
Citation: Guan, R.; Wang, Z.; Pan, X.;

Zhu, R.; Song, B.; Zhang, X. SbMBR

Tree—A Spatiotemporal Data

Indexing and Compression

Algorithm for Data Analysis and

Mining. Appl. Sci. 2023, 13, 10562.

https://doi.org/10.3390/

app131910562

Academic Editors: José

Salvador Sánchez Garreta and

Chilukuri K. Mohan

Received: 6 July 2023

Revised: 27 August 2023

Accepted: 15 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

SbMBR Tree—A Spatiotemporal Data Indexing and
Compression Algorithm for Data Analysis and Mining
Runda Guan 1, Ziyu Wang 1, Xiaokang Pan 1, Rongjie Zhu 2, Biao Song 3,* and Xinchang Zhang 4

1 School of Computer Science, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 School of Teacher Education, Nanjing University of Information Science and Technology,
Nanjing 210044, China

3 School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
4 Department of Science and Technology, Nanjing University of Information Science and Technology,

Nanjing 210044, China; 000587@nuist.edu.cn
* Correspondence: bsong@nuist.edu.cn

Abstract: In the field of data analysis and mining, adopting efficient data indexing and compression
techniques to spatiotemporal data can significantly reduce computational and storage overhead for
the abilities to control the volume of data and exploit the spatiotemporal characteristics. However,
traditional lossy compression techniques are hardly suitable due to their inherently random nature.
They often impose unpredictable damage to scientific data, which affects the results of data mining
and analysis tasks that require certain precision. In this paper, we propose a similarity-based
minimum bounding rectangle (SbMBR) tree, a tree-based indexing and compression method, to
address the aforementioned problem. Our method can hierarchically select appropriate minimum
bounding rectangles according to the given maximum acceptable errors and use the average value
contained in each selected MBR to replace the original data to achieve data compression with multi-
layer loss control. This paper also provides the corresponding tree construction algorithm and range
query processing algorithm for the indexing structure mentioned above. To evaluate the data quality
preservation in cross-domain data analysis and mining scenarios, we use mutual information as the
estimation metric. Experimental results emphasize the superiority of our method over some of the
typical indexing and compression algorithms.

Keywords: spatiotemporal data; lossy compression; data indexing; clustering

1. Introduction

With the development of data acquisition technology, the sources of spatiotemporal
data are becoming increasingly complex and diverse [1]. For example, because of the
wide range and variety of data sources in ocean data, the volume of data has increased
to petabytes [2], so the storage, transmission, and execution overhead have increased
dramatically as well. In the data analysis and mining domain, researchers are eager to
find an effective way to manage massive spatiotemporal data [3–6]. Therefore, research on
data indexing and compression is of great importance to pave the way for advancing data
analysis and mining techniques.

Lossy or lossless compression algorithms can significantly reduce data storage and
transmission costs, improve data processing efficiency, and make it easier to extract and
transform information from massive data sets [7]. Along with these benefits, combining
the data indexing technique with compression has great potential to further improve
query efficiency. Nevertheless, knowing how to achieve volume reduction with desired
information loss control is still a challenging task. A quadrant-based minimum bounding
rectangle (QbMBR) tree is proposed in [8] and considered to be a solution to this problem. It
uses a method similar to quadtree to divide the space and index the spatial data based on it.

Appl. Sci. 2023, 13, 10562. https://doi.org/10.3390/app131910562 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910562
https://doi.org/10.3390/app131910562
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131910562
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910562?type=check_update&version=1


Appl. Sci. 2023, 13, 10562 2 of 20

Although the QbMBR tree can compress data to a certain extent, it only divides the data in
space, and does not consider the similarity of the data itself, nor can it bound error rates [9].
Dimensionality reduction techniques retain some meaningful properties while reducing
the volume of data. Unfortunately, they are more suitable to deal with data generated from
semantic segmentation rather than from spatiotemporal partitioning since the latter one
tends to produce partitions with arbitrary patterns. Therefore, the dimensionality reduction
techniques are not directly compatible with the spatiotemporal indexing methods. Zip and
7z represent traditional lossless compression, and their weakness is the low compression
ratio as compared to the aforementioned lossy compression methods.

