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Abstract: Path planning is crucial in the automatic navigation of USVs (unmanned underwater
vehicles), which directly affects the operational efficiency and safety of USVs. In this paper, we
propose a path-planning algorithm based on DDPG (Deep Deterministic Policy Gradient) and make
a detailed comparison with the traditional A-Star algorithm and the recent Actor–Critical algorithm.
Through a series of simulation experiments, it can be observed that the optimal path for USVs found
by the DDPG-based path planning algorithm is faster and more accurate than that found by the other
two methods. The experimental results show that the DDPG algorithm has a significant advantage in
processing time and better performance in terms of path quality and safety. These results provide a
strong reference for future research on automatic navigation for USVs and demonstrate the potential
of DDPG-based path planning for USVs.

Keywords: USV; DDPG; path planning; DRL

1. Introduction

USVs represent a specialized category of compact, multifunctional, and intelligent
unmanned marine platforms, which can be remotely piloted or operated autonomously
to execute extensive and enduring marine operations in complex and dangerous waters.
For proficient path planning in USVs, a system is required to ensure navigation between
two designated points (such as start and target locations) and includes obstacle-avoidance
capabilities (Cho et al., 2019; Liu et al., 2019; Woo et al., 2020) [1–3]. The efficiency of path
planning has a profound impact on the overall quality of the routes created by the USV
within its surroundings.

Path-planning strategies can be segmented into two primary types, specifically global
and local methods, contingent on environmental visibility (Hong et al., 2011; Yao et al.,
2017) [4,5]. Global methods are designed for conditions with only static hindrances and
complete availability of environmental information in advance. They permit the pre-
calculation of the briefest trajectory from the starting to the ending point using classical
methods such as the A-star and Dijkstra algorithms (Song et al., 2019; Singh et al., 2018) [6,7].
They offer strong convergence and consistency, but they are primarily suitable for static
surroundings and, therefore, require further refinement for generating USV-compatible
paths (Bibuli et al., 2018) [8].

For instance, by refining the paths planned by the A-star algorithm through spline
fitting, the feasibility of unmanned diving vessels can then be enhanced (Gul et al., 2018) [9].
However, these methods formulate trajectories by linking unidirectional points linearly,
which are commonly at a low resolution, making them inapplicable in dynamic settings
with moving obstructions. They also usually exhibit a high time complexity, making them
challenging in vast environments.

In contrast, local methods fit dynamic situations better (Yu et al., 2021) [10]. These
methods do not rely on prior information about the environment and are capable of finding
high-resolution paths even when mobile objects are present.
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Traditional approaches to USV path planning comprise heuristic search-based meth-
ods, minimum spanning tree-based methods, and neural network-based methods. Heuris-
tic search-based strategies utilize algorithms like A* and Dijkstra for optimal USV path
discovery, but they may suffer from premature convergence and local optimality. There-
fore, it is suggested that algorithms, as well as the introduction of intelligent algorithms
such as genetic and particle swarm algorithms, should be enhanced (Wang et al., 2021;
Fang et al., 2021) [11,12].

Minimum spanning tree-based approaches, including Prim’s and Kruskal algorithms
(Prim, 1957; Kruskal, 1956) [13,14], utilize graph theory to calculate the USV’s optimal
path. In contrast, neural network-based methods utilize artificial neural networks for
path modeling and calculation (Song et al., 2019; Duguleana et al., 2016) [15,16]. The
development of technology has brought increasing attention to neural networks.

ML focuses on developing algorithms to enable computers to learn and make their
own decisions based on data (Abdalzaher et al., 2023) [17]. RL (Reinforcement Learning), a
branch of machine learning, focuses on actions derived from environmental interactions
that amplify anticipated gains (Kaelbling et al., 1996) [18]. It is influenced by psychological
behaviorists, whose theories concern how organisms, motivated by rewards or penalties
from their surroundings, develop their expectations and form habits to maximize benefits.
RL is a learning approach wherein an agent learns, which correlates states to actions to
optimize rewards. The agent should continually test and adapt within the environment,
employing feedback (rewards) to refine the state-action alignment. Thus, trial and error,
along with delayed rewards, represent RL’s key features. In machine learning, the primary
methods are supervised and unsupervised learning (Li, 2017) [19]. An RL system typically
comprises four elements: Policy, Reward, Value, and Environment or Model. The policy
outlines intelligent behaviors for a particular state, essentially mapping the state to the
corresponding action. The state encompasses both the environmental and intelligent states,
which start from the intelligence perceived. The reward signal signifies the RL problem’s
goal, where the scalar value from the environment is the main influence on the strategy. The
value function assesses long-term gains, while the external environment is often referred to
as the model (Model) (Sarker, 2021) [20].

