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Abstract: Amidst the evolving communication technology landscape, conventional distribution
networks have gradually metamorphosed into cyber–physical power systems (CPPSs). Within this
transformative milieu, the cyber infrastructure not only bolsters grid security but also introduces a
novel security peril—the false data injection attack (FDIA). Owing to the variable knowledge held by
cyber assailants regarding the system’s network structure, current achievements exhibit deficiencies
in accommodating the detection of FDIA across diverse attacker profiles. To address the historical
data imbalances encountered during practical FDIA detection, we propose a dataset balancing model
based on generating adversarial network-gated recurrent units (GAN-GRU) in conjunction with an
FDIA detection model based on the Transformer neural network. Harnessing the temporal data
extraction capabilities of gated recurrent units, we construct a GRU neural network system as the
GAN’s generator and discriminator, aimed at data balance. After preprocessing, the balanced data are
fed into the Transformer neural network for training and output classification to discern distinct FDIA
attack types. This model enables precise classification amidst varying FDIA scenarios. Validation
involves testing the model on load data from the IEEE 118-bus system and affirming its high accuracy
and effectiveness in detecting power systems after multiple attacks.

Keywords: cyber–physical power systems; false data injection attack; attack modeling; generative
adversarial network; gated recursive unit; the Transformer neural network detection

1. Introduction

The electric power industry is witnessing a significant development trend with the
emergence of smart grid cyber–physical power systems (CPPSs). This trend achieves
intelligent control and management by integrating traditional power systems with infor-
mation control equipment, thereby establishing communication and sensing networks to
facilitate the seamless interlinking and interoperability of power, information, and physical
systems [1,2]. However, in the wake of the burgeoning new energy internet, the realm of
smart grids encounters novel security challenges, with cybersecurity threats emerging as a
grave concern. A prevailing form of attack in this context is the false data injection attack,
which poses a considerable risk to power system stability. By maliciously introducing
counterfeit data into the power system, this attack disrupts critical functionalities such
as state estimation and economic dispatch. Evidential occurrences such as the Ukraine
blackout (June 2015); the compromise of the Utah grid control system (July 2019); the
malevolent assault on the Delta Montrose Electric Power Association in Colorado, USA
(2021); and the ransomware attack on the Australian Electricity Provider Network Systems
Energy (2021) have underscored the tangible threat posed by false data injection attacks on
power systems [3,4]. Consequently, the development of robust detection methodologies for
identifying such spurious data injection attacks becomes imperative within the purview of
smart grid systems. To address these burgeoning security concerns, smart grids are proac-
tively used in advanced technologies, encompassing sensing and measurement techniques,
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and incorporated into robust control methodologies. Furthermore, the establishment of
bidirectional communication networks is actively pursued to neutralize cybersecurity vul-
nerabilities. Equally vital is the need to institute preemptive strategies for averting and
detecting false data injection attacks and other cyber–physical risks. By judiciously adopt-
ing pertinent security mechanisms and deploying discerning attack detection frameworks,
the stable operation of the smart grid is assured, thereby mitigating potential disruptions
to power systems stemming from cybersecurity threats. We list the abbreviations in this
paper in Abbreviations.

The inception of false data injection attacks was initially introduced by [5]. In the
work presented, the authors delineate this phenomenon as a prototypical assault on the
data integrity of power system state estimation. The realm of CPPS has, as a consequence,
engendered substantial scholarly interest in exploring avenues of investigation surrounding
concealed and arduously detectable FDIAs. As described in [6–8], extant methodologies for
the detection of FDIAs predominantly encompass approaches grounded in model-based
prediction and data-driven machine learning paradigms.

1.1. FDIA Detection Based on a Model-Driven Approach

Reference [9] proposes a false data static detection method based on the similar
characteristics of buses at a certain moment. This method can detect the false data injection
problem that may occur in the power system. Enhanced sensitivity to dynamic changes in
the power system is achieved, albeit with the possibility of certain attacks being missed
due to the primary focus on static features. Reference [10] proposes an event-triggered
fully distributed algorithm, which can effectively reduce communication time. In that
study, for FDIAs, the authors constructed a specific model that considers the attacker to
maximize the loss and the defender to minimize the loss. The proposed methods require
complex communication architectures, and their applicability is constrained by the specific
characteristics of the system. Reference [11], on the other hand, proposes an FDIA detection
method that combines model predictive control and artificial neural networks. Through the
incorporation of neural networks, a better adaptation to nonlinear system characteristics
is realized to enhance the detection efficiency of the security control layer. However, a
substantial volume of data is needed for neural network training, imposing significant
computational resource requirements. To achieve FDIA attack detection, in [12], an interval
observer was used to accurately estimate the state values of the internal system; then,
an isolation algorithm was constructed, and an interval residual detection criterion was
established based on a logical judgment matrix of attack characteristics. Reference [13],
on the other hand, proposes a model for the detection and defense of FDIAs in load
frequency control systems by combining an evolutionary game model with a Kalman
filter algorithm. In practice, the implementation of this approach entails the utilization
of more intricate models and algorithms, potentially leading to heightened complexity.
Reference [14] proposes an improved detection method based on principal component
analysis, which introduced a mathematical transformation principal approach to improve
the detection performance, such as the detection rate and false alarm rate. Nonetheless,
specific prerequisites regarding data preprocessing and computational resources exist,
rendering the method potentially inapplicable to all datasets.

1.2. FDIA Detection Based on a Data-Driven Approach

However, model-based methods for detecting FDIAs have certain limitations, such
as the tendency of local convergence during online identification and the difficulty in
selecting model thresholds. With the development of CPS, the model-based approach is
insufficient to cope with the state estimation problem created by the increasing quantity of
data. Therefore, a detection method that integrates data-driven, method-based, and intelli-
gent algorithms has emerged. Reference [15] proposes an online FDIA detection method
combining wavelet transform and deep neural networks to detect spatial and temporal
data inconsistencies caused when spurious data are injected into state vectors. A superior
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ability to handle multi-dimensional data features is demonstrated; however, in certain cases,
the fine-tuning of model hyperparameters is imperative to attain optimal performance.
Reference [16] proposes an FDIA detection method based on the Kalman filter algorithm
and recurrent neural networks (RNNs), which obtains dynamic thresholds based on the fit
of observations and predictions to determine whether FDIAs occur. To ensure that FDIAs
do not affect the accuracy of state estimation and further improve the accuracy of FDIA
detection, effective detection methods need to be developed. The adaptability of detection
is bolstered through the utilization of dynamic thresholds that can adjust to changing
scenarios. Concurrently, stringent demands are placed on system modeling and parameter
adjustment, necessitating real-time threshold updates. A framework for fault identification
and diagnosis is introduced in [17]. It harnesses graph-edge conditional convolutional net-
works. The fundamental objective underlying this framework pertains to the establishment
of a mapping relationship, one that aligns measurement estimates with the authentic state
of the power system. The consideration of power system topology renders the method
suitable for intricate systems. However, the construction of graph convolutional networks
requires a substantial volume of training data, resulting in heightened computational com-
plexity. In [18], an online intelligent anomaly and attack detection method is introduced,
which makes use of the partially observable Markov decision process. This method is
designed to detect cyber-attacks targeting smart grids. The method takes into account the
dynamics and incomplete observability inherent to the system, rendering it applicable to
complex network environments. Nevertheless, it necessitates high precision in system
model accuracy and exhibits sensitivity to model errors. A distributed microgrid control
system FDI attack detection structure is presented in [19], which is based on the utilization
of a Gaussian process regression and a one-class support vector machine anomaly detection
algorithm. Due to its suitability for distributed microgrid control systems characterized
by strong distribution and real-time performance, the method may require specialized
knowledge and time investment for model parameter selection and adjustment, contribut-
ing to heightened implementation complexity. The evaluation of the introduced attack
detector encompasses two viewpoints: the assessment of detection loss probability and
false alarm probability. The data-driven approach introduced in [20] demonstrates the
integration of residual networks and attention-mechanism-based long short-term memory
models. This integration is directed toward the achievement of temporal correlation and
feature extraction in measurement data. Through the amalgamation of these models, the
temporal dependencies inherent in the data are efficiently captured. It should be noted
that the practical application of this method might encounter challenges, including the
intricacy associated with model fusion and the need for parameter tuning. However, a
single deep neural network is susceptible to adversarial attacks, which may lead to poor
output stability in the trained network.

