velocity (drone),
rotation (drone)

Airsim with
our model PhysX High (Unreal

Engine) IMU, GPS, RGBD, Lidar
IMU, GPS,
RGB, Depth
Camera

O Multiple

Velocity (drone),
rotation (drone),
thrust values
(rotors)

4.3. Discussion

An essential aspect of using simulations is to provide them with sensor signals that
mimic those generated by real sensors and to obtain the same control behavior as real
drones in the same environment, which requires an accurate drag force model. It was
shown that our depth sensor noise model successfully simulates a real-depth sensor, and
our improved drag force model outperforms the existing Airsim drag force model. These
results affirm the realism of our simulation environment for drone testing.

Moreover, this simulator not only provides a realistic simulation environment but
also opens up possibilities for studying drone object detection, SLAM (Simultaneous
Localization and Mapping), and control algorithms using depth camera sensors before
implementing them in real-world scenarios. One research scenario involves configuring
various material properties for objects and testing drone behavior in confined spaces, such
as underground tunnels, using realistic depth sensor signals generated by our model.

Another application is simulating high-speed drone flights with surrounding obstacles
like walls or gate frames, as seen in autonomous Drone Racing (ADR) [51,52], the AlphaPi-
lot [53]. Given that our drag force model demonstrates higher precision than the AirSim
model at high speeds, it can be invaluable for competitors to fine-tune their algorithms
before real-world tests. Additionally, our simulator is expected to yield superior results in
reinforcement learning applications compared to existing simulators.

The noise characteristics of widely used depth cameras, such as ASUS Xtion Pro
Live, Occipital Structure IO, Orbbec Pro, Microsoft Kinect V2, Intel Realsense D435, Intel
Realsense ZR300, Intel Realsense R200, Intel Realsense F200, Intel Realsense SR300, and
Ensenso N35, often depend on the material or distance of the detected objects [25]. Given
that our depth camera noise model is designed to be general, we believe it can be readily
extended to accommodate these cameras. Furthermore, our air drag force model can be
applied to any type of propeller, provided that the relationship between PWM and thrust
values can be established. By following our approach, Airsim users can develop both the
depth camera noise model and the improved air drag force model as ROS packages, making
them accessible within the Airsim environment. We are also considering the integration of
these models as plugins into the Airsim environment for our future work.

In future work, we plan to make several enhancements. These include considering
factors like the angle of the observed surface, variations in light conditions, and addressing
other sources of noise, such as those arising from the edges of detected materials or caused
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by sunlight [24]. In our current rotor drag force model experiments, we focused on low
wind speeds below 4 m/s, where the wind’s impact on the drone’s position is negligible [46].
However, for wind speeds exceeding 4 m/s, wind can affect the rotor drag force, potentially
leading to errors in the model. As part of our future work, we plan to investigate the
influence of wind speed on the rotor drag force model. Furthermore, while the Intel
Realsense D435 depth camera is widely used in autonomous drones, we aim to test other
depth cameras to offer a broader range of camera options for the drone simulator. Our
future work will also explore more realistic effects related to drone operations and delve into
the impact of thrust differences on the model during complex trajectories. It is important
to note that the PWM-to-ESC and rotor thrust relationship can vary depending on the
specific propeller. To provide more propeller options within the drone simulator, we intend
to conduct experiments to obtain PWM–thrust relationships for different propellers.
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