Wang et al. (2018) [21] employed a strategy that assigned probabilities to eight dis-
crete actions based on their reward values, devising a Q-learning-based path planning
algorithm. However, this method suffers from slow convergence and extensive iterations.
Wu et al. (2020) [22] utilized state value functions and action dominance functions to assess
Q, constructing a dual Q-based ANOA algorithm to minimize DQN’s coupling (Sarker,
2021) [23]. Hado Hasselt (2010) [24] designed a novel off-policy RL algorithm, Double
Q-learning, to mitigate overestimations introduced by positive bias in specific stochastic
settings. Despite notable enhancements in precision and efficiency compared with tra-
ditional techniques, these approaches have partially addressed USV path planning but
remain constrained as USV technology advances.

Silver et al. (2014) [25] presented deterministic policy gradient algorithms for RL
in continuous action contexts. Lillicrap et al. (2015) established DDPG [26], merging
the actor-critic method with insights from the DQN (Deep Q Network)’s recent success
(Zhu et al., 2021) [27]. We introduce an advanced path-planning methodology anchored in
DDPG. Using the target position to guide USV in environment exploration, we enhance the
learning pace. Substituting collision penalties with reward incentives fosters rapid learning
in obstacle avoidance for the unmanned vessel.

USV route planning often involves continuous decision making, including the option
from an infinite range of actions rather than a finite set. DDPG is designed for continuous
action spaces and is suitable for USV route planning, which often requires continuous deci-
sions such as speed and steering angle selection. In addition, DDPG utilizes a deterministic
strategy that directly generates optimal action values instead of action distributions, elimi-
nating the need for distribution sampling and thus speeding up learning. Combined with
experience replay, DDPG allows the algorithm to learn from previous experience, which
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improves the stability of learning. By using the current network and the target network,
DDPG reduces policy fluctuations and improves learning stability, which is particularly
beneficial in scenarios with a continuous action space. In certain cases that involve contin-
uous action spaces, for instance, DDPG may outperform traditional behavioral methods
in terms of convergence speed and final performance. We therefore used DDPG as an
extended model for our experiments.

This article is divided into four chapters. Section 1, Methodology, introduces the DDPG
algorithm and the USV motion model in detail; Section 2, Simulation, provides a detailed
introduction to the USV State Space and environment modeling of the USV; Section 3,
Discussion, shows the results of simulation testing; Section 4, Conclusion, indicates the
research conclusions and future improvement directions of the algorithm.

2. Methodology
2.1. DDPG

DDPG (The Deep Deterministic Policy Gradient algorithm) is an enhancement of the
DPG (Deterministic Policy Gradient algorithm), inheriting its deterministic policy gradient.
In this framework, an intelligent body determines specific actions based on state decisions,
utilizing a deep neural network to bolster the decision function fitting. Unlike stochastic
policies, DDPG significantly diminishes the required amount of sampled data, thereby
improving algorithm efficiency and promoting intelligent learning within continuous
action spaces.

Adhering to an Actor–Critic architecture, the DDPG algorithm primarily consists of
two components: the Actor network and the Critic network. The Actor network focuses on
generating actions and mediating environmental interactions for the USV, while the Critic
network evaluates state and action performance. The insights from this evaluation guide
the policy function to formulate the subsequent phase of actions. Both the Actor and Critic
components operate through a dual network structure, employing target and eval networks.
The overall structure of the DDPG algorithm is visually depicted in Figure 1. The symbols
and their meanings of DDPG are detailed in Table 1, the DDPG Symbol Definition Table.

Figure 1. Network Structure of DDPG.
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Table 1. DDPG Symbol Definition Table.

Symbol Description

θu Parameter vector for the policy network in the Actor-eval network, subject to
recurrent modification.

a Action chosen by the Actor-eval network based on the current state s.
s The prevailing state in the environment.
s′ The ensuing state resulting from the execution of action a in the environment.
r The reward received as a consequence of the current action’s execution.

θu′ Parameter vector for the policy network in the Actor-target network, periodically copied
from θu.

a′ Best subsequent action chosen by the Actor-target network based on the following state s′.
θQ Parameter vector for the Critic-eval network, subject to repeated refinement.
yi The target Q value calculated in the Critic-eval network using Equation (1).
γ Discount factor that determines the importance of future rewards in the learning process.