Accordingly, rooted in the aforementioned concepts of various FDIA detection method-
ologies, the focus of this study is directed toward the exploration of the practical implemen-
tation of FDIA presence within power system state estimation. In operational scenarios,
historical data in terms of practical application may involve instances of sample imbalance
due to the scarcity of attack data. This scarcity can subsequently engender noteworthy
discrepancies within data-driven detection models, resulting in substantial errors. Owing
to the intricate nature of acquiring comprehensive CPPS information, the proposed model
in this paper is developed from the perspective of attackers. Consequently, a multi-attack
model involving the injection of false data is formulated that is contingent upon the extent
of information they possess concerning the network structure. This endeavor aims to
establish a closer alignment with real-world application scenarios. Building upon this
foundational premise, an FDIA detection method is proposed in this paper, wherein the
amalgamation of the GAN-GRU data balanced processing model and the Transformer
neural network is employed. This confluence is purposefully designed to effectively ad-
dress the challenge posed by the diminished attack detection rate, arising from both data
imbalance and intricate attack patterns.
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The contribution of this paper is as follows:

1. An attacker-centric perspective is embraced in this study to comprehensively investi-
gate the system’s security, with an intention to think and analyze from the viewpoint
of potential attackers. Thus, within this investigation, diverse tiers of information
are taken into account, influencing the creation of a spectrum of attack patterns.
These patterns encompass distinct quantities of attack buses with varying numbers
and intensities. Through the manipulation of both the count and strength of attack
buses, an array of plausible attack scenarios can be simulated, facilitating a holistic
comprehension of the ramifications these attacks might impose upon the day-to-day
operation of the system.

2. To address the challenge posed by the imbalance in historical measurement data in
practical scenarios, a data-balancing processing model based on GAN-GRU is intro-
duced in this study. Within this model, a GRU neural network is incorporated into the
GAN framework, serving as integral components of the generator and discriminator,
respectively. Through jointly training both the GAN network and the GRU network,
a recurrent network is constructed with the purpose of generating a limited segment
of attack vector data within an imbalanced sample set. This process facilitates the
establishment of balance among the quantities of diverse sample classes in the training
dataset, ultimately leading to enhanced accuracy and reliability of the models when
subjected to FDIA assessment.

3. In response to the challenge posed by false data injection across various attack sce-
narios, a false data detection model is constructed utilizing the Transformer neural
network. The equilibrium dataset is divided into distinct training and test subsets,
enabling the application of the Transformer to the detection and classification of false
data injection attacks. Following this, a confusion matrix is generated, contrasting
projected and actual values, and comparison experiments are performed against the
enhanced convolutional neural network-gated recurrent unit (CNN-GRU), long short-
term memory network (LSTM), and support vector machine (SVM). The simulation
findings underscore the commendable scalability of the proposed data-balancing
processing model based on GAN-GRU and the detection algorithm based on the
Transformer neural network when scrutinizing the FDIA within the IEEE 118-bus
system. Furthermore, the outcomes demonstrate a substantial enhancement over
conventional algorithms in terms of precision in detecting attacks.

This paper is divided into five sections, the rest of which are organized as follows:
In Section 2, the fundamental aspects of false data injection attacks are explained, encom-
passing system state estimation and the modeling of attacks in consideration of partial
network information. The data-balancing processing model based on GAN-GRU and the
FDIA detection model based on the Transformer neural network presented in this paper
are described in Section 3. Then, Section 4 presents illustrative examples and the experi-
mental outcomes pertaining to the models introduced in this study. This encompasses the
enhancements observed in the detection mechanism following the implementation of data
balancing, as well as the accuracy and performance assessment of the FDIA detection mech-
anism under standard operating conditions. Additionally, it encompasses comparative
experiments involving multiple detection techniques subject to multi-attack mode. Finally,
Section 5 serves as the concluding segment of this paper, summarizing the contributions
and findings presented within.

2. Problem Description
2.1. Theoretical Foundations of CPPS State Estimation

State estimation entails the examination of instrument measurement data within
a SCADA system [21,22], enabling the deduction of the operational state of the power
system. This paper addresses the issue of state estimation in CPPS, encompassing a
model characterized by n-dimensional measurement vectors and m-dimensional system
state vectors. The procedure involves the analysis, processing, and amalgamation of
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measurement data to derive a precise estimate of the system’s state. State estimation plays a
pivotal role in power system operation and monitoring, facilitating the timely identification
of anomalies by operators, aiding in decision making and fault diagnosis, and affording a
comprehensive comprehension of the system’s operational condition [21]. By consistently
enhancing and optimizing the algorithms and methodologies used for state estimation,
the accuracy and robustness of the power system’s state can be augmented, subsequently
elevating the security and reliability of the system. The state estimation problem can be
formulated as follows:

z = Hx + e, (1)

where z = (z1, z2, . . . , zn)
T represents the n-dimensional measurement vector of the system,

H represents the Jacobi matrix, x = (x1, x2, . . . , xm)
T represents the system state vector, and

e = (e1, e2, . . . , en)
T represents the measurement error.

In the detection process, the traditional residual comparison method based on BDD
plays a significant role. This method discerns the presence of subpar measurements—those
that could be either faulty or compromised by malicious attacks—by contrasting the 2-norm
of measurement residuals against a predetermined threshold. When the residual value
surpasses this established threshold, the detector signals the occurrence of an attack. This
technique offers an effective approach to identifying attacks and uncovering anomalies
that might potentially jeopardize the system. Consequently, the BDD method relying on
residual comparison has emerged as a pivotal element in fortifying the system’s security.
Through the continuous enhancement and optimization of this detection methodology,
the system’s attack detection capability can be further elevated, consequently reinforcing
the assurance of system security and reliability. The detection approach through residual
comparison can be formulated as follows:

R = ‖z−Hx‖2
2 ≥ τ, (2)

where R represents the 2-norm of residuals, and τ represents the residual test threshold set
by the CPPS.