Our previous investigation has found that the compression and indexing tasks can be
resolved simultaneously [10]. In this paper, we extend our previous study and propose a
similarity-based minimum bounding rectangle (SbMBR) tree, a tree-based indexing and
compression method to address the aforementioned problems. The main idea of this
method is that it divides the space into minimum bounding rectangles according to the
similarity of data value and constructs an index tree on this basis. For certain data analysis
and mining tasks, the delineated minimum bounding rectangles can not only be queried,
decompressed, and restored to the original data, but also be used as low-dimensional
features. The main contributions of this paper are listed below:

1. We introduce a hierarchical indexing structure, which takes full advantage of the
feature that adjacent information in some spatiotemporal regions is similar. Building
a tree based on local data similarity measurement allows us to control errors precisely
for data compression and range query.

2. We propose the tree-building algorithm and range query processing algorithm on the
indexing structure mentioned above. We also propose to merge MBRs with the Hilbert
curve [11,12], which further improves the effectiveness of the tree-building process.

3. For particular cross-domain data mining and analysis scenarios, the lossy effect on
data utility is effectively estimated via a comparison of mutual information calculated
before compression and after reconstruction.

4. We evaluate the proposed algorithms based on actual datasets. To further demonstrate
the advantages of our algorithms, we also compared them to some of the typical
indexing and compression algorithms. The results provide reasonable shreds of
evidence to support all the advantages we claimed.

The rest of this paper is organized as follows: in Section 2, we mainly provide a review
of related works. In Section 3, our indexing structure and its corresponding algorithms
are described. Section 4 shows experimental results, and the performance of our indexing
methods is evaluated. Our conclusions are given in Section 5.

2. Related Work
2.1. Data Compression Methods

Advances in computer technology for mass storage and digital processing have ac-
celerated to the implementation of advanced data compression techniques to improve the
efficiency of transmission and storage [13].

A Huffman code [14] is an algorithm for computing minimum-redundancy prefix-free
codes, which has almost legendary status in the computing disciplines. Huffman coding is
often used as a step in compression algorithms, such as the JPEG algorithm.

The JPEG algorithm is a well-known lossy compression algorithm. In 2005, John W.
O’Brien introduce the JPEG algorithm, which is based on the Discrete Cosine Transform
(DCT) [15]. In 2008, Jin Li, Jarmo Takala, Moncef Gabbouj, and Hexin Chen used a detection
algorithm for zero quantized DCT coefficients in the JPEG algorithm. The experimental
results show that the proposed algorithm can significantly reduce the redundant computa-
tion and speed up the JPEG algorithm [16]. In 2012, Bheshaj Kumar, Kaviat Thakur, and
G. R. Sinha introduced a performance evaluation method of the JPEG algorithm based on
symbol reduction [17].



Appl. Sci. 2023, 13, 10562 3 of 20

LZ77 is a universal algorithm for sequential data compression. It is a kind of lossless
algorithm and is proposed by Jacob Ziv in 1977. In that paper, the compression algo-
rithm is described in detail, and experiment results show that the performance of LZ77 is
comparable to certain optimal fixed codebook schemes designed for completely specified
sources [18].

In addition to the algorithms mentioned above, there are also many compression algo-
rithm schemes, such as Deflate [19], GZIP [20], LZO [21], LZ4 [22], and Delta-encoding [23].
Most of them are based on the LZ77 algorithm and Huffman coding. For example, Delta-
encoding is a traditional solution to reduce communication or storage costs. It can reduce
data size and improve compression proportion by calculating the difference between adja-
cent samples. Delta-encoding will significantly improve response size and speed for an
important subset of HTTP content types [23]. However, the disadvantage of Delta-encoding
is that it is very sensitive to noise in the data, which can result in large differences between
adjacent samples, leading to unsatisfactory compression results.

These traditional compression algorithms mentioned above tend to achieve only
higher compression ratios, compression efficiency, or better universality, but this is often
not conducive to data indexing and querying. These issues motivate the research presented
in this paper.

2.2. Tree-Based Data Indexing Methods

The tree index structure is usually used in data storage and query scenarios, such
as distributed databases. They usually need to solve the problems of storage efficiency
optimization and query efficiency optimization, so a lot of researchers have designed
various tree index structures to meet the needs of different scenarios.

R-tree is a height-balanced tree similar to B-tree. In 1984, Antonin Guttman introduced
the R-tree index structure. The paper gave algorithms for searching, inserting, deleting,
and updating, and demonstrated that the R-tree structure is useful for indexing spatial
data [24].

R*-tree is an improvement for R-tree. In 1990, Norbert Beckmann introduced the
R*-tree index structure. In this paper, the author designed a new R-tree variant, the R*-tree,
which outperforms the known R-tree variants under all experiments [24,25].

