
Citation: Kumar, S.; Nitin; Yadav, M.

Finite State GUI Testing with Test

Case Prioritization Using Z-BES and

GK-GRU. Appl. Sci. 2023, 13, 10569.

https://doi.org/10.3390/

app131910569

Academic Editor: Andrea Prati

Received: 21 August 2023

Revised: 15 September 2023

Accepted: 19 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Finite State GUI Testing with Test Case Prioritization Using
Z-BES and GK-GRU
Sumit Kumar 1,* , Nitin 2 and Mitul Yadav 3,*

1 Department of Computer Science and Engineering, Veer Madho Singh Bhandari Uttarakhand Technical
University, Dehradun 248007, India

2 Department of Electrical Engineering and Computer Science, University of Cincinnati,
Cincinnati, OH 45221, USA; delnitin@gmail.com

3 Department of Computer Science and Engineering, Dev Bhoomi Institute of Technology,
Dehradun 248007, India

* Correspondence: sumitnadar@gmail.com or sumit.kumar@abesit.in (S.K.);
mitulyadav1905@gmail.com (M.Y.); Tel.: +91-9891502406 (S.K.)

Abstract: To deliver user-friendly experiences, modern software applications rely heavily on graph-
ical user interfaces (GUIs). However, it is paramount to ensure the quality of these GUIs through
effective testing. This paper proposes a novel “Finite state testing for GUI with test case prioritization
using ZScore-Bald Eagle Search (Z-BES) and Gini Kernel-Gated recurrent unit (GK-GRU)” approach
to enhance GUI testing accuracy and efficiency. First, historical project data is collected. Subsequently,
by utilizing the Z-BES algorithm, test cases are prioritized, aiding in improving GUI testing. At-
tributes are then extracted from prioritized test cases, which contain crucial details. Additionally,
a state transition diagram (STD) is generated to visualize system behavior. The state activity score
(SAS) is then computed to quantify state importance using reinforcement learning (RL). Next, GUI
components are identified, and their text values are extracted. Similarity scores between GUI text val-
ues and test case attributes are computed. Grounded on similarity scores and SAS, a fuzzy algorithm
labels the test cases. Data representation is enhanced by word embedding using GS-BERT. Finally,
the test case outcomes are predicted by the GK-GRU, validating the GUI performance. The proposed
work attains 98% accuracy, precision, recall, f-measure, and sensitivity, and low FPR and FNR error
rates of 14.2 and 7.5, demonstrating the reliability of the model. The proposed Z-BES requires only
5587 ms to prioritize the test cases, retaining less time complexity. Meanwhile, the GK-GRU technique
requires 38945 ms to train the neurons, thus enhancing the computational efficiency of the system. In
conclusion, experimental outcomes demonstrate that, compared with the prevailing approaches, the
proposed technique attains superior performance.

Keywords: GUI testing; Software Testing Automation (STA); user requirements; State
Transition Diagram (STD); ZScore-Bald Eagle Search (Z-BES); Gaussian sinusoid—bidirectional
encoder representations from transformers; Test Cases (TC); word embedding; Gini Kernel-Gated
Recurrent Unit (GK-GRU); State Activity Score (SAS)

1. Introduction

Over the past decade, the graphical user interface (GUI) has proven to be the most
promising component in the software development lifecycle due to the user-friendly in-
teractions and experiences it provides. In addition, it is an essential component of most
of today’s software programs [1]. However, it is crucial to test graphical user interfaces
(GUIs) to assure system dependability, which is essential for maintaining the operation
of software products and the satisfaction of end users [2]. GUI testing entails performing
a methodical analysis of the user interface’s graphical elements, interactive components,
and visual design to verify that it satisfies the criteria and functionalities outlined as in-
tended [3]. Commonly, various techniques, such as manual-based, record-and-replay, and

Appl. Sci. 2023, 13, 10569. https://doi.org/10.3390/app131910569 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910569
https://doi.org/10.3390/app131910569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9494-1244
https://doi.org/10.3390/app131910569
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910569?type=check_update&version=1

Appl. Sci. 2023, 13, 10569 2 of 15

model-based, are employed for GUI testing [4]. However, the traditional manual testing
methodologies for GUIs exhibit certain limitations regarding efficiency, coverage, and
scalability as the complexity of the software system increases [5]. To overcome these issues,
significant efforts have been made to integrate machine learning (ML) techniques, including
decision tree (DC), random forest (RF), support vector machine (SVM), etc., with GUI test-
ing. This integration has the capacity to enhance testing methodologies, improve accuracy,
and hasten the identification of defects, thus improving the GUI’s performance [6].

The creation of automated testing processes, such as watir, jmeter, selenium, etc., that
can learn from historical data, adapt to changing software environments, and provide
valuable insights to developers and testers is enabled through ML algorithms [7]. One
of the primary benefits of using ML in GUI testing is that it improves the testers’ ability
to effectively manage large-scale and complicated GUI designs [8]. However, conven-
tional testing approaches cannot readily accommodate the extensive design space and
diverse user interactions that modern applications demand [9,10]. The recurring patterns
of user behavior and interactions might be automatically taught by the machine learning
algorithms, which would facilitate more complete testing coverage without the need for
operator involvement [11,12]. Additionally, the use of ML makes it possible for GUI testing
to develop dynamically with the program, reacting to changes in the GUI as well as the
associated functionality [13]. However, ML algorithms depend heavily on sufficient and
representative training data; insufficient data can cause suboptimal testing outcomes that
limit the system’s consistency [14]. To resolve this issue, this study proposes a novel frame-
work called “Finite state testing for GUI with test case prioritization using ZScore-Bald
Eagle Search (Z-BES) and Gini Kernel-Gated recurrent unit (GK-GRU)” that effectively
satisfies the user requirements.