2.2. A Multi-Attack Mode

In this study, a multi-attack mode is formulated based on the theoretical foundations
of CPPS state estimation. This model is composed of various configurations, characterized
by distinct numbers of attacking buses and varying levels of attack intensities. The former
configuration is referred to as FDIA construction based on the partial grid information
known, while the latter is quantified through the utilization of 2-norm metrics.

2.2.1. FDIA Construction Based on the Partial Grid Information Known

This paper takes the perspective of the attacker into account during the formulation
of attack vectors. Given the attacker’s limited comprehension of the electric power CPS
network structure, we postulate that only partial network information is accessible to the
attacker. Based on the varying degrees of information available, diverse attack vectors
are formulated [23]. To enhance the comprehension of the security issues inherent to the
target power grid, the grid is divided into two critical regions: the attack region α and the
unattacked region β, as depicted in Figure 1. In Figure 1, the loads and transformers in the
two regions are represented by L and T, respectively, and a partial depiction of the network
structure is illustrated in Figure 1.
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The attackers possess a restricted understanding of the network information affiliated
with the attack region, and their aim is to perpetrate the attack by manipulation of measure-
ment data within that area. To effectively evade detection by the BDD detection module,
the attackers must guarantee that their manipulative actions do not result in an elevation
of the measurement residuals, thereby evading the system’s suspicion. The relationship
between the target grid’s state variables and the measurement data can be formulated
as follows:

z =

[
zα
zβ

]
=

[
Hαα Hαβ

0 Hββ

][
x̂α
x̂β

]
+

[
eα
eβ

]
, (3)

where z, zα, and zβ represent the number of system measurements for the total system,
the attacked area, and the unattacked area; x̂α and x̂β are the estimated values of the
state variables for the corresponding areas, respectively; eα and eβ are the corresponding
measurement errors; and Hαα, Hαβ, and Hββ are the Jacobi matrices associated with the
state variables. Expanding the aforementioned equation in accordance with the provided
expression results in:

zα = Hααx̂α + Hαβx̂β + eα, (4)

zβ = Hβx̂β + eβ, (5)

The attacker constructs the following false data based on the knowledge of the network
in area α:

z′α = Hααxα + Hαβx̂β, (6)

At this point, the measurement vector of the system becomes z′ = [z′αzβ]
T , and the

state vector becomes x̂′ =[xαx̂β]
T . The 2-norm residual r′ test of the measurement data

satisfies the following derived relationship:

r′ =
∥∥z′ −H(x̂′)x̂′

∥∥
2 =

∥∥∥∥z′α − (Hααxα + Hαβx̂β)
zβ −Hββx̂β

∥∥∥∥
2
=

∥∥∥∥ 0
eβ

∥∥∥∥
2
= ‖eβ‖ 2 < r =

∥∥∥∥ eα
eβ

∥∥∥∥
2
, (7)

Based on the information available to the attackers concerning the network within the
attack area, the formulation of false data becomes a straightforward process, as depicted in
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Equation (6). Once these false data points infiltrate the system, as described by Equation (7),
the resultant measurement residuals of the system exhibit reduced magnitudes compared to
the residuals corresponding to scenarios without the presence of false data. Consequently,
the construction of a false data attack based on partial network information is not only
viable but also tactically discrete. This form of attack introduces a significant latent peril to
the security and dependable operation of power systems.

In this scenario, the attacker leverages their knowledge of the network within the
attack area to specifically manipulate the system’s measurement data. By meticulously
devising deceptive data and inserting them into the system, the attacker effectively evades
conventional methods of detecting erroneous data. Since the introduction of false data
leads to a reduction in the measurement residuals of the system, the nature of this attack is
notably surreptitious and poses challenges in timely detection.

2.2.2. Attack Intensities

Hence, the construction of FDIAs predicated upon partial network information rep-
resents a formidable assault, imperiling the security and dependable operation of power
systems. To counter this jeopardy, the imperative lies in the exploration and formulation of
advanced false data detection algorithms and methodologies, geared toward unearthing
and preempting these surreptitious attacks. This research centers on a 118-bus system
comprising 180 measurement instruments [24]. The perspective of the attacker drives the
generation of vector configurations for random attacks targeting 30, 65, and 100 measure-
ment gauges. Attack vectors are primarily employed to circumvent the system’s residual
test by manipulating the 2-norm of the measurement vectors. Thus, in this study, various
attack intensities are depicted by configuring different 2-norms of the attack vectors. Stan-
dard experimentation introduces the 2-norm of 1, while comparative investigations span
2-norm values ranging from 0.5 to 2.5. A visual representation juxtaposes the attack vectors
with the unaltered normal data, the outcome of which stems from the random generation
of 30-bus attack vectors, as shown in Figure 2.
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Meticulous scrutiny exposes that the devised 30-bus attack vectors evince insubstantial
disparities in relation to the original normal data vectors. This observation underscores
the ease with which attack vectors can elude the conventional BDD false detection method,
contingent upon residual comparison.

This configuration engenders a novel set of challenges to power system security. At-
tackers stand poised to exploit these inconspicuous deviations to construct pernicious attack
vectors, subsequently infusing them into the system. The intelligent construction of these
attack vectors facilitates their effective evasion of traditional residual detection methods, thus
circumventing the system’s ability to accurately discern the presence of an attack.

3. FDIA Detection Model Based on GAN-GRU and Transformer

To address the challenge posed by the scarcity of attack data in historical records of
real power grids, a data-balancing processing model based on GAN-GRU is proposed in
this study. This model aims to rectify the imbalance by aiding the classifier in reducing
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the false alarm rate associated with the identification of FDIAs. Furthermore, it enhances
the stability of the FDIA detection model based on the Transformer neural network in
the context of unbalanced data. The approach involves partitioning the balanced dataset
into training and detection sets, maintaining a ratio of 3:1. Each of the four distinct data
categories—an unattacked category and three types of attacked data—is assigned unique
labels. These labeled datasets are subsequently utilized in training the Transformer network
model. Subsequently, the models are assessed using the test set. This section proceeds by
providing an initial exposition of the data-balancing processing model based on GAN-GRU
and the classification detection model based on the Transformer neural network. It is
followed by a presentation of the structured framework for conducting FDIA detection as
outlined in this research.

3.1. GAN-GRU-Based Data-Balancing Process
3.1.1. Network Structure of GAN-GRU

Our data-balancing processing model utilizes generators and discriminators of genera-
tive adversarial network discriminators to balance the entire dataset by generating synthetic
samples with the class balance to increase the number of samples in a few classes. At the
same time, we employ generators and discriminators with gated loop units to capture
temporal dependencies in the sequential data to ensure that the generated samples are
temporally consistent. In this way, we are able to effectively deal with the imbalance problem
in the historical measurement data, thus improving the performance of the fault-checking
model. In order to deal with a small number of attack vectors in the training dataset, they are
preprocessed and used as inputs to the GAN, which are trained through continuous iterations
of the generator and discriminator, with the ultimate goal of generating a balanced dataset.