Q′
(

s′, a′, θQ′
)

Q value estimated by the Critic-target network, with θQ′ representing its principal parameter.

st The state of the Unmanned Surface Vehicle (USV) at time t.
µ( st|θµ) The real-time action emitted by the Actor-eval network based on state st and parameter θµ.

at The action taken at time t.
µ′( st+1|θµ ′) The Q value produced by the Critic-eval network for state st and action at with parameter θQ.

Q′
(

st+1, µ′ ( st+1|θµ ′)|θQ′
)

The objective Q value generated by the Critic-target network for state st+1 and the action µ′.

ρβ(S) The distribution of states S created by the agent-centric behavioral strategy β.
θu(S, µ(S)) Parameters representing the policy network’s strategy function µ for state S.

Jβ(µ)
The performance metric or performance objective, which measures the efficacy of policy µ.

β
The behavior policy, which introduces stochastic noise into action decision-making during
reinforcement learning training.

θQT Target network parameters for the Critic.
τ A parameter used in the soft update algorithm.

θQ0 Initial target network parameters for the Critic.
θk Parameters for the eval network in the Critic.
L The loss of the Critic network, computed as the mean square error.
N The number of data samples in the batch.
Ri Reward for a specific transition.
µ′ Target network parameters in the Critic.
Q′ Parameters of the target network in the Actor.

∇θµ Jβ(µ)
The gradient of the performance objective with respect to the parameters of the Actor’s
policy network.

∇aQ
(
s, a|θQ)∣∣

a=µ(si)
The gradient of the Q function with respect to the action.

∇θµµ( s|θα) The gradient of the policy network in the Actor.
Es−ρβ Expected value under the distribution of states according to the behavioral strategy β.

ρβ The distribution function associated with the agent’s behavioral policy.

In Figure 1, the network known as Actor-eval primarily deals with the recurrent
modification of the policy network parameter denoted by θu. It chooses action a based on
the prevailing state s, generating the ensuing state s′ and reward r as a consequence of the
current action’s execution during environmental interaction. Concurrently, the Actor-target
network has the duty of identifying the best subsequent action a′, relying on the following
state s′, which is sampled from the stored experiences. Periodic copying from θu in the
Actor-eval network to θu′ in the Actor-target network is undertaken. Additionally, the
Critic-eval network is fundamentally engaged in the repeated refinement of the network
parameters θQ through calculation of the present Q value:

yi = ri + γQ′
(

s′, a′, θQ′
)

(1)

where the variable γ signifies a discount factor impacting the priority given to future
over present rewards in the learning process. In the Critic-target network, the principal
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parameter θQ′ is derived by periodically duplicating the θQ parameter, taking primary
responsibility for evaluating Q′

(
s′, a′, θQ′

)
.

Given that the state of the USV is st and the action occurs at time t, the following
operations are conducted:

1. The Actor-eval network emits real-time actions µ( st|θµ), which are enforced by the
USV to engage with the environment;

2. The Critic-eval network produces Q values Q
(
st, at|θQ), utilized to assess the present

state-action’s worth;
3. The Actor-target network delivers µ′( st+1|θµ ′), calculating the destination Q value

from the next optimal action a′ for state st+1 in the observation replay reservoir;
4. The Critic-target network generates the objective Q value Q′

(
st+1, µ′ ( st+1|θµ ′)|θQ′

)
,

and the UAV receives environmental rewards to derive the target Q value.

The elementary notions linked to the DDPG algorithm encompass:

1. Deterministic Action Strategy µ: A function to calculate actions at each phase as
at = µ(st).

2. Policy Network: This neural network emulates the function µ, termed a strategy
network with parameters θµ.

3. Performance Metric J: Also known as the performance objective, it gauges policy µ’s
efficacy. In an off-policy setting, it is described by

Jβ(µ)
=
∫

S
ρβ(S)θu(S, µ(S))dx = Es−pβ[Qµ(s, µ(s))] (2)

In this expression, S is the state created by the Agent-centric behavioral strategy;
ρβ is its distribution; Qµ(s, µ(s)) indicates the Q value resulting from choices under
strategy µ.