1.1. Problem Statement

The prevailing limitations of this research include:

• Conventional methods often lack the adaptability to handle complex software, result-
ing in insufficient coverage of high-risk areas.

• Prevailing approaches uncover the hidden flaws and unintended behaviors in complex
software systems.

• When dealing with intricate and extensive GUI designs, existing approaches exhibit
limited scalability.

1.2. Objectives

• The Z-BES algorithm prioritizes the test cases, focusing on critical areas and efficiently
allocating resources for better issue resolution.

• The STD visualization provides a comprehensive understanding of system behavior,
helping identify gaps and ensuring alignment with expectations.

• The utilization of RL and fuzzy logic enables accurate labeling of test case outcomes,
improving overall evaluation precision.

2. Related Literature Survey

A previously proposed automatic simulation-based testing approach [15] combined
domain expert knowledge and autonomous systems’ operating and environmental pa-
rameters. During the testing procedure, type-2 fuzzy logic was applied to facilitate the
robust management of data uncertainty. The efficacy of this procedure was demonstrated
experimentally. However, this strategy necessitated a significant time investment and
resources and required specialized knowledge.

A testing technique for Android apps was also proposed that encompassed an app clas-
sifier, test scripting language, state graph modeler, activity classifier, and test adapter [16].
The framework automated the customization of test scripts for different apps and activ-
ities. The empirical evaluation provided evidence that the classifiers’ performance was

Appl. Sci. 2023, 13, 10569 3 of 15

significantly above average. However, the usefulness of the framework was constrained to
applications with intricate user interfaces.

The YOLOv5 algorithm that enhanced the mobile app interface element recognition
significantly improved the analysis accuracy and identification of minute components [17].
The experimental findings confirmed its superiority in GUI element identification, demon-
strating promise for future development in robot testing automation for mobile applications.
However, due to the automated nature of the system, a potential for bias existed.

A test prioritization system grounded in the RL method for user interface testing has
also been developed [18]. The associated study sought to maximize the number of detected
test defects while simultaneously lowering the necessary testing quantity. The findings
demonstrated that the method successfully gained insightful knowledge of the test cases
and the linkages between them. Despite this, the system had greater computing expenses,
particularly when dealing with applications on a large scale.

A distributed state model inference approach for the GUI testing tool was pro-
posed [19]. The methodology that allowed for the inference of a centralized model made
use of a distributed architectural framework. The experiment demonstrated the feasibility
of using a model with a distributed approach and the lower time requirement compared
with models that are not distributed. However, the system required a large amount of
memory and computing power, leading to potential scalability restrictions. The systems,
namely, interactive event-flow graphs, GUI-level guidance, and enhanced crowd testers’
coverage, have been previously described. The interactive event-flow graphs consolidated
the interactions of the testers into a single directed graph, facilitating the visual evaluation
of previously tested scenarios. In spite of this, the information that was provided through
the interactive event-flow graphs was difficult to read and evaluate.

A deep learning (DL)-centric end-to-end trainable model for GUI similarity and
isomorphic GUI identification was established [20]. Visually identifying GUI items while
using a DL was required to complete the task. Relative entropy was utilized to allow the
measurement of variations in GUI. In addition, the comparison results demonstrated the
efficiency of the method. However, the model’s performance was relatively sensitive to
differences in the GUI design.

A distributed state model inference for scriptless GUI testing has been developed
previosly. To conduct effective GUI tool testing, the procedure included empirical eval-
uation and an approach that did not require scripts. Therefore, the distributed system
performed significantly better than the GUI validation test. The performance of the system
was hindered by the exclusion of non-deterministic components in the model.

A previous study incorporated GUI modeling and test coverage analysis [21]. In this
work, the unified modeling language (UML) was utilized to structure the GUI components.
The test cases were then automatically generated from the UML models and underwent test
coverage analysis, efficiently achieving GUI testing based on user perspectives. However,
this model required extensive testing time.

An automated GUI functional test was presented based on Simplified Swarm Opti-
mization (SSO) [22]. SSO established the relevant test cases to implement the GUI testing.
Moreover, an event-interaction graph (EIG) was created to determine the optimal testing for
the GUI tools. This system retained the effective performance of GUI testing but exhibited
local optimization issues.

Thus, previous research reveals that GUI testing is generally performed via ML and DL
models. Models tend to sustain better performance in GUI testing and fault identification to
attract users. However, many traditional models face certain challenges, including a lack of
data analytics, inefficiency due to variations, massive memory requirements, loss of power,
high computational complexity, and limited resources. These types of drawbacks mainly
affect the testing outcomes and cause poor performance. Hence, the proposed system
focuses on test case prioritizing-based GUI testing, which can more efficiently address the
common limitations of traditional models. The proposed work effectively satisfies user
requirements by utilizing well-organized frameworks, such as GK-GRU and Z-BES.

Appl. Sci. 2023, 13, 10569 4 of 15

3. Proposed Methodology

The proposed technique aims to identify potential mismatches between GUI designs
and test cases, ultimately determining whether the GUI meets the requirements which is
shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 14

proposed system focuses on test case prioritizing-based GUI testing, which can more effi-
ciently address the common limitations of traditional models. The proposed work effec-
tively satisfies user requirements by utilizing well-organized frameworks, such as GK-
GRU and Z-BES.

3. Proposed Methodology
The proposed technique aims to identify potential mismatches between GUI designs

and test cases, ultimately determining whether the GUI meets the requirements which is
shown in Figure 1.

Figure 1. Proposed architecture.

3.1. Historical Projects
The historical project dataset was gathered, comprising the GUI files, test cases, and

logs of past testing activities.

3.1.1. Test Cases
Test cases (Tc), which outline the steps and expected results when testing the soft-

ware, are predefined scenarios. Test cases (Tc) are represented as follows:

outEStSRqTc +++= (1)

where Rq specifies the requirements, S signifies scenarios, St exemplifies outline steps, and
Eout implies the expected outcomes.