The gated recurrent unit initially introduced in [25] and referenced as a structure
of a gated recurrent unit represents an evolved iteration of the conventional recurrent
neural network. Its effectiveness lies in efficiently capturing semantic correlations within
extended sequences, thus addressing the challenge of gradient vanishing or explosion.
In parallel, similar to the long short-term memory unit, GRU also incorporates gating
units to regulate information flow. Nevertheless, GRU differs from LSTM in that it lacks
an independent storage unit, exhibiting a more streamlined structure and computational
process. Its operation involves a reset gate and an update gate, forming a core structure
that can be expressed as follows:

zt = σ
(

W(z)xt + U(z)ht−1

)
, (8)

rt = σ
(

W(r)xt + U(r)ht−1

)
, (9)

h̃t = tanh(Urt ◦ ht−1 + Wht−1), (10)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (11)

where xt is the input information at the current moment; the variants denoted as update
gate zt and reset gate rt function as intermediary entities within this framework; σ is the
sigmoid activation function; the summation of both the input and the past hidden layer
state is denoted by h̃t with ht−1 signifying the latter; W(z), U(z), W(r), U(r), U, and W are
the trainable parameter matrices; and ◦ is the Hadamard product and tanh is the tanh
activation function.

The utilization of GRU as both the generator and discriminator within the context of a
GAN for balanced datasets provides a multitude of benefits and advantages. Firstly, in its
role as a generator, the inherent ability of GRU for recursive modeling facilitates the gener-
ation of high-quality and diverse synthetic samples, thereby effectively augmenting the
number of samples within specific categories. Acting as a discriminator, GRU’s proficiency
in classification and discrimination lends accuracy to the assessment of generated sample
quality, thus enhancing the effectiveness of balanced datasets. This process is further opti-
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mized through appropriate training and fine-tuning, enabling GRU to strike a harmonious
equilibrium between its roles as generator and discriminator. This equilibrium signifi-
cantly contributes to further improving the dataset balance and ultimately enhances the
performance of the fault detection model. The strategic integration of GRUs as generators
and discriminators within GANs presents a robust solution for data-balancing processing,
thereby offering substantial improvements in data processing efficacy and quality within
practical applications. The data-balancing processing model based on GAN-GRU is shown
in Figure 3.
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Both the generator module and the discriminator constitute the structural underpin-
ning of a GRU. To facilitate the mapping of GRU hidden states to the dimensions of the
output sequence, a linear layer is introduced. This pivotal linear layer plays a key role
in generating specific data through the generator and distinguishing between real and
generated samples via the discriminator. During the forward propagation process, the
input sequence is initially processed by the GRU layer, generating both an output and a
final hidden state. Subsequently, the last time step within the output sequence is selected
and directed to the linear layer for transformation, yielding the generated result. Finally,
this generated result is conveyed as output. In the pursuit of enhancing the generator’s
performance, an approach involves the introduction of random Gaussian noise as input
to the generated data. Throughout the GAN-GRU training process, the noise value size is
systematically trained, with adjustments being made based on the monitored fluctuations in
the loss values of both the generator and discriminator. These adjustments are instrumental
in aligning the generated data distribution more closely with that of authentic data, thereby
amplifying the generative ability of the generator. Consequently, this approach effectively
elevates the output quality of the generator, ensuring that the generated data exhibit statistical
properties and distribution characteristics that closely mirror those of real data.

The previous discussion illustrates that, in the GAN model employing GRU as both
the generator and discriminator, the processing of input sequences by the generator module
is accomplished through the utilization of the GRU layer. The conversion of the resultant
hidden states into the dimensions of the generated outcomes is carried out by means of
a linear layer, leading to the production of specific data. Conversely, the discriminator
module exhibits a similar architecture whereby authentic and synthetic samples are distin-
guished. This distinction is achieved by subjecting the input sequences to the GRU layer
and subsequently mapping the resultant hidden states to the dimensions of the evaluation
outcomes using a linear layer. This design facilitates enhanced generation of high-quality
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samples and precise differentiation between samples, thus contributing to the overall
performance and effectiveness of the GAN model.

3.1.2. Loss Function

For the generator, we define the mean square error (MSE) as the loss function LG:

LG =
1
n

n

∑
i=1

[yi − p(yi)]
2, (12)

where n represents the number of data samples, yi represents the actual value, and p(yi)
indicates the predicted value.

The MSE function serves as a metric for quantifying the extent of separation between
two vectors. This function enables a more efficient assessment of the dissimilarity between
the generated data and the authentic data, thereby enhancing the proximity of the attack
vectors produced by the generator to the original attack vectors.

Shifting the focus to the discriminator, the initial step encompasses the introduction of
the authentic signal into the discriminator, enabling forward propagation. Subsequently,
the computation of the true loss is computed, which is subsequently juxtaposed with
the reference value of 1. Following this, the introduction of random noise culminates in
the generation of a spurious signal through the generator. This synthetic signal is then
presented to the discriminator, subjected to forward propagation, and culminates in the
computation of the false loss. The latter is subsequently juxtaposed with the reference
value of 0. In this context, the true loss delineates the discriminator’s quantification of loss
between the actual signal output and the target label. Conversely, the false loss encapsulates
the discriminator’s quantification of loss between the synthetic signal output generated by
the generator and the target label. To accomplish this objective, the loss function employed
by the discriminator utilizes a binary cross-entropy loss function LD:

LD = − 1
n

n

∑
i=1
{yi × log[1− p(yi)] + (1− yi)× log[1− p(yi)]}, (13)

where yi is the binary label 0 or 1, and p(yi) is the sigmoid function representing the
probability that the output belongs to the label yi:

p(yi) =
1

1 + exp(−yi)
, (14)

The binary cross-entropy loss function is aptly employed to normalize the discrimina-
tor’s output, treating it as a probability distribution. This encourages the discriminator to
acquire the skill of allocating real data to the high-probability realm (proximate to 1) and
attributing generated data to the low-probability realm (proximate to 0). Consequently,
enhanced discrimination between these data types is facilitated by the discriminator. The
primary objective of categorizing the input data into two classes, namely, real data and
generated data, is fulfilled using the discriminator. The utilization of a binary cross-entropy
loss function is instrumental in securing the stability of gradients during the training
process. This stability assumes paramount importance in the context of GAN training,
where the adversarial interplay between the discriminator and the generator can lead to
training instability. Notably, binary cross-entropy typically yields gradients that exhibit a
relatively smooth profile, thereby streamlining the training process. Hence, the adoption of
binary cross-entropy emerges as a natural choice, given its widespread application as a loss
function in binary classification scenarios.