4. Strategy Gradient Definition: This represents the gradient of performance objective
function J relative to θµ.

5. Action-value Function (Q Function): In state st, following action at, and persistently
applying policy µ, the anticipated value of Rt is

Qµ(st, at) = E[r(st, at) + γQµ(st+1, µ(st+1))] (3)

During the training phase of RL, the exploration of potentially superior strategies
necessitates the introduction of stochastic noise into the action’s decision-making protocol.
This transformation alters the decision of action from a fixed pattern to a probabilistic one.
Actions are then drawn from this probabilistic process and forwarded to the environment
for implementation. This approach is referred to as the behavior policy, symbolized by β,
and categorized as off-policy. The UO (Uhlenbeck–Ornstein) random procedure, notable for
its excellent correlation in temporal sequences, enables effective environmental exploration
by the agent. Hence, in the context of this study, the UO stochastic process is employed for
DDPG training.

Concerning the training of the network, DDPG’s focus lies in the continuous training
and enhancement of the eval parameters within both Actor and Critic. Subsequently, after a
specific duration, the target network’s parameters are rejuvenated through the soft update
algorithm. The updated formulation can be expressed as

so f t− update

{
θQT ⇐ τθQ + (1− τ)θQ0

θk ⇐ τθµ + (1− τ)θu (4)

Here, θQ′ and θµ′ correspond to the target network parameters, while θQ and θµ are
linked to eval network parameters. The parameter τ is commonly set to 0.001. In the
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context of refining the parameters for the updated Critic network, the Critic network’s loss
is conceived as the MSE (mean square error), represented as

L =
1
N ∑

i

(
yi −Q

(
Si, a z|θQ

))2
(5)

In this expression, yi. is delineated as

yi = Ri + τQ′
(

Si+1, µ′
(

si+1|θµ′
)∣∣∣θQ′

)
(6)

Here, µ′ signifies the target network’s parameters in the Critic, and Q′ represents the
parameters of the target network in the Actor. The term yi is perceived as a ‘tag’, with
network parameters adjusted via the back-propagation algorithm throughout the training
phase. Regarding the policy gradient computation for the Actor, it can be illustrated as

∇θµ Jβ(µ) ≈ Es−ρβ

[
∇aQ

(
s, a|θQ

)∣∣∣
a=µ(si)

·∇θµµ( s|θα)

]
(7)

The gradient of the strategy is represented by the expected value of∇aQ·∇θµµ, under
the condition where S follows the distribution of ρβ. Utilizing the Monte Carlo algorithm, it
is possible to estimate∇aQ·∇θµµ. The information concerning (transition) state transitions,
contained within the empirical storage mechanism, denoted as 〈s, a, r, s′〉, is derived from
the agent’s behavior policy β, with the corresponding distribution function ρβ. Hence,
when extracting mini-batch data randomly from the replay memory buffer, the Monte Carlo
method enables this data to serve as an unbiased approximation of the above-mentioned
expectation. This is achieved by applying the previous policy gradient equation. Therefore,
the expression for the strategy gradient can be formulated as

∇θµ Jβ(µ) ≈
1
N ∑

i

(
∇aQ

(
s, a | θQ

)∣∣∣
s=si ,a=µ(si)

· ∇θµµ(s, θµ)

∣∣∣∣
s=si

)
(8)

The following section will present the pseudocode representation corresponding to
the DDPG algorithm (Algorithm 1).

2.2. Motion Model for Unmanned Surface Vehicles

In this study, an underactuated USV is employed as the subject of research for path
planning. The position of the USV within the Earth’s coordinate system is depicted by the
position state vector η = [x y ψ]T , where (x, y) signifies the location, and ψ denotes the
orientation angle. The horizontal velocity of the USV is represented by the velocity vector
v = [u v r]T , in which u, v, and r correspond to the forward velocity, lateral velocity, and
yaw rate, respectively.

To create a simplified model of the USV that is conducive to the design of a path
planning system, the following assumptions have been adopted:

1. The USV exhibits six degrees of freedom: heave, sway, yaw, roll, pitch, and surge. The
last three have a minimal influence on the USV and are thus disregarded.

2. The USV’s mass is uniformly distributed, and it is symmetric with respect to the OXZ
plane; that is, Ixy = Iyz = 0.

3. The origin of the body coordinate system is located at the center of the USV.
4. An underactuated ship refers to one that cannot generate thrust in the lateral direction

(or has transverse thrusters that are inoperative for other reasons). It has a longitudinal
propeller only. Therefore, the thrust vector τ can be expressed as [τu 0 τr]

r, where τu
is the main propulsion thrust, and τr is the turning moment induced by the rudder.
As no force is applied in the lateral direction, the value is zero.