3.1.2. Test Case Prioritization
The Tc are prioritized based on their importance and potential impact on the project.

By prioritizing Tc, testing efforts are concentrated on areas most likely to impact the pro-
ject’s success. The Tc is prioritized by Z-BES. The BES algorithm achieves optimum solu-
tions with a low number of repetitions. However, due to the influence of mean calcula-
tions, the BES algorithm cannot readily determine the optimal areas. The utilization of the

Figure 1. Proposed architecture.

3.1. Historical Projects

The historical project dataset was gathered, comprising the GUI files, test cases, and
logs of past testing activities.

3.1.1. Test Cases

Test cases (Tc), which outline the steps and expected results when testing the software,
are predefined scenarios. Test cases (Tc) are represented as follows:

Tc = Rq + S + St + Eout (1)

where Rq specifies the requirements, S signifies scenarios, St exemplifies outline steps, and
Eout implies the expected outcomes.

3.1.2. Test Case Prioritization

The Tc are prioritized based on their importance and potential impact on the project. By
prioritizing Tc, testing efforts are concentrated on areas most likely to impact the project’s
success. The Tc is prioritized by Z-BES. The BES algorithm achieves optimum solutions
with a low number of repetitions. However, due to the influence of mean calculations, the
BES algorithm cannot readily determine the optimal areas. The utilization of the mean may
not be appropriate for distributions that exhibit significant skewness, which might result in
delayed convergence. To mitigate this, the ZScore technique is introduced.

Appl. Sci. 2023, 13, 10569 5 of 15

Selecting Stage

The Bald Eagle test population (test cases (Tc)) is represented as:

Tcz = {Tc1, Tc2, Tc3, , Tczmax} (2)

The fitness function (high prioritized (Tc)[H(Tc)]) is then defined as follows:

Ft = H(Tc) (3)

During hunting, the (Tc) selects the optimal spot within a chosen search area, which
is expressed as follows:

β = βBest + l ∗ Rd(βZ−score − βi) (4)

Z− score =
(Tc− µ)

σ
(5)

where Rd specifies a random number from 0 to 1, l is the parameter that controls the
position changes, β implies the new position, βBest symbolizes the best location, βZ−score
represents the Z− score position of all (Tc), βi delineates the current position of the (Tc), µ
is the mean of the (Tc), and σ is the standard deviation of the (Tc).

Searching Stage

Tc assesses prey within the chosen search area during this phase. The optimal position
(βi,New) is defined as follows:

βi,New = βi + P(i) ∗ (βi − βi+1) + Q(i) ∗ (βi − βZ−Score) (6)

where βi+1 implies the next position of the (Tc), and P(i) and Q(i) signify scaling factors.

Swooping Stage

The (Tc) moves toward its target prey from the optimal position in the search space:

βi,New = Rand ∗ βBest + P1(i) ∗ (βi − c1 ∗ βZ−Score) + Q1(i) ∗ (βi − c2 ∗ βBest) (7)

here, c1 and c2 are the controlling parameters. Therefore, the H(Tc) is represented as:

H(Tc)ς =
{

H(Tc)1, H(Tc)2, H(Tc)3, , H(Tc)ςmax

}
ζ = 1, 2, . . . , ζmax (8)

Appl. Sci. 2023, 13, 10569 6 of 15

The pseudo-code for Z-BEO is presented in Algorithm 1 as follows:

Algorithms 1 Pseudo-code for Z-BEO

Input: Test cases (Tc)
Output: High Prioritized Test Case H(Tc)

Begin
Initialize the optimization parameters βi, MaxI
Calculate the fitness function Fs
For i = 1 to Maxi do
Select the search space using
β = βBest + l ∗ Rd(βZ−score − βi)
Search the prey in the search space using
βi,New = βi + P(i) ∗ (βi − βi+1) + Q(i) ∗ (βi − βZ−Score)
Swoop the prey with
βi,New = Rand ∗ βBest + P1(i) ∗ (βi − c1 ∗ βZ−Score) + Q1(i) ∗ (βi − c2 ∗ βBest)
If Fs == Satis f ied
Return H(Tc)
Else
i = i + 1
End If
End For
End

3.1.3. Attribute Extraction

The important attributes, namely test case ID, test date, version, prerequisites, form
name, test data, test scenario, testcase description, step details, expected result, actual result,
and customer assigned priority, are extracted from the H(Tc). The extracted attributes (Ab)
provide context and information about each test case and are defined as:

Ab = {A1, A2, A3, , AB} (9)

where B denotes the maximum number of attributes.

3.1.4. State Transition Diagram

The STD is generated using (Ab), which provides a clear overview of how the system
behaves and transitions between different states. By visualizing all possible state transitions,
the diagram can reveal missing or unintended transitions that could result in errors. The
STD has been presented in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 14

Begin
Initialize the optimization parameters iβ , IMax
Calculate the fitness function Fs
For i = 1 to Maxi do
Select the search space using

)(iscoreZBest Rd ββββ −∗+= −
Search the prey in the search space using

)()()()(1, ScoreZiiiiNewi iQiP −+ −∗+−∗+= ββββββ

Swoop the prey with
)()()()(2111, BestiScoreZiBestNewi ciQciPRand ββββββ ∗−∗+∗−∗+∗= −

If SatisfiedFs ==
Return)(TcH
Else
i = i + 1
End If
End For
End

3.1.3. Attribute Extraction
The important attributes, namely test case ID, test date, version, prerequisites, form

name, test data, test scenario, testcase description, step details, expected result, actual re-
sult, and customer assigned priority, are extracted from the)(TcH . The extracted attrib-

utes)(bA provide context and information about each test case and are defined as:

},........,,,{ 321 Bb AAAAA = (9)

where B denotes the maximum number of attributes.