The loss function assumes a pivotal role within the training procedure of both the
generator and the discriminator. The magnitude of the loss value is computed, thereby
facilitating the adoption of corresponding optimization strategies to modify the gradient
of the discriminator and generator, subsequently updating the network parameters. This
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configuration and training regimen within GAN-GRU engenders the optimization of the
generator and discriminator performance, culminating in the ultimate achievement of
generating balanced datasets.

Through the amalgamation of the mechanisms outlined above, the enactment of a
competitive interplay between the generator and the discriminator is facilitated. This
dynamic empowers the generator to yield false signals that closely approximate real
data, whereas the discriminator acquires enhanced accuracy in discerning authentic from
fabricated signals. This training strategy and judicious selection of the loss function for
GAN-GRU furnish an effective approach, affording the generation of balanced datasets
and robust support for ensuing investigations within the domain of the classification task
based on the Transformer. A comprehensive comparison between the accuracy yielded by
balanced and unbalanced datasets when inputted into the Transformer detector will be
addressed in Chapter 4.

3.2. FDIA Detection Model Based on the Transformer Neural Network

The neural network model known as the Transformer is rooted in an attention mech-
anism. Its conceptualization originated from Google and was first elucidated in 2017 by
Vaswani et al., as documented in [26]. This model was conceived to address intricate natural
language processing undertakings encompassing machine translation, text summarization,
and speech recognition. In contrast to conventional recurrent neural network models,
such as LSTM and GRU, the Transformer model boasts enhanced parallel computation
capabilities and abbreviated training durations, rendering it adept at managing protracted
sequence tasks. This attribute has endowed the Transformer model with widespread utility
within the realm of natural language processing.

However, different from its traditional applications in natural language processing
and speech recognition, our study applies the Transformer model to the realm of false data
classification in CPPS loads. Figure 4 illustrates the architecture of the Transformer network
architecture as delineated within this paper.
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The innovative application of the Transformer model in the context of CPPS appli-
cations carries considerable significance. This expansion of the Transformer model into
the realm of load false data detection presents the opportunity to leverage its intrinsic
self-attention mechanism and robust parallel computing prowess to discern and analyze the
distinctive attributes of counterfeit data. As a result, a novel and effective avenue emerges
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to address the escalating predicament of false data within real-world scenarios. In our
methodology, the initial step entails the utilization of balanced normal data in conjunction
with three distinct attack vector datasets as inputs. Consequently, categorical labels are
assigned to both the normative dataset and the three distinct attack datasets as follows:

yj =


0 normal operation
1 30− node attack vectors
2 65− node attack vectors
3 100− node attack vectors

, (15)

Considering the Transformer’s ability to process sequence data, we consider each set
of data as a sequence and classify it using the Transformer network. Specifically, we input
the sequence data into the encoder and decoder for processing.

3.2.1. Encoder Layer

In the encoder, we first implement the feature transformation by mapping the discrete
input features into a continuous vector space through the embedding layer. Next, these
vectors are fed into a multi-layered Transformer encoder layer for processing. Each encoder
layer consists of multiple Transformer encoder units, and in this paper’s experiments, six
encoder layers are stacked according to the setup in reference [26]. In each Transformer
encoder unit, the data are processed using a multi-head self-attention mechanism and a
forward propagation network to extract the semantic information of the input sequence.
The multi-head self-attention mechanism interacts with the input symbols with other
symbols to obtain a set of attention weights that are used to indicate the importance of the
symbols to other symbols.

The forward propagation network is processed through multiple fully connected layers
to extract higher-level semantic information. By stacking multiple Transformer encoder layers,
the global semantic information is integrated and a rich set of feature vectors is obtained. In
classification tasks, the use of a decoder is usually not required, so in this experiment, we only
need to focus on the encoder part and do not need to use a decoder.

3.2.2. Multi-Head Attention

The scaled dot-product attention within multi-head attention represents a distinctive
form of attention mechanism. In practical applications, the attention function for a set of
queries is computed concurrently, and these computations are aggregated into a matrix Q.
The encoding of keys and values into matrices K and V follows a similar approach. The
computation of the output matrix is then formulated as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (16)

where dk represents queries and keys of dimension.
In contrast to the isolated application of dimensional keys, values, and queries to a

single attention function, we determined that projecting queries, keys, and values linearly
to the Q, K, and V dimensions, respectively, yields considerable benefits. Consequently, for
each projected version of the query, key, and value, we concurrently execute the attention
function, generating results encompassing Q, K, and V dimensional output values. These
output values are subsequently concatenated and subjected to further projection to generate
the ultimate output values, as elucidated in Figure 4.

The incorporation of a multi-head attention mechanism empowers the model with
the capacity to collectively attend to distinct subspaces associated with diverse positions.
However, for an individual attention head, this effect is mitigated through averaging, as
computed below:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O, (17)



Appl. Sci. 2023, 13, 10596 13 of 23

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, (18)

where MultiHead(Q, K, V) represents the result of the calculation of the multi-head atten-
tion, and h = 8 represents the number of parallel attention layers in the model. WQ

i , WK
i ,

WV
i , and WO represent the projection parameter matrices corresponding to Q, K, and V,

along with the computed results.
Lastly, the feature vectors are aligned to the same dimensions for classification tasks

by means of a linear layer. Each dataset, equipped with labels 0, 1, 2, and 3, undergoes
processing to yield a conclusive output probability distribution. This distribution serves
as the basis for predicting the classification outcomes concerning manipulated load data.
To enhance interpretability, a normalized confusion matrix representing the distribution
outcomes can be generated. Through the self-attention mechanism and parallel computing
capabilities inherent to the Transformer, our methodology effectively harnesses sequence
data insights and extracts elevated-level feature representations. This proficiency enables
the precise classification of altered load data within power systems.

3.3. FDIA Detection Based on GAN-GRU Data Balancing and the Transformer Classifier

In this paper, a false data detection method is proposed, as depicted in Figure 5. To
address the challenge of a low detection rate resulting from imbalanced data, GAN-GRU
and the Transformer techniques are employed. The approach functions as a generator
and discriminator by integrating a GRU neural network within the GAN framework.
Throughout the training process, both the GAN network and the GRU network construct
recurrent neural networks to generate a limited number of data samples, thereby achieving
a balanced representation of diverse sample types in the training dataset. The balanced
dataset is divided into training and test subsets, and the Transformer technique is utilized to
detect and classify anomalous data. Ultimately, a normalized confusion matrix is obtained
through the comparison of predicted and actual values.Appl. Sci. 2023, 13, x FOR PEER REVIEW  15  of  26 

 

Data set balancing process 
based on GAN‐GRU

FDIA Identification 
based on Transformer

Construct the GAN‐GRU model 
 initialize the model parameters

Train the GAN‐GRU Model
Save the model parameters 

Attack modeling

Original unattacked 
dataset

Softmax

Encoder 

Linear 

Output 
recognition 
results

Real‐time 
measurement 

data

FDIA Identification 
Model

Multi‐attack mode 
scenario construction

Training data sets

testing data sets

Gaussian random 
noise

Fixing model parameters  
Adjusting training random noise

Enter the generator to generate a 
load attack sample.