The parallel R-tree was introduced by Ibrahim Karnel and Christos Faloutsos in
1992 [26]. The parallel R-tree promotes the traditional R-tree so that it can support a multi-
disk environment. Then, in 1994, they improved the R-tree structure with the Hilbert curve
and introduced corresponding algorithms in detail [27]. Experiment results show that the
Hilbert R-tree with a ‘2-to-3’ split policy on real data gives up 28% savings over R*-tree [26].

In 1996, David A. White and Ramesh Jain introduced similarity indexing problems
and a new dynamic structure for similarity indexing called SS-tree [28]. Their tests show
that the SS-tree is more suitable for approximate queries than the R*-tree.

In 2020, Jizhe Xia and others proposed a new distributed spatial data indexing scheme
to support Digital Earth initiatives whose name is DAPR-tree. Compared to traditional
distributed indexing schemes, the DAPR-tree has a more balanced indexing structure [29,30].

The above tree index structure is mostly optimized for distributed systems, with a
small portion optimized for approximate queries. Based on these existing structures, we
hope to study a structure that can compress with different compression ratios and index
these compressed data for range querying.

3. Proposed Methodology
3.1. Structure of SbMBR Tree

To achieve lossy compression of spatial data according to a given maximum error, we
use MBRs (minimum bounding rectangles) to partition the spatial data. An MBR contains
data within a certain space range, as well as information about the average value of these
data and the maximum error of these data [8]. In the process of compression, we select



Appl. Sci. 2023, 13, 10562 4 of 20

appropriate MBRs according to the given maximum acceptable error and use the average
value contained in each selected MBR to replace the original data.

To realize the above-mentioned selection process quickly, we constructed an index
tree for these MBRs. We call the index tree SbMBR tree. The structure of the SbMBR tree is
similar to that of the R-tree. Each node in the SbMBR tree contains an MBR. The MBR in the
child node is completely contained by the MBR of the parent node. The maximum error
value contained in nodes at the same layer in the SbMBR tree is the same. The maximum
error value contained in the node in the deeper position in the tree is smaller than that of
the node in the shallow position. In particular, the root node contains the entire spatial
data, and its maximum error value is the largest in the tree. An example of the structure of
an SbMBR tree is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 21 
 

3. Proposed Methodology 
3.1. Structure of SbMBR Tree 

To achieve lossy compression of spatial data according to a given maximum error, 
we use MBRs (minimum bounding rectangles) to partition the spatial data. An MBR con-
tains data within a certain space range, as well as information about the average value of 
these data and the maximum error of these data [8]. In the process of compression, we 
select appropriate MBRs according to the given maximum acceptable error and use the 
average value contained in each selected MBR to replace the original data. 

To realize the above-mentioned selection process quickly, we constructed an index 
tree for these MBRs. We call the index tree SbMBR tree. The structure of the SbMBR tree 
is similar to that of the R-tree. Each node in the SbMBR tree contains an MBR. The MBR 
in the child node is completely contained by the MBR of the parent node. The maximum 
error value contained in nodes at the same layer in the SbMBR tree is the same. The max-
imum error value contained in the node in the deeper position in the tree is smaller than 
that of the node in the shallow position. In particular, the root node contains the entire 
spatial data, and its maximum error value is the largest in the tree. An example of the 
structure of an SbMBR tree is shown in Figure 1. 

 
Figure 1. An example of SbMBR tree. 

The structure of the SbMBR tree will be described more formally below. Let 
{ }…= 1 2 ,, , nR R RS   be a set of n MBRs in the plane. Each MBR contains six properties, 

namely, the x-coordinate of the bottom left corner ( )min ix R , the y-coordinate of the bot-

tom left corner ( )min iy R , the x-coordinate of the top right corner ( )max ix R , the y-coordi-

nate of the top right corner ( )max iy R , as well as the average value ( )iμ R  and the maxi-

mum error ( )iε R  of the data in the area denoted by the bottom left and top right corners. 

Definition 1. The union MBR P of two MBRs, 1 2,R R , is denoted by = ∪1 2P R R ; P satisfies: 

( ) ( ) ( )( )=min min 1 min 2min ,x P x R x R  (1) 

( ) ( ) ( )( )=min min 1 min 2min ,y P y R y R  (2) 

( ) ( ) ( )( )=max max 1 max 2max ,x P x R x R  (3) 

( ) ( ) ( )( )=max max 1 max 2max ,y P y R y R  (4) 

Figure 1. An example of SbMBR tree.