3.1.4. State Transition Diagram

The STD is generated using)(bA , which provides a clear overview of how the sys-
tem behaves and transitions between different states. By visualizing all possible state tran-
sitions, the diagram can reveal missing or unintended transitions that could result in er-
rors. The STD has been presented in Figure 2.

Figure 2. STD architecture. Figure 2. STD architecture.

Appl. Sci. 2023, 13, 10569 7 of 15

3.1.5. State Activity Score

Based on the STD parameters, the SAS is computed to quantify the relative importance
of each state within the system’s behavior. For the score assignment, the RL is utilized.
The RL offers advantages in assigning SAS owing to its adaptability to dynamic systems,
enabling the algorithm to learn and optimize score assignments centered on interactions
and outcomes.

Learning Environment: The RL agent (Ag) interacts with an environment via different
states (St) and takes action (Ac) to maximize cumulative rewards (Rw).

Z-value Learning: The (Ag) uses expected cumulative rewards (Z-values) to make
decisions. Primarily, Z-values are often initialized randomly.

Reward Feedback: The (Ag) receives (Rw) from the environment for each (Ac) taken.
These (Rw) guide the (Ag) toward desirable outcomes.

Updating Z-Values: After each (Ac), the Z-values are updated using Equation (10):

Z(St, Ac) = (1− κ) ∗ Z(St, Ac) + κ ∗ (Rw + ϕ ∗Max(Z(St, Ac))) (10)

where the learning rate is implied as κ, the discount factor is notated as ϕ, and St and Ac
specify the next state and action, respectively.

SAS: The SAS is derived from the Z-values of each state. Higher Z-values specify
more active or valuable states. The SAS is notated as (δ).

3.2. GUI

The GUI is based on historical projects. GUIs make software user-friendly by providing
a visual and intuitive way for users to interact with software.

3.2.1. GUI Components

The different GUI components (GC), namely buttons, labels, checkboxes, and radio
buttons, are identified. This information guides further analysis and testing strategies. The
different GUI components (GC) are mathematically termed as:

GC = {G1, G2, G2, , GMaxC} (11)

3.2.2. Text Value Extraction

The next step involves extracting the text content associated with each component.
This comprises extracting labels, instructions, options, messages, and any other textual
information presented to users. The text values of the GUI E(Tx) are represented as follows:

E(Tx) = ∑ (Tx(GUI)j) For j = 1 to n (12)

where ∑ (Tx(GUI)j) signifies the sum of text content from all GUI elements and n implies
the maximum text values.

3.2.3. Similarity Score

Here, by comparing E(Tx) with the (Ab), a similarity score (αs) is determined. This
comparison helps assess how closely the textual content in the GUI aligns with the expected
behavior as specified in the test cases. The αs is computed by the Ratcliff/Obershelp
similarity technique. The αs is estimated by:

αs =
2 ∗ L(lcs(E(Tx), Ab)

L(E(Tx)) + L(Ab)
(13)

where L(lcs(E(tx), Ab) specifies the length of the longest common subsequence (E(Tx), Ab),
L(E(tx)) signifies the length of (E(tx)), and L(Ab) implies the length of (Ab).

If αs is high, the text content aligns closely, suggesting that the requirement has not
changed and the GUI design is likely accurate. Contrarily, if αs is low, a significant difference

Appl. Sci. 2023, 13, 10569 8 of 15

exists in the text values, indicating a potential mismatch between the GUI design and the
requirement.

3.3. Labelling

Subsequently, αs and (δ) are inputted into a fuzzy algorithm to determine a label
(G). If the similarity score and SAS are higher, the test case result is designated as “pass.”
However, if either or both scores are low, the test case result is designated as “fail.” The
proposed work uses the fuzzy algorithm to establish an interpretation of pass or fail based
on the combination of these two significant scores. This is presented as:

IF (αs = High)AND(δ = High) THEN TcResult = PASS (14)

IF (αs = High)AND(δ = Low) THEN TcResult = FAIL (15)

IF (αs = Low)AND(δ = High) THEN TcResult = FAIL (16)

IF (αs = Low)AND(δ = Low) THEN TcResult = FAIL (17)

3.4. Word Embedding

Here, word embedding is performed by the text values of the GUI components E(Tx)
and the test case attributes (Ab). Word embedding converts the textual information into
numeric vectors, enabling the GK-GRU to process and analyze the data more effectively.
The process of word embedding is executed using the GS-BERT algorithm. Although BERT
demonstrates proficiency in understanding natural language, it may encounter challenges
in appropriately recognizing word order and the impact of word positions. To address this
concern, the Gaussian sinusoid encoding method is incorporated into BERT. This entails the
incorporation of sinusoidal functions into the positional embeddings (PE) utilized by BERT,
enhancing the model’s capacity to accurately determine the relative position of words in a
given sequence. Consequently, the utilization of GS-BERT results in enhanced numerical
embeddings of textual data.

Primarily, the input text (In), which is the combination of E(Tx) and (Ab), is bro-
ken into sub-words. Each token is then represented as a word embedding vector (WE)
presented as follows:

WE(Tk) = χ f (Tk) (18)

where Tk delineates tokens and χ f is the word-to-vector function.
PEs are added to the word embeddings to convey sequence order. Here, by using the

GS function, the PE is performed and represented as follows:

GS(Ps, v) = Sin(Ps/10000(2∗(v/Dim))) ∗ Exp(−((Ps−MaxPs/2)/(0.1 ∗MaxPs))
2) (19)

where Ps implies the position, Dim specifies the dimension at index v, and MaxPs symbol-
izes the maximum position.