5. Higher-order hydrodynamic terms are disregarded.
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Algorithm 1 DDPG based on USV

Require: The number of episodes for training U, frequency of training K, the size of experience buffer EN,
the number of sequences for the first sampling S, and the regulator factor of the first sampling a. The
number of samples for the second sampling M, the regulator factor of the second sampling b. the
discount factor of reward c, the end time of training T, the update frequency of target Q network L.

Ensure: Optimal network parameters.

1. Initialize the parameters of Online Policy Net and Target Policy Net with θπ and θπ′ , the
parameters of Online Q Net and Target Q Net with θ

◦
and θC.

2. Initialize experience buffer E, the number of sequences in the experience buffer Ei, the
storage experience buffer of a single sequenceh, the priority p1.

3. for episode = 1, U do
4. Initialize a OU process, τt for action exploration.
5. Receive initial observation state s1.
6. for t = 1, T do
7. Select action at = π(st | θπ) + µt according to the online policy and exploration noise.
8. Execute action at and observe new state st+1.
9. Store transition (st, at, rt, st+1) in experience buffer E.
10. if t% K = 0 and episode > U then
11. for i = 1, N do
12. Calculate the probability of each sample P(i) = π

∑ in
13. Based on sampling probability P(i), S sequences are sampled from E and stored

in experience buffer E.
14. for i = 1 S do

15. Calculate the probability of each sample Ps(u) = Pβ
su

∑N
k−1 Pβ

sk

16. Based on sampling probability Ps(u), M sequences are sampled from E
and stored in experience buffer S

17. Using samples in S, Minimize the loss function to update the critic network:

Li =
1
N ∑

i

(
yi −Q

(
si, ai | θQ))2

18. Update the online policy using the sampled policy gradient:

∇θµ Jβ(µ) ≈ 1
N ∑

i

(
∇aQ

(
s, a | θQ)∣∣

s−si ,a−µ(si)
· ∇θµµ(s, θµ)

∣∣∣
s−si

)
19. Update the target networks:

θQ′ ← τθQ + (1− τ)θQ′

θπ′ ← τθπ + (1− τ)θπ′

Based on these simplifications, the nonlinear three-degree-of-freedom model for the
USV on the horizontal plane can be derived as

.
η = R(η)ν (9)

M
.
v = τ + τw − C(v)v−D(v)v (10)

Here, the transformation matrix R(η) is

R(η) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (11)

M is the inertia matrix (including added mass):

M =

m11 0 0
0 m22 m23
0 m32 m33

 =

m− X .
u 0 0

0 m−Y.
r −Y.

r
0 −Y.

r Iz − N.
r

 (12)
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C(v) is the Coriolis centripetal moment matrix:

C(v) =

 0 0 C13
0 0 C23
−C13 −C23 0

, (13)

where C13 = −m22v−m23v and C23 = m11u.
The Coriolis centripetal moment matrix, represented as C(v), is formulated as

C(v) =

 0 0 C13
0 0 C23
−C13 −C23 0

, C13 = −(m22 + m23)v, C23 = u ·m1(1) (14)

The damping matrix, denoted by D(v), is expressed as

D(v) =

d11 0 0
0 d22 d23
0 d32 d33

 =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 (15)

Here, the values of m11, m22, and m33 correspond to m − xu, m − Yv, and Iz − Nr,
respectively. d11, d22, and d33 signify −Xu, −Yv, and −Nr in the inertial parameters. X, Y,
and N stand for the hydrodynamic derivatives. The Ocean disturbance is represented by
τw =

[
τwu τwv τwr

]
. The symbols and their meanings of the Motion Model for USV are

detailed in Table 2, the USV Symbol Definition Table. A simplified model of USV is shown
in Figure 2. Parameters of unmanned surface vehicles are shown in Table 3.

Table 2. USV symbol definition table.

Symbol Description

η Position state vector of the USV in the Earth’s coordinate system.
x Horizontal position component.
y Horizontal position component.
ψ Orientation angle.
v Velocity vector of the USV on the horizontal plane.
u Forward velocity.
v Lateral velocity.
r Yaw rate.

Ixy Moments of inertia related to the USV’s mass distribution.
Iyz Moments of inertia related to the USV’s mass distribution.
τ Thrust vector.
τu Main propulsion thrust.
τr Turning moment induced by the rudder.

R(η) Transformation matrix that relates position and velocity vectors to each other and
incorporates the orientation angle ψ.

M Inertia matrix, including added mass components.
m11, m22, m33 Elements of the inertia matrix.

C(v) Coriolis centripetal moment matrix.
D(v) Damping matrix.