The structure of the SbMBR tree will be described more formally below. Let
S = {R1, R2, . . . , Rn} be a set of n MBRs in the plane. Each MBR contains six properties,
namely, the x-coordinate of the bottom left corner xmin(Ri), the y-coordinate of the bottom
left corner ymin(Ri), the x-coordinate of the top right corner xmax(Ri), the y-coordinate of
the top right corner ymax(Ri), as well as the average value µ(Ri) and the maximum error
ε(Ri) of the data in the area denoted by the bottom left and top right corners.

Definition 1. The union MBR P of two MBRs, R1, R2, is denoted by P = R1 ∪ R2; P satisfies:

xmin(P) = min(xmin(R1), xmin(R2)) (1)

ymin(P) = min(ymin(R1), ymin(R2)) (2)

xmax(P) = max(xmax(R1), xmax(R2)) (3)

ymax(P) = max(ymax(R1), ymax(R2)) (4)

where µ(P) is the average value of the data in the area denoted by the bottom left corner (xmin(P), ymin(P))
and the top right corner (xmax(P), ymax(P)), and ε(P) is the maximum error of the data in the area
denoted by the bottom left corner (xmin(P), ymin(P)) and the top right corner (xmax(P), ymax(P)).

The SbMBR tree TS on S is defined as follows: Each node of the SbMBR tree contains
only one MBR. All the elements of S are leaf nodes in the SbMBR tree TS. If S contains
only one MBR, TS contains only one single leaf node; otherwise, we use some packing
algorithm mentioned below to partition set S into some disjointed subsets. Without loss



Appl. Sci. 2023, 13, 10562 5 of 20

of generality, we assume that set S is partitioned into S1, S2, . . . , Sk, where
k
∪

i=1
Si = S,

Si ∩ Sj = ∅, i 6= j, i, j = 1, 2, . . . , k. Let Pi = ∪
R∈Si

R, which means that Pi is the union MBR of

all elements in Si. Let P = {P1, P2, . . . , Pk}. TS is derived from the recursive SbMBR tree TP.
For each leaf node Pi of the tree TP, let all the elements in Si be the child nodes of Pi, so that
TS is constructed, whose leaf nodes are all in the set S.

3.2. Construct MBRs with Hilbert Curve

In order to construct the SbMBR tree mentioned above, the key is to construct MBRs
with larger maximum error values according to existing MBRs with smaller maximum
error values. In this paper, we propose a heuristic method similar to the method used in
Hilbert R-tree to realize it [31].

A Hilbert curve is a kind of space-filling curve which can visit all the points in a
k-dimensional grid exactly once and never crosses. As shown in Figure 2, the basic Hilbert
curve, also called the curve of order 1, is on a 2 × 2 grid, denoted by H1. The curve of order
i is derived from four curves of order i − 1 with different orientations. The second-order
and third-order Hilbert curve are also shown in Figure 2. When the order of a Hilbert curve
gradually increases until it reaches infinity, the curve becomes fractal [26].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 21 
 

where ( )μ P   is the average value of the data in the area denoted by the bottom left corner 

( ) ( )( )min min,x P y P  and the top right corner ( ) ( )( )max max,x P y P , and ( )ε P  is the maximum 

error of the data in the area denoted by the bottom left corner ( ) ( )( )min min,x P y P  and the top right 

corner ( ) ( )( )max max,x P y P . 

The SbMBR tree ST  on S is defined as follows: Each node of the SbMBR tree contains 

only one MBR. All the elements of S are leaf nodes in the SbMBR tree ST . If S contains 

only one MBR, ST  contains only one single leaf node; otherwise, we use some packing 
algorithm mentioned below to partition set S into some disjointed subsets. Without loss 

of generality, we assume that set S is partitioned into …1 2, , , kS SS  , where 
=

=
1

k

i
i

S S  ,

…∩ = ∅ ≠ =, , , 1,2 ,,i j kS S i j i j . Let 
∈

= 
i

i
R S

P R , which means that iP  is the union MBR of 

all elements in iS . Let { }…= 1 2 ,, , kP P PP . ST  is derived from the recursive SbMBR tree 

PT . For each leaf node iP  of the tree PT , let all the elements in iS  be the child nodes of 

iP , so that ST  is constructed, whose leaf nodes are all in the set S . 

3.2. Construct MBRs with Hilbert Curve 
In order to construct the SbMBR tree mentioned above, the key is to construct MBRs 

with larger maximum error values according to existing MBRs with smaller maximum 
error values. In this paper, we propose a heuristic method similar to the method used in 
Hilbert R-tree to realize it [31].  