Thereafter, the multi-head self-attention (X) computes weights, which indicate the
importance of each word’s relation to others. This output is then linearly transformed to
produce the final attention representation:

X(y1, y2, y3) = ζ(y1y2
Tp/

√
Dimy2) ∗ y3 (20)

where y1, y2, and y3 are query, key, and value matrices, respectively, and
√

Dimy2 is the
dimension of keys.

Appl. Sci. 2023, 13, 10569 9 of 15

A stack of transformer encoder layers (E) captures contextual relationships and pro-
duces the numeric vectors (Nu):

E(WE(In)) = X(In) + Rc(γ(In)) (21)

where X(In) computes attention-based representations of the (In), γ(In) is a neural net-
work for enhancing the attention output, and Rc() converts In to the transformed output
(Nu).

3.5. Classification

Finally, (Nu) and their corresponding labels (G), collectively designated (Y), are fed
into the GK-GRU, which accurately predicts whether the test cases pass or fail.

GRU, which is faster than LSTM, utilizes less memory; however, GRU models may
encounter challenges, such as slow learning efficiency and extended training times. Hence,
the GK function is introduced to address these concerns. This function is designed to
enhance the learning process within the GRU architecture, aiming to mitigate issues associ-
ated with prolonged training durations and optimize model performance. The GK-GRU
architecture is presented in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 14

PEs are added to the word embeddings to convey sequence order. Here, by using the
GS function, the PE is performed and represented as follows:

)))*1.0()2(((*)10000(),(2))(*2(
PsPs

Dimv MaxMaxPsExpPsSinvPsGS −−= (19)

where Ps implies the position, Dim specifies the dimension at index v , and PsMax
symbolizes the maximum position.

Thereafter, the multi-head self-attention)(X computes weights, which indicate the
importance of each word’s relation to others. This output is then linearly transformed to
produce the final attention representation:

321321 *)(),,(
2

yDimyyyyyX y
Tpζ=

(20)

where 21, yy , and 3y are query, key, and value matrices, respectively, and
2y

Dim is

the dimension of keys.
A stack of transformer encoder layers)(E captures contextual relationships and

produces the numeric vectors)(Nu :

))(()())((InRcInXInWEE γ+= (21)

where)(InX computes attention-based representations of the)(In ,)(Inγ is a neural
network for enhancing the attention output, and ()Rc converts In to the transformed
output)(Nu .

3.5. Classification
Finally,)(Nu and their corresponding labels)(G , collectively designated)(Y ,

are fed into the GK-GRU, which accurately predicts whether the test cases pass or fail.
GRU, which is faster than LSTM, utilizes less memory; however, GRU models may

encounter challenges, such as slow learning efficiency and extended training times.
Hence, the GK function is introduced to address these concerns. This function is designed
to enhance the learning process within the GRU architecture, aiming to mitigate issues
associated with prolonged training durations and optimize model performance. The GK-
GRU architecture is presented in Figure 3.

Figure 3. GK-GRU architecture.

The Y is inputted to the GK-GRU, represented by Equation (22):

},.......,,,{ 321 Maxitritr YYYYY =
 (22)

Update gate))((tλ : The)(tλ controls how much of the previous memory to retain
and how much of the new information to incorporate:

Figure 3. GK-GRU architecture.

The Y is inputted to the GK-GRU, represented by Equation (22):

Yitr =
{

Y1, Y2, Y3, , YitrMax

}
(22)

Update gate (λ(t)): The λ(t) controls how much of the previous memory to retain
and how much of the new information to incorporate:

λ(t) = GK(wtλ ∗ [H(t− 1), Y(t)]) (23)

Here, GK is the Gini kernel activation function, represented as:

GK(λ) =
1
2

(
1 + Er

(
λ√
2

))
(24)

where λ is the error function, which maps (λ) to the range between 0 and 1.
Reset Gate <(t): The <(t) is computed to determine how much of the previous hidden

state (H) to forget:
<(t) = GK(wt< ∗ [H(t− 1), Y(t)]) (25)

Appl. Sci. 2023, 13, 10569 10 of 15

The candidate activation H̃(t) is computed as per Equation (26), representing the new
information to be added to the memory cell:

H̃(t) = GK(wtH̃ ∗ [<(t) ∗ H(t− 1), Y(t)]) (26)

(H(t)) and memory cell (M(t)) are updated using the (λ(t)) and H̃(t).

H(t) = (1− λ(t)) ∗ H(t− 1) + λ(t) ∗ H̃(t) (27)

M(t) = H(t) (28)

where t signifies the time step, while wtλ, wt<, and wtH are weight matrices, and (H(t))
determines whether the testcase is designated as a pass or fail.

4. Results and Discussion

Here, the experiments conducted on the working platform of PYTHON are presented.

Performance Analysis

This phase validates the proposed technique’s performance. The performance of
the proposed GK-GRU and prevailing GRU, long short-term memory (LSTM), recurrent
neural network (RNN), and deep neural network (DNN) is elucidated in Figure 4. The
proposed GK-GRU achieved remarkable results with a precision of 98.85%, recall of 98.64%,
F-measure of 98.95%, accuracy of 98.15%, sensitivity of 98.65%, and specificity of 98.46%,
while the other remaining classifiers obtained approximate rates of precision, recall, F-
measure, accuracy, sensitivity, and specificity of 93%, 95%, 94%, 93%, 95%, and 91%,
respectively. Figure 4 suggests that the GK-GRU model exhibits superior performance to
existing models due to its capacity to optimize the learning process, leading to enhanced
overall performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 14

Figure 4. Performance comparison.

Figure 5 compares the performance metrics, including the true negative rate (TNR),
false negative rate (FNR), true positive rate (TPR), false positive rate (FPR), and positive
predictive value (PPV) for the proposed GK-GRU and the existing models. The GK-GRU
mitigates the challenges related to slow learning efficiency and extended training times.
Thus, the GK-GRU model exhibits higher TPR (92.25%) and TNR (85.12%) along with
lower FPR (14.25) and FNR (7.54) compared to the other models.