τw Ocean disturbance vector.
τwu Disturbance in the forward direction.
τwv Disturbance in the lateral direction.
τwr Disturbance affecting the yaw rate.
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Figure 2. Simplified model of USV.

Table 3. Parameters of unmanned surface vehicle.

m11 19 kg d11 4 τwu sin(0.001t + 0.3π)
m22 35.2 kg d22 4 τwv cos(0.001t + 0.1π)
m33 4.2 kg d33 1 τwr sin(0.001t + 0.2π)

3. Simulation

Our experiments were conducted on a computer with an AMD R5 5600 processor and
16 GB of RAM, running on the Ubuntu 22.04 LTS operating system.

Software and Framework:
OpenAI Gym: we chose OpenAI Gym as the main simulation environment framework

because it provides a common set of interfaces for reinforcement learning. We used pip
in-stall gym for installation.

Tensorflow2-CPU: Used to build and train neural network models. Since a high degree
of parallel computing power is not required in our models, we chose the CPU version. Pip
install tensorflow-cpu was used for installation.

Python 3.9.10: All implementations were performed in Python, ensuring portability
and easy reproduction of the code.

Simulation environment implementation:
Defining the environment: we created a custom Gym environment that simulates the

motion of an unmanned boat. This environment implements the necessary methods, such
as reset() and step(), and defines the state and action space.

Actor and Critic networks: we defined Actor and Critic neural networks using Ten-
sorFlow Keras API. The Actor network learns to map states to actions, while the Critic
network learns to estimate the value of states.

DDPG Algorithm Implementation: we implemented the DDPG algorithm, utilizing
Actor and Critic networks. In addition, we define the playback buffer, the target network,
and the optimization process.

Training loop: in the training loop, we interacted with the environment, collected
experience, and updated the Actor and Critic networks according to the DDPG algorithm.

We simulated the seawater environment in the coastal area under mild weather. To
ensure the accuracy of wind, water current, water temperature, and seawater density for
two groups of experimental tests with the usage of different models, we set the wind, water
current, water temperature, and seawater density to the same parameters. To be specific,
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the direction of the wind flow is from north at a speed of 8 m/s, the direction of the water
current is from east to west with an average flow velocity of 0.5 m/s, the temperature is at
20 ◦C, and the density of seawater is 1025 kg/m3.

3.1. USV State Space

While navigating on open water, an unmanned boat, or drone boat, is programmed to
autonomously refine its path by leveraging the available map information to steer clear
of hindrances. Throughout this procedure, it is presumed that the vessel advances at a
uniform distance during each move, resulting in the movement space of the drone boat
corresponding to the steering angle for each individual motion.

Ordinary intelligent entities, such as indoor robots, often travel at angles of 45 or even
multiples of 90 degrees. This type of action space is prevalent, but it can result in elongated
path trajectories and large-angle turns, including complete about-faces of 180 degrees. These
movements are inconsistent with the typical maneuvering characteristics of unmanned
vessels, prompting the need for consideration of the specific steering capabilities of the boat.

Therefore, to tailor the maneuvering space for an unmanned boat, it becomes essential
to ensure that its heading remains as steady as feasible or that large-angle turns are set
as few as possible during navigation and in the process of obstacle avoidance. Such
considerations contribute to a more seamless route, enhancing not only the safety of the
unmanned boat’s journey but also minimizing power depletion.

To align the turning angle of the unmanned boat with its actual navigation characteris-
tics, the angle is crafted according to the principle of minimal-angle steering. The action
space is defined to allow a single unit’s distance of advancement in a specified direction,
with angles fixed at plus or minus 15 degrees, plus or minus 30 degrees, or 0 degrees.

Figure 3 illustrates this concept further, with the left diagram showing the action
space as it is depicted in traditional reinforcement learning algorithms. The right diagram
displays an optimized action space designed specifically to accommodate the operational
attributes of the unmanned boat.

Figure 3. Diagram before and after action space optimization.

3.2. Environment Modeling
3.2.1. Environment Setting

In our simulation environment, we configure a map of dimensions 320 by 320, with
the unmanned boat’s objective being to locate the most efficient route to a specific target
point. We represent the state of the unmanned boat with the triplet (x, y, α), where x and y
are the real-time coordinates of the boat within the simulated terrain, and α signifies the
yaw angle relative to the target.