Balanced data sets

Unbalance
d data sets

normalized confusion 
matrix 

Input :4 types of data yj  
after balancing process

 

Figure 5. Flowchart of FDIA detection based on GAN‐GRU data balancing and  the Transformer 

classifier. 

By synergistically employing data balancing and classification models, we attain an 

enhanced  capacity  to  discern  and  differentiate  various  forms  of  FDIAs.  The  data‐

balancing processing model effectively equalizes  the dataset  through  the generation of 

synthetic attack data, thus providing ample training samples. Leveraging the Transformer 

classification‐based  detection model  allows  us  to  gain  insights  into  the  interrelations 

among  distinct  attack  types  and  normal  data,  enabling  precise  classification 

determinations. This elevates the efficacy and resilience of the FDIA identification model, 

contributing to the amelioration of security challenges in power systems. This approach 

not only  curtails  the  rate of  false  alarms  but  also  enhances  the  system’s  adeptness  at 

handling  disparate  data  distributions,  thus  furnishing  a  robust  underpinning  for  the 

secure and dependable operation of power systems. 

4. Simulation Test and Result Analysis 

4.1. Experimental Platform and Data 

Figure 5. Flowchart of FDIA detection based on GAN-GRU data balancing and the Transformer classifier.



Appl. Sci. 2023, 13, 10596 14 of 23

By synergistically employing data balancing and classification models, we attain an
enhanced capacity to discern and differentiate various forms of FDIAs. The data-balancing
processing model effectively equalizes the dataset through the generation of synthetic attack
data, thus providing ample training samples. Leveraging the Transformer classification-
based detection model allows us to gain insights into the interrelations among distinct attack
types and normal data, enabling precise classification determinations. This elevates the
efficacy and resilience of the FDIA identification model, contributing to the amelioration
of security challenges in power systems. This approach not only curtails the rate of false
alarms but also enhances the system’s adeptness at handling disparate data distributions, thus
furnishing a robust underpinning for the secure and dependable operation of power systems.

4. Simulation Test and Result Analysis
4.1. Experimental Platform and Data

In this section, the performance of the proposed FDIA detection mechanism is eval-
uated in the context of IEEE 118-bus power systems. The grid topologies were acquired
from MATPOWER [27]. All simulations were executed on a computer system featuring
an AMD Ryzen 5 5600H with Radeon Graphics CPU, NVIDIA GeForce RTX 3050 Laptop
GPU, AMD Radeon (TM) Graphics, and 64 GB of RAM. The GAN-GRU and Transformer
neural network were constructed utilizing the Torch to enhance computational efficiency.

In this experiment, the original load dataset was derived from [24]. To broaden
the scope of authentic data and generate unattacked datasets, a manual approach was
employed to simulate the load distribution across individual buses. This approach serves a
dual purpose, not only augmenting the diversity and volume of datasets but also furnishing
a more comprehensive array of training samples to underpin our classification endeavor.
When generating these load data points, a normal distribution was assumed, whereby
the mean load data are aligned with the baseline load value, and the standard deviation
equates to one-sixth of the baseline load value. This meticulous manual simulation process
allowed us to generate unattacked datasets that faithfully represent the load distribution
across individual buses. By assuming a normal distribution, where the mean load data
correspond to the baseline load value, and the standard deviation is set as one-sixth
of the baseline load value, we ensured that our generated load data points adhered to
realistic distribution patterns. This rigorous approach significantly enriched the diversity
and volume of our datasets, laying a solid foundation for our classification efforts and
enhancing the authenticity of the data we employed for this experiment.

Consequently, a dataset encompassing 9098 sets of unattacked normal original data
samples was effectively assembled. These samples were drawn from 180 m within the
IEEE 118-bus network, representing load data reflecting typical operational conditions.
The meticulous procurement of these data samples assumes a paramount role in ensuring
experimental precision and dependability. Through the execution of the aforementioned
experimental design and subsequent data processing, a dependable and representative
dataset was meticulously formulated, thereby constituting a robust cornerstone for our
research pursuits. Meanwhile, in order to simulate the historical data’s inherent imbalance
as encountered in real-world applications, an imbalanced sample dataset was formulated
from the existing 9098 arrays, tailored to generate vectors of false data injections, spanning
a spectrum of distinct attack modes.

Furthermore, adhering to the guidelines presented in Section 3, explicit labels were
assigned to each data category to uphold the precision and feasibility of the experiments.
These labels, serving as inputs to the Transformer neural network, concurrently form an
integral segment of the network’s output classification. A detailed account of the quantity
of datasets employed is provided in Table 1.
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Table 1. Classification and grouping of original datasets.

Data Category Label Sample Size

normal operation 0 3698
30 attacked buses 1 2400
65 attacked buses 2 1800

100 attacked buses 3 1200

4.2. Test Content and Assessment Metrics

The experimental facet of this paper encompasses three pivotal sections devised for the
purpose of exploring and appraising the effectiveness and performance of distinct methodologies:

(1) Data-balancing experiments, predicated on the application of GAN-GRU, constitute
the first section. This innovative methodology was employed to address dataset
imbalances, and its effectiveness in performing classification tasks was explored.

(2) Throughout the process of Transformer training, the 2-norm was set to 1.0, and
the consequent variations in accuracy and loss values were meticulously observed
across the training epochs. An in-depth analysis was undertaken to comprehensively
investigate the impact of this 2-norm on the training process of the Transformer model,
thereby assessing its resilience and stability.

(3) Comparative experiments were conducted, involving 2-norm values ranging from
0.5 to 2.5. By systematically manipulating the 2-norm level, the performance of
the models was meticulously compared across varying degrees of attack intensity.
Extensive analysis was performed to identify the implications and distinctive features
of these differing 2-norm levels.

For the purpose of conducting a comprehensive comparison, we performed a com-
parative experiment in which the Transformer classifier was juxtaposed against three
alternative classifiers: the enhanced CNN-GRU [28], the conventional LSTM deep learning
approach [29,30], and the SVM machine learning method [31–33]. This approach facilitates
a holistic assessment of the Transformer classifier’s performance and effectiveness.

To expedite network convergence and mitigate the risk of overfitting, the mini-batch
gradient descent technique was employed. In our model, each mini-batch encompassed
128 data samples. During each iteration, a specified number of samples were randomly
selected from the training set to construct a mini-batch, which was then utilized for gradient
computation and parameter updates. Following established practices in machine learning,
the batch was divided into training and test sets, with three-fourths of the data allocated for
training and the remaining one-fourth for testing. For model optimization, we employed
the Adam optimizer with an initial learning rate of 0.001. Additionally, the patience
parameter was set to five to monitor performance and enable the early termination of
training when deemed appropriate.

The algorithm performance was evaluated by calculating metrics using confusion
matrices, including accuracy λAccuracy, detection rate λPrecision, recall λRecall, and the har-
monized mean value of detection rate and completeness λF1.