Figure 5. Comparative analysis of the proposed GK-GRU.

Fitness values for the proposed Z-BES and existing Bald Eagle Search (BES), Galactic
Swarm Optimization (GSO), Cockroach Swarm Optimization (CSO), and Bacterial Forag-
ing Optimization (BFO) with various iterations (10, 20, 30, 40, and 50) are presented in
Figure 6. The proposed Z-BES algorithm attains increased fitness over iterations (5236–
9451) as it enhances convergence by providing a more suitable measure for area selection
during optimization.

Figure 4. Performance comparison.

Figure 5 compares the performance metrics, including the true negative rate (TNR),
false negative rate (FNR), true positive rate (TPR), false positive rate (FPR), and positive
predictive value (PPV) for the proposed GK-GRU and the existing models. The GK-GRU
mitigates the challenges related to slow learning efficiency and extended training times.
Thus, the GK-GRU model exhibits higher TPR (92.25%) and TNR (85.12%) along with lower
FPR (14.25) and FNR (7.54) compared to the other models.

Appl. Sci. 2023, 13, 10569 11 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 14

Figure 4. Performance comparison.

Figure 5 compares the performance metrics, including the true negative rate (TNR),
false negative rate (FNR), true positive rate (TPR), false positive rate (FPR), and positive
predictive value (PPV) for the proposed GK-GRU and the existing models. The GK-GRU
mitigates the challenges related to slow learning efficiency and extended training times.
Thus, the GK-GRU model exhibits higher TPR (92.25%) and TNR (85.12%) along with
lower FPR (14.25) and FNR (7.54) compared to the other models.

Figure 5. Comparative analysis of the proposed GK-GRU.

Fitness values for the proposed Z-BES and existing Bald Eagle Search (BES), Galactic
Swarm Optimization (GSO), Cockroach Swarm Optimization (CSO), and Bacterial Forag-
ing Optimization (BFO) with various iterations (10, 20, 30, 40, and 50) are presented in
Figure 6. The proposed Z-BES algorithm attains increased fitness over iterations (5236–
9451) as it enhances convergence by providing a more suitable measure for area selection
during optimization.

Figure 5. Comparative analysis of the proposed GK-GRU.

Fitness values for the proposed Z-BES and existing Bald Eagle Search (BES), Galac-
tic Swarm Optimization (GSO), Cockroach Swarm Optimization (CSO), and Bacterial
Foraging Optimization (BFO) with various iterations (10, 20, 30, 40, and 50) are pre-
sented in Figure 6. The proposed Z-BES algorithm attains increased fitness over iterations
(5236–9451) as it enhances convergence by providing a more suitable measure for area
selection during optimization.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14

Figure 6. Fitness versus iteration.

The prioritization time for the proposed Z-BES and the existing techniques is pre-
sented in Table 1. While the existing technique achieves a prioritization time of 8279 ms,
the proposed Z-BES attains the shortest prioritization time of 5587 ms. BES can make more
informed decisions regarding the direction and magnitude of changes in search areas us-
ing the ZScore, leading to improved convergence with limited time.

Table 1. Prioritization time evaluation.

Techniques Prioritization Time (ms)
Proposed Z-BES 5587

BEA 6847
GSO 7659
CSO 8765
BFO 9845

The receiver operating characteristic (ROC) curve for the proposed GK-GRU and the
existing techniques is depicted in Figure 7. A higher area under the ROC curve indicates
that the GK-GRU model has a better ability to correctly classify positive cases while min-
imizing false positives, reflecting its strong discriminatory power and efficiency in evalu-
ating test cases.

Figure 7. ROC curve.

Figure 8 compares the efficiency of the proposed GK-GRU and the existing tech-
niques. The Z-BES prioritizes methodology and facilitates the concentration of testing

Figure 6. Fitness versus iteration.

The prioritization time for the proposed Z-BES and the existing techniques is presented
in Table 1. While the existing technique achieves a prioritization time of 8279 ms, the
proposed Z-BES attains the shortest prioritization time of 5587 ms. BES can make more
informed decisions regarding the direction and magnitude of changes in search areas using
the ZScore, leading to improved convergence with limited time.

Appl. Sci. 2023, 13, 10569 12 of 15

Table 1. Prioritization time evaluation.

Techniques Prioritization Time (ms)

Proposed Z-BES 5587

BEA 6847

GSO 7659

CSO 8765

BFO 9845

The receiver operating characteristic (ROC) curve for the proposed GK-GRU and the
existing techniques is depicted in Figure 7. A higher area under the ROC curve indicates
that the GK-GRU model has a better ability to correctly classify positive cases while
minimizing false positives, reflecting its strong discriminatory power and efficiency in
evaluating test cases.

Figure 8 compares the efficiency of the proposed GK-GRU and the existing techniques.
The Z-BES prioritizes methodology and facilitates the concentration of testing efforts
on crucial areas, effectively distributing resources and promptly addressing significant
concerns. Additionally, the GK-GRU model improves the learning capabilities inside the
system, addressing issues such as reduced efficiency and prolonged training durations.
This adaptation contributes to enhanced overall efficiency. The proposed model has an
efficiency rate of 98%, whereas that of all other associated techniques is 90%. Thus, the
proposed system retains better performance than the other state-of-the-art techniques.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 14

Figure 6. Fitness versus iteration.

The prioritization time for the proposed Z-BES and the existing techniques is pre-
sented in Table 1. While the existing technique achieves a prioritization time of 8279 ms,
the proposed Z-BES attains the shortest prioritization time of 5587 ms. BES can make more
informed decisions regarding the direction and magnitude of changes in search areas us-
ing the ZScore, leading to improved convergence with limited time.