Starting from the initial coordinates of (x0, y0), the actual heading angle is given
by θ = arctan(x0, y0). When considering the current coordinates as (x, y) and the target
coordinates as (p, q), we can derive the desired heading through the following formula:

β = arctan(x− p, y− q)− arctan(x, y) (16)
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As the boat carries out actions from the set, each corresponding to a specific heading
angle a, the actual heading angle changes accordingly. We can represent this as aθ , and
update the heading angle with

θnew = θold + aθ (17)

The yaw angle α is then characterized as

α = β− θ (18)

And the steering angle ∆θ is determined as

∆θ = θnew − θold (19)

3.2.2. Design of Reward Function

Proper reward configuration requires thoughtful consideration. If it is mishandled,
an impractical reward scheme might lead to suboptimal results, which is even worse than
a random strategy since it can incorrectly direct intelligent behavior. Typically, rewards
are structured on a punitive basis until the objective is achieved, and these rules should
not be overly complex. Therefore, a common reward scheme might consist of granting a
significant bonus for meeting the goal and a minor penalty for failure to do so. To mitigate
the drawbacks of sparse rewards, we have refined the incentives for the unmanned boat.
The following outlines the guidelines for the interaction between the unmanned boat and
its environment:

1. Goal Achievement: A reward of +100 is given when the drone boat successfully
reaches the final target. This substantial positive incentive is designed to guide the
drone boat toward the target location;

2. Collision Penalties: If the drone boat encounters an obstacle or boundary, it incurs
a penalty of −2. Since these are undesired actions, the negative penalty encourages
avoidance of these elements;

3. Distance Rewards: The rewards are set at +1 or −1 depending on whether the drone
boat’s distance to the target is decreasing or increasing, respectively. This drives the
drone boat to approach the target while avoiding diverging from it;

4. Yaw Angle Rewards: The smaller the yaw angle α of the drone boat, the higher the
reward. This serves to push the drone boat to minimize the difference between its
actual and desired heading, smoothing its path, averting unnecessary trajectories, and
shortening the planned route;

5. Steering Angle Rewards: Likewise, the more the steering angle ∆θ of the unmanned
boat is reduced, the greater the reward is given. This incentivizes the unmanned boat
to curtail the steering angle, which in turn decreases the turning torque and the boat’s
inclination on the water surface. As a result, this conserves energy, extends range, and
diminishes the possibility of capsizing.

To align with points 4 and 5, we utilize the cosine of the corresponding angle as the
reward. Also, when applying the memory playback mechanism, we aggregate the rewards
for a sequence of states, eight in length, and assign it to this macro-action. Such an arrange-
ment enables the Critic network to appraise the macro action as either positive or negative,
augmenting the network’s discernment of different action sequence qualities. Consequently,
the network’s proficiency in evaluating the merits of various action sequences is bolstered.

3.2.3. DDPG Based on USV Details

Actor Network Configuration: input layer: state size 19; hidden layer: 2 layers,
256 nodes per layer; output layer: actions of size 2. Critic Network Configuration: input
Layer: total state and action size 20; hidden layer: 2 layers, 256 nodes per layer; output
layer: 1 node; hyperparameters. Learning rate: 0.001, discount factor: 0.99, soft update rate
(τ): 0.005.
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3.3. Design of Environment Settings and Reward Functions

In our simulation, a grid of 320 by 320 units will be employed, where each unit on
the map signifies 5 m. And randomly designed obstacles on the map and indicated them
with black squares on the map.The unmanned boat will traverse 5 units—or 25 m—in
the direction of its current heading during each movement. This setup aims to curtail
the amount of motion searches and expedite the algorithm’s validation. The training will
be performed on the map 2000 times, with each iteration confined to 500 steps. If the
final destination is not reached within those 500 steps, the attempt will be categorized as
a failure.

The criteria for comparison include the mean number of steps taken, average rewards
earned, success rate, overall path length, and the frequency of substantial-angle turns.
To streamline the simulation process, obstacles have been shaped into rectangular forms.
Moreover, we will establish a control group by constructing a conventional, fully connected
neural network using the traditional Actor–Critic algorithm. To bolster the stability and
efficiency of training, we will implement a Q target network to augment the convergence
of iterations.

The visual representation of the simulation environment is as follows: obstacles are
depicted as black rectangles, the starting point is marked by a red triangle, and the target
point is symbolized by a green pentagram. After 2000 times of training, the path-planning
trajectories for two algorithms are obtained. The red path illustrates the DDPG algorithm
tailored for USV, while the blue path represents the Actor–Critic algorithm.

4. Discussion

Figure 4 depicts the simulation outcomes on the map, where the DDPG method
adapted for USV clearly outperforms the traditional Actor–Critic algorithm. Specifically,
the track length executed by the USV-focused DDPG is 2315.76 m, in contrast to the
Actor–Critic algorithm’s track length of 2513.41 m; the track length executed by the A-star
algorithm is 2607.93 m.