λAccuracy =
TP + TN

TP + TN + FP + FN
, (19)

λPrecision =
TP

TP + FP
, (20)

λRecall =
TP

TP + FN
, (21)

λF1 =
2× λPrecision × λRecall

λPrecision + λRecall
, (22)

where TP (true positive) indicates the number of samples with a true value of FDIA and a
predicted value of FDIA; FN (false negative) indicates the number of samples with a true
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value of FDIA but a predicted value of normal run; FP (false positive) indicates the number
of samples with a true value of normal run but a predicted value of FDIA; and TN (true
negative) indicates the number of samples where both the true value and the predicted
value are normal run.

4.3. Data-Balancing Tests

To enhance the training of the FDIA detection model, our attention was drawn to the
relatively limited presence of false data samples within the foundational dataset, which
could potentially impact the model’s efficacy. In response to this data imbalance, an evalua-
tion of data-balancing processing was undertaken using the GAN-GRU framework. This
evaluation was conducted under the premise of a standard working condition involving an
attack 2-norm of 1. Within this evaluation, synthetic false data samples were generated via
the GAN-GRU framework to augment the scarcity of false data within the original dataset.
The generator and discriminator of the GAN-GRU model were formulated as neural net-
work architectures endowed with a certain level of complexity and expressive capacity.
The generator’s objective is to produce synthetic data that closely resemble authentic false
data samples, whereas the discriminator’s task is to ascertain whether the input data are
genuine or artificially generated.

In the course of our experimentation, the parameters for the GAN’s generator and
discriminator were established as follows: An input size of 1, 128 hidden neurons, and the
incorporation of two GRU layers were initialized in a batch-first dimensionality manner.
Specifically, the generator undertakes the role of generating synthetic data to emulate
authentic data samples. By utilizing a noise vector with an input size of 1 as the generator’s
input, a sequence of neural network layers and activation functions were employed to
yield a final output resembling synthetic data akin to genuine data samples. The inclusion
of 128 hidden neurons within the generator implies that 128 hidden units, instrumental
in capturing potential features of the input data, were incorporated. Meanwhile, the
discriminator, responsible for discerning between genuine and synthetically generated
data, similarly adopted a network architecture featuring a GRU layer with 128 hidden
neurons. Through training, the discriminator is endowed with the capacity to accurately
classify both genuine and synthetic data.

The loss function for the generator was defined as the mean-squared error, serving as
a measure of the discrepancy between the synthetic data generated by the generator and
the authentic data. In essence, it quantifies the mean-squared error between the output
data and the target data. Conversely, the discriminator’s loss function was stipulated as
the binary cross-entropy loss. This loss function gauges the discriminator’s precision in
categorizing the input data by contrasting the predictions made for genuine and synthetic
data with their corresponding labels.

With these parameter configurations and loss function formulations, the GAN models
were trained, facilitating the generation of high-quality synthetic data by the generator
while enabling the discriminator to aptly discern disparities between genuine and syn-
thetic data. During testing, the generator and discriminator’s loss functions were con-
tinuously recorded, and their fluctuations were plotted against the number of training
iterations. These graphical representations furnish insights into the loss function’s behavior
throughout model training, consequently aiding the comprehension of the models’ learning
progression and performance, as shown in Figure 6.

By plotting the loss functions of the generator and discriminator against epochs, the
training progression and performance trajectory of the model can be effectively observed.
The oscillatory behavior exhibited by these two loss functions illustrates the dynamic
interplay inherent in the adversarial training process. As the training unfolds, both the
generator’s and discriminator’s loss functions gradually stabilize at elevated levels. This
convergence signifies the successful optimization of both the generator and the discrimina-
tor over the course of the training process.
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In order to gauge the effectiveness of data-balancing experiments in augmenting the
accuracy of FDIA detection, a sequence of comparative experiments was conducted, encom-
passing both the dataset subjected to the balancing procedure and the unbalanced dataset
for FDIA detection. The accuracy curve depicting training iterations is illustrated in Figure 7,
serving as an intuitive portrayal of the accuracy trend across epochs. Furthermore, Table 2
presents a comprehensive array of metric results, facilitating an exhaustive evaluation of
model performance. Through the orchestration of these comparative experiments, the impact
of data-balancing interventions on FDIA detection accuracy was thoroughly explored.
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Figure 7. Comparison of FDIA detection experiment accuracy indices before and after GAN-GRU
data-balancing processing.

Table 2. Comparison of FDIA detection experiment results before and after GAN-GRU data-balancing
processing.

Arithmetic λAccuracy λPrecision λRecall λF1

GAN-GRU
+Transformer 0.9832 0.9837 0.9815 0.9824

Transformer 0.8436 0.8527 0.8395 0.8412
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Upon a meticulous examination of the experimental outcomes, a conspicuous en-
hancement in FDIA detection accuracy is discerned subsequent to the implementation of
data-balancing experiments. This discernible enhancement underscores the pivotal role
played by data-balancing experiments in ameliorating the predicament of data imbalance
intrinsic to FDIA detection. By augmenting the representation of false data injection attack
samples, the model’s ability to discern and assimilate the distinguishing attributes of gen-
uine and spurious data is significantly enhanced, thereby culminating in an elevation of
the accuracy in FDIA detection. This empirical endeavor attests to the effectiveness of the
data-balancing approach based on GAN-GRU within the realm of FDIA detection.

4.4. Experiments on FDIA Detection of Grid Loads
4.4.1. FDIA Testing Experiments under Standard Operating Conditions

To assess the FDIA detection model based on the Transformer, the balanced dataset
was divided into training and testing sets at a ratio of 3:1. As described in Section 3,
distinct labels were allocated to each dataset. The segmentation outcomes are presented in
Table 3, wherein the training set encompasses 2773 instances of normal data along with
each of the three attack categories. With respect to the Transformer test set, comparative
experiments were conducted. One set of experiments involved the utilization of the test
dataset following GAN-GRU balancing, while the other set involved the unbalanced test
dataset, which corresponds to real-world scenarios. These experiments were undertaken
to assess the performance of the model proposed in this paper under varying conditions.
This meticulous dataset segmentation strategy optimally harnesses the samples within
the dataset. Such a stratagem not only aims to facilitate robust model evaluation and
performance validation but also ensures a precise estimation of the model’s capacity to
extrapolate its efficacy across diverse data subsets. The original dataset utilized in this
study comprised 9098 sets of unattacked load datasets recorded during normal operation.
This dataset was divided into three distinct categories of attack vectors, each contingent on
the number of targeted attack nodes. Consequently, an imbalanced dataset was created to
simulate real-world scenarios where historical data often contain a scarcity of attack samples.

Table 3. Statistics of sample quantity in each stage.

Sample Type Before Data
Balancing

After Data
Balancing Training Set Balanced

Data Test Set
Unbalanced
Data Test Set

0 3698 3698 2773 925 925
1 2400 3698 2773 925 300
2 1800 3698 2773 925 200
3 1200 3698 2773 925 100

In subsequent experiments, we rectified this imbalance by employing a data-balancing
processing model rooted in GAN-GRU. This strategic adjustment ensured that each category
of data achieved a state of complete balance, thus enhancing the efficacy of model training
in the subsequent FDIA detection phase. A comprehensive overview of the dataset changes
and divisions throughout this entire process is presented in Table 3.