Table 1. Prioritization time evaluation.

Techniques Prioritization Time (ms)
Proposed Z-BES 5587

BEA 6847
GSO 7659
CSO 8765
BFO 9845

The receiver operating characteristic (ROC) curve for the proposed GK-GRU and the
existing techniques is depicted in Figure 7. A higher area under the ROC curve indicates
that the GK-GRU model has a better ability to correctly classify positive cases while min-
imizing false positives, reflecting its strong discriminatory power and efficiency in evalu-
ating test cases.

Figure 7. ROC curve.

Figure 8 compares the efficiency of the proposed GK-GRU and the existing tech-
niques. The Z-BES prioritizes methodology and facilitates the concentration of testing

Figure 7. ROC curve.

Appl. Sci. 2023, 13, 10569 13 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 14

efforts on crucial areas, effectively distributing resources and promptly addressing signif-
icant concerns. Additionally, the GK-GRU model improves the learning capabilities inside
the system, addressing issues such as reduced efficiency and prolonged training dura-
tions. This adaptation contributes to enhanced overall efficiency. The proposed model has
an efficiency rate of 98%, whereas that of all other associated techniques is 90%. Thus, the
proposed system retains better performance than the other state-of-the-art techniques.

Figure 8. Efficiency comparison [15,17,19,20].

5. Conclusions
By combining Z-BES prioritization and the GK-GRU model, the proposed “finite

state testing for GUI with test case prioritization using Z-BES and GK-GRU” framework
tackles GUI testing challenges. The proposed technique’s performance has been validated
by experimentation analyses. The developed Z-BES gains a minimum prioritization time
of 5587 at the 10th iteration, which improves the GUI testing process. Likewise, the pro-
posed GK-GRU demonstrates impressive performance metrics, including 98.85% preci-
sion, 98.64% recall, 98.95% F-measure, 98.15% accuracy, 98.65% sensitivity, and 98.46%
specificity. Moreover, the proposed GK-GRU requires an average of 38,945 ms for the
training process, which reduces the time requirements. Furthermore, the proposed tech-
nique exhibits low error values and a 98% efficiency rate. Overall, the proposed technique
outperforms the prevailing systems and is more reliable and robust. In this work, GUI
testing was performed based on the similarity between GUI component text values and
test case attribute values, along with state transition. Although this framework performs
well for GUI testing, it has small error rates due to the missing GUI appearance and activ-
ity attributes that are not well-structured or follow unconventional design patterns. In the
future, GUI segmentation might be applied to distinguish the GUI components (e.g.,
shapes, colors, visual layouts, and activity diagrams) to improve the performance of GUI
testing.

Author Contributions: Validation, M.Y.; Writing—original draft, S.K.; Writing—review & editing,
N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable

Informed Consent Statement: Not Applicable

Data Availability Statement: Data are contained in the article.

Figure 8. Efficiency comparison [15,17,19,20].

5. Conclusions

By combining Z-BES prioritization and the GK-GRU model, the proposed “finite state
testing for GUI with test case prioritization using Z-BES and GK-GRU” framework tackles
GUI testing challenges. The proposed technique’s performance has been validated by
experimentation analyses. The developed Z-BES gains a minimum prioritization time
of 5587 at the 10th iteration, which improves the GUI testing process. Likewise, the pro-
posed GK-GRU demonstrates impressive performance metrics, including 98.85% precision,
98.64% recall, 98.95% F-measure, 98.15% accuracy, 98.65% sensitivity, and 98.46% specificity.
Moreover, the proposed GK-GRU requires an average of 38,945 ms for the training process,
which reduces the time requirements. Furthermore, the proposed technique exhibits low
error values and a 98% efficiency rate. Overall, the proposed technique outperforms the
prevailing systems and is more reliable and robust. In this work, GUI testing was performed
based on the similarity between GUI component text values and test case attribute values,
along with state transition. Although this framework performs well for GUI testing, it has
small error rates due to the missing GUI appearance and activity attributes that are not
well-structured or follow unconventional design patterns. In the future, GUI segmentation
might be applied to distinguish the GUI components (e.g., shapes, colors, visual layouts,
and activity diagrams) to improve the performance of GUI testing.

Author Contributions: Validation, M.Y.; Writing—original draft, S.K.; Writing—review & editing, N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 10569 14 of 15

References
1. Kilincceker, O.; Silistre, A.; Belli, F.; Challenger, M. Model-Based Ideal Testing of GUI Programs-Approach and Case Studies.

IEEE Access 2021, 9, 68966–68984. [CrossRef]
2. Eskonen, J.; Kahles, J.; Reijonen, J. Automating GUI testing with image-based deep reinforcement learning. In Proceedings of the

2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2020, Online, 17–21 August
2020; pp. 160–167. [CrossRef]

3. Jeong, J.W.; Kim, N.H.; In, H.P. GUI information-based interaction logging and visualization for asynchronous usability testing.
Expert Syst. Appl. 2020, 151, 113289. [CrossRef]

4. Bons, A.; Marín, B.; Aho, P.; Vos, T.E. Scripted and scriptless GUI testing for web applications: An industrial case. Inf. Softw.
Technol. 2023, 158, 107172. [CrossRef]

5. Jung, S.K. AniLength: GUI-based automatic worm length measurement software using image processing and deep neural
network. SoftwareX 2021, 15, 100795. [CrossRef]

6. Prazina, I.; Becirovic, S.; Cogo, E.; Okanovic, V. Methods for Automatic Web Page Layout Testing and Analysis: A Review. IEEE
Access 2023, 11, 13948–13964. [CrossRef]