Figure 4. Simulation path.

In Figure 5, the progression of reward alterations during USV’s training is demon-
strated. In the graph, the X-axis signifies the count of training iterations (or episodes), while
the Y-axis marks the total rewards accumulated by the drones in each round. By analyzing
Figure 5, it is evident that as training advances, although the absolute rewards decline, the
rewards themselves exhibit a gradual ascension, reflecting an overall convergence pattern.
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Figure 5. Changes in training rewards.

Figure 6 illustrates the correlation between the sum of training steps and cumulative
step size. An examination of this figure reveals that the DDPG completes path planning
sooner as the training steps are augmented, whereas the AC algorithm accomplishes it later.
This pattern indicates superior convergence with the DDPG algorithm in comparison to
the AC algorithm.

Figure 6. Cumulative steps in training times.

Table 4 provides statistical information gathered from the simulation experiments.
From these data, it can be inferred that the average return of USV-focused DDPG training
exceeds that of the traditional full Actor–Critic approach and far exceeds that of the A-star
algorithm. In addition, the average number of steps is significantly reduced, the path
lengths are shorter, and the frequency of turns is significantly reduced when training with
DDPG compared to the paths generated by Actor–Critic as well as the paths generated by
the A-star algorithm.
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Table 4. Running results of each algorithm.

Simulation Algorithmic Average Reward Average Steps Path Length Number of Turns

DDPG based on USV 170.65 366.42 2315.76 3
Actor–Critic 163.70 432.78 2513.41 19

A-star 105.63 537.51 2607.93 6

According to the above simulation results, it is obvious that the USV-based DDPG
algorithm performs well on the path planning task. Its average reward is 170.65, which is
significantly higher than the 163.70 of the Actor–Critic algorithm and 105.63 of the A-star
algorithm, which indicates that the algorithm is more successful in selecting effective paths.

In addition, the USV-based DDPG algorithm also outperforms the other two algo-
rithms in terms of the average number of steps, path length, and number of turns. Its
average number of steps 366.42 is much less than Actor–Critic’s 432.78 and A-star’s 537.51,
indicating that DDPG is more efficient in reaching its destination. Also, the DDPG algo-
rithm has a shorter path length of 2315.76 than the other two algorithms, which indicates
that it finds a more direct and optimized path. The most obvious is the number of turns,
which is only 3 for DDPG compared to 19 for Actor–Critic and 6 for A-star. A lower
number of turns means a smoother and more continuous path, which is very important
for unmanned vessels in real-world applications, as too many turns may lead to increased
energy consumption and navigation difficulties.

In summary, the USV-based DDPG algorithm excels in obtaining rewards and also
outperforms other algorithms in terms of efficiency, path selection, and stability. These
results strongly support the use of the DDPG algorithm in unmanned vessel path planning,
especially in applications that require fast, efficient, and stable paths.

5. Conclusions

This study provides an in-depth comparison and analysis of the performance of
multiple path planning algorithms, including USV-based DDPG, Actor–Critic, and A-star
algorithms in a simulated environment. The data show that USV-based DDPG outperforms
the other methods in terms of average reward, average number of steps, path length, and
number of turns.

Firstly, USV-based DDPG shows significant improvement in average reward compared
to other algorithms, which indicates its superior performance in path-planning tasks. Also,
its average step count and path length are much lower than other algorithms, which
indicates that it can find paths faster, and the paths that have been found are more concise
and direct. In addition, USV-based DDPG makes far fewer turns than Actor–Critic, which
further proves the efficiency and accuracy of its path planning.

Although the Actor–Critic and A-star algorithms also have their advantages in some
aspects, the USV-based DDPG undoubtedly demonstrates its superiority in terms of overall
performance. This may be attributed to its deep reinforcement learning nature and specific
optimization of USV.

However, any research has its own limitations. In future work, further efforts shall be
made to explore different model parameters and settings so that the performance of these
algorithms in different contexts can be fully evaluated.

Overall, this study provides valuable insights into the comparison of path-planning
algorithms in simulated environments and provides a solid foundation for future research
and practical applications.
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The following abbreviations are used in this manuscript:
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DRL Deep Reinforcement Learning.
DDPG Deep Deterministic Policy Gradients.
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DPG Deterministic Policy Gradient.
MSE Mean square error.
UO Uhlenbeck–Ornstein.
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