Following the achievement of sample balancing, the overarching dataset imbalance
was effectively alleviated to a level of 0. This intervention markedly enhanced the precision
and dependability of the FDIA detection model. In the course of conducting experiments on
this dataset, the attack 2-norm was established under the standard operational parameters
of 1. Four distinct detection methods were employed. Table 4 delineates the performance
metrics of the diverse methods in relation to the accuracy λAccuracy , detection rate λPrecision,
recall λRecall, and F1 value λF1:
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Table 4. Algorithm performance comparison with other deep learning models.

Test Set
Type

Detection
Methods λAccuracy λPrecision λRecall λF1

Balanced
data test set

Transformer 0.9832 0.9837 0.9815 0.9824
CNN-GRU 0.9324 0.9436 0.9213 0.9284
LSTM 0.8532 0.8412 0.8564 0.8523
SVM 0.7935 0.8016 0.7932 0.7993

Unbalanced
data test set

Transformer 0.9691 0.9581 0.9426 0.9502
CNN-GRU 0.8351 0.8396 0.8475 0.8435
LSTM 0.7924 0.8016 0.7869 0.7942
SVM 0.7496 0.7534 0.7519 0.7526

Based on our analysis of the experimental findings, it can be deduced that, within the
scope of this study, the Transformer classifier emerges as the most adept performer, achieving
the highest values in terms of accuracy, overall detection rate, recall, and F1 score. The im-
proved convolutional neural network CNN-GRU classifier is the second-best model, followed
by the LSTM classifier, while the SVM classifier achieves the least favorable performance.

Upon evaluating the performance of the trained Transformer with an unbalanced
dataset, it is observed that there are decreases in accuracy, detection rate, recall, and F1
value by 1.41%, 2.56%, 3.89%, and 3.22%, respectively. A similar trend is noted across
all metrics for other deep learning methods. Nevertheless, the Transformer continues
to exhibit high-performance metrics overall. To enhance the comprehensibility of the
prediction results generated by the Transformer model, normalized confusion matrices for
both the balanced dataset and the imbalanced dataset, reflecting real-world conditions, are
presented in Figure 8.

The Transformer model harnesses a self-attention mechanism, facilitating the modeling
of diverse positions within the input sequence and the capture of long-range dependencies.
This attribute furnishes the Transformer with remarkable parallel computational proficiency.
When juxtaposed against enhanced convolutional neural networks like CNN-GRU and
conventional models like LSTM and SVM, the Transformer is superior in its heightened
efficiency in handling voluminous datasets, thus accelerating both training and inference.
By further enhancing its capabilities, the multi-layer stacking architecture of the Trans-
former facilitates more in-depth feature extraction and abstraction, thereby augmenting
the model’s ability to define variables. This capability positions the Transformer at an
advantage when grappling with intricate multi-label classification tasks, thereby enhancing
its capacity to discern varying data types.

Additionally, the variation in the loss values of the Transformer neural network
and the method used in the reference [28,29,32] during the training process is depicted
in Figure 9.
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Figure 8. Confusion matrix of normalized Transformer detection results: (a) balanced test dataset;
(b) unbalanced test dataset.
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The confusion matrix functions as a visual instrument for portraying the classifica-
tions generated using a given model across distinct categories. It juxtaposes the model’s
predictions against the true labels on a categorical basis, thereby providing a matrix that
explains the classification accuracy.

The metrics encompassed in Table 4, alongside the depictions in Figure 8, indicate that
the Transformer model consistently demonstrates heightened accuracy in discerning false
data injection attacks across a spectrum of attacked bus counts. In Figure 9, it is evident
that, within the scope of this study, the introduced Transformer algorithm has superior
performance with regard to the loss function. Our model consistently achieves lower loss
values when addressing the given task in comparison to the other three algorithms. This
outcome serves as an indicative measure of our algorithm’s exceptional performance in
the context of FDIA prediction, thereby offering a more effective solution to the problem at
hand. Such findings further substantiate the superiority and potential of our algorithm. This
model excels in the precise identification and accurate classification of samples tainted with
false data. This underscores the Transformer model’s capability to maintain an elevated
level of accuracy, notwithstanding the varying degrees of malicious actor behaviors.
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4.4.2. Different Attack Intensity

In this experiment, a baseline 2-norm value of 1 was employed, and attack vectors
characterized by five distinct 2-norm intensities were developed, ranging from 0.5 to 2.5.
The primary objective was the exploration of how these varied 2-norm magnitudes impact
the accuracy of the four distinct detection methods. Figure 10 illustrates the fluctuation in
accuracy across the four detection methods, as the 2-norm values undergo alteration.
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The experimental results reveal a clear trend: As the 2-norm value of the attack vectors
increases, the accuracy of the detection method gradually increases. This can be explained
by the fact that the increase in attack intensity leads to an increase in the differentiation
between normal and false data. When the 2-norm intensity is low, the two types of data
may be more similar, thus increasing the likelihood of misclassification. However, as
the attack intensity increases, the distortion characteristics of the attack data are more
pronounced, making it easier for the detection method to distinguish them from normal
data, and the accuracy of the detection increases. Therefore, this method overcomes the
shortcomings of traditional state estimation methods and is able to detect FDIAs efficiently,
and the experiments verify the advantages of the method in terms of detection efficiency
and classification accuracy.

5. Conclusions

In this study, a data-balancing model based on GAN-GRU and an FDIA detection
model with the Transformer architecture was introduced. Specifically, false data injection
attacks were formulated with multiple attack modes contingent upon the quantum of
network information at the disposal of potential attackers. To address the prevalent issue
of data imbalance in practical scenarios, a data-balancing model rooted in GAN-GRU was
employed. Through this approach, the generation of requisite small-scale data samples
is facilitated, culminating in a balanced dataset. The outcomes of this treatment led to
a pronounced improvement in the accuracy and dependability of the FDIA detection
model. In the subsequent phase of experimentation, the FDIA detection model based on
the Transformer was established, utilizing diverse attack vectors as inputs. A multi-label
classification strategy was employed by the model to assign suitable labels to each dataset.
Subsequently, the FDIA detection and classification performance of the Transformer was
assessed independently using both balanced and unbalanced test datasets. The empirical
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findings substantiated the superior performance and detection rate of the Transformer-
based detection model when contrasted against traditional counterparts.

In summary, these experimental investigations affirm the effectiveness of the data-
balancing model based on GAN-GRU and the FDIA detection model based on the Trans-
former by providing evidence of its increased accuracy and dependability. This substan-
tiates their potential for pertinent applications and paves the way for future research in
the realm of network security. Nonetheless, it is important to note that while this study
focuses on the performance of the FDIA detection model, practical applications necessitate
a consideration of factors such as real-time responsiveness and scalability of the model.
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