7. Yan, J.; Zhou, H.; Deng, X.; Wang, P.; Yan, R.; Yan, J.; Zhang, J. Efficient testing of GUI applications by event sequence reduction.
Sci. Comput. Program. 2021, 201, 102522. [CrossRef]

8. Xie, M.; Feng, S.; Xing, Z.; Chen, J.; Chen, C. UIED: A hybrid tool for GUI element detection. In Proceedings of the 28th ACM
Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual,
8–13 November 2020; pp. 1655–1659. [CrossRef]

9. Broer Bahaweres, R.; Oktaviani, E.; Kesuma Wardhani, L.; Hermadi, I.; Suroso, A.I.; PermanaSolihin, I.; Arkeman, Y. Behavior-
driven development (BDD) Cucumber Katalon for Automation GUI testing case CURA and Swag Labs. In Proceedings of the
2nd International Conference on Informatics, Multimedia, Cyber, and Information System, ICIMCIS 2020, Jakarta, Indonesia,
11–19 November 2020; pp. 87–92. [CrossRef]

10. Samad, A.; Nafis, T.; Rahmani, S.; Sohail, S.S. A Cognitive Approach in Software Automation Testing. SSRN Electron. J. 2021, 1–6.
[CrossRef]

11. Jaganeshwari, K.; Djodilatchoumy, S. An Automated Testing Tool Based on Graphical User Interface with Exploratory Behavioural
Analysis. J. Theor. Appl. Inf. Technol. 2022, 100, 6657–6666.

12. Zhu, P.; Li, Y.; Li, T.; Yang, W.; Xu, Y. GUI Widget Detection and Intent Generation via Image Understanding. IEEE Access 2021, 9,
160697–160707. [CrossRef]

13. Vos, T.E.J.; Aho, P.; Pastor Ricos, F.; Rodriguez-Valdes, O.; Mulders, A. Testar—Scriptless Testing Through Graphical User
Interface. Softw. Test. Verif. Reliab. 2021, 31, e1771. [CrossRef]

14. Ionescu, T.B.; Frohlich, J.; Lachenmayr, M. Improving Safeguards and Functionality in Industrial Collaborative Robot HMIs
through GUI Automation. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automa-
tion, ETFA 2020, Vienna, Austria, 8–11 September 2020; pp. 557–564. [CrossRef]

15. Karimoddini, A.; Khan, M.A.; Gebreyohannes, S.; Heiges, M.; Trewhitt, E.; Homaifar, A. Automatic Test and Evaluation of
Autonomous Systems. IEEE Access 2022, 10, 72227–72238. [CrossRef]

16. Ardito, L.; Coppola, R.; Leonardi, S.; Morisio, M.; Buy, U. Automated Test Selection for Android Apps Based on APK and Activity
Classification. IEEE Access 2020, 8, 187648–187670. [CrossRef]

17. Cheng, J.; Tan, D.; Zhang, T.; Wei, A.; Chen, J. YOLOv5-MGC: GUI Element Identification for Mobile Applications Based on
Improved YOLOv5. Mob. Inf. Syst. 2022, 2022, 8900734. [CrossRef]

18. Nguyen, V.; Le, B. RLTCP: A reinforcement learning approach to prioritizing automated user interface tests. Inf. Softw. Technol.
2021, 136, 106574. [CrossRef]

19. Pastor Ricos, F.; Slomp, A.; Marin, B.; Aho, P.; Vos, T.E.J. Distributed state model inference for scriptless GUI testing. J. Syst. Softw.
2023, 200, 111645. [CrossRef]

20. Zhang, T.; Liu, Y.; Gao, J.; Gao, L.P.; Cheng, J. Deep Learning-Based Mobile Application Isomorphic GUI Identification for
Automated Robotic Testing. IEEE Softw. 2020, 37, 67–74. [CrossRef]

21. Paiva, A.C.; Faria, J.C.; Vidal, R.F. Towards the integration of visual and formal models for GUI testing. Electron. Notes Theor.
Comput. Sci. 2007, 190, 99–111. [CrossRef]

22. Ahmed, B.S.; Sahib, M.A.; Potrus, M.Y. Generating combinatorial test cases using Simplified Swarm Optimization (SSO) algorithm
for automated GUI functional testing. Eng. Sci. Technol. Int. J. 2014, 17, 218–226. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3077518
https://doi.org/10.1109/ACSOS49614.2020.00038
https://doi.org/10.1016/j.eswa.2020.113289
https://doi.org/10.1016/j.infsof.2023.107172
https://doi.org/10.1016/j.softx.2021.100795
https://doi.org/10.1109/ACCESS.2023.3242549
https://doi.org/10.1016/j.scico.2020.102522
https://doi.org/10.1145/3368089.3417940
https://doi.org/10.1109/ICIMCIS51567.2020.9354325
https://doi.org/10.2139/ssrn.3834262
https://doi.org/10.1109/ACCESS.2021.3131753
https://doi.org/10.1002/stvr.1771
https://doi.org/10.1109/ETFA46521.2020.9211886
https://doi.org/10.1109/ACCESS.2022.3183145
https://doi.org/10.1109/ACCESS.2020.3029735
https://doi.org/10.1155/2022/8900734
https://doi.org/10.1016/j.infsof.2021.106574
https://doi.org/10.1016/j.jss.2023.111645
https://doi.org/10.1109/MS.2020.2987044
https://doi.org/10.1016/j.entcs.2007.08.010
https://doi.org/10.1016/j.jestch.2014.06.001

	Introduction
	Problem Statement
	Objectives

	Related Literature Survey
	Proposed Methodology
	Historical Projects
	Test Cases
	Test Case Prioritization
	Attribute Extraction
	State Transition Diagram
	State Activity Score

	GUI
	GUI Components
	Text Value Extraction
	Similarity Score

	Labelling
	Word Embedding
	Classification

	Results and Discussion
	Conclusions
	References