A Hilbert curve is a kind of space-filling curve which can visit all the points in a k-
dimensional grid exactly once and never crosses. As shown in Figure 2, the basic Hilbert 
curve, also called the curve of order 1, is on a 2 × 2 grid, denoted by H1. The curve of order 
i is derived from four curves of order i − 1 with different orientations. The second-order 
and third-order Hilbert curve are also shown in Figure 2. When the order of a Hilbert 
curve gradually increases until it reaches infinity, the curve becomes fractal [26]. 

 
Figure 2. Hilbert curves of order 1, 2, and 3. Figure 2. Hilbert curves of order 1, 2, and 3.

The path of a Hilbert space-filling curve gives the multi-dimensional grid points a one-
dimensional linear order, which makes it as easy to process the data in multi-dimensional
space as in one-dimension space.

Next, we propose a method to construct MBRs with the Hilbert curve. It is assumed
that the maximum error value of the MBRs to be constructed has been given. First, we sort
the existing MBRs according to their centers in the order of the Hilbert curve. Second, we
scan backward from the first MBR until the n-th MBR is scanned and the maximum error
value of the first n MBRs is just greater than the given maximum error value. Therefore, the
first n − 1 MBRs can be merged into a larger MBR whose error value is not larger than the
given maximum error value. Then, we repeat the above operation with the n-th MBR as
the first MBR until all the existing MBRs are processed. The specific algorithm pseudocode
is shown in Algorithm 1.

Hilbert curves have good clustering properties, that is, they maintain locality between
objects in a multidimensional space in a linear one-dimensional space [32]. Such good prop-
erties are very consistent with the requirements under the spatial data scenario. Similarly,
the z-order curve is an alternative that possesses similar properties to the Hilbert curve.
However, experiments show that the z-order curve underperforms the Hilbert curve in
queries for a certain number of points with triangular regions [27].



Appl. Sci. 2023, 13, 10562 6 of 20

Algorithm 1: Merge MBRs with the Hilbert curve

Input: A set of MBRs with the same maximum error value p, the maximum error of new MBRs to
be obtained x
Output: A set of new MBRs with given maximum error value; inclusion relationship between
new MBRs to be obtained and existing MBRs

1. S←∅
2. R←∅
3. sort p according to their centers with the Hilbert curve
4. i←0
5. j←0
6. while i < p.size do
7. while j < p.size do
8. y←calculate the maximum error of the MBR of pi, pi+1, . . ., pj

9. if y > x then
10. break
11. end if
12. j←j + 1
13. end while
14. m←calculate the MBR of pi, pi+1, . . ., pj−1

15. S.insert(m)
16. for k = i, i + 1, . . ., j − 1 do
17. R.insert(pk)⊆ m
18. end for
19. i←j
20. end while
21. return (S, R)

The above is mainly about the two-dimensional Hilbert curve. A Hilbert curve can
be conveniently extended to three dimensions or higher dimensions. A three-dimensional
Hilbert curve is shown in Figure 3. The extension method is described in detail in [32].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21 
 

The above is mainly about the two-dimensional Hilbert curve. A Hilbert curve can 
be conveniently extended to three dimensions or higher dimensions. A three-dimensional 
Hilbert curve is shown in Figure 3. The extension method is described in detail in [32]. 

 
Figure 3. Three-dimensional Hilbert curve. 

3.3. Indexing Algorithm 
Algorithm 2 presents the tree-building algorithm for an SbMBR tree. To implement 

it, we use the bottom-up tree construction method. First, we regard spatiotemporal data 
as several 1 × 1 MBRs. Then, Algorithm 1 is continuously used to merge MBR to the upper 
layer, where the maximum error of each layer increases in the form of multiplication. At 
the same time, the relationship between the upper and lower layers is established. Until 
all MBRs are merged into one MBR, the MBR is the root node of the SbMBR tree. 

Algorithm 2: Build SbMBR tree 
Input: spatial data D, the maximum error of leaf nodes x 
Output: the SbMBR tree 
1. T←∅  
2. p←transform D into MBRs whose size is 1 × 1 and the maximum error is x 
3. T.addNode(p) 
4. while p.size > 1 do 
5.   x←2x 
6.   (q, R)←merge_MBR(p, x)    //Algorithm 1 
7.   T.addNode(q) 
8.   T.addEdge(R) 
9.   p←q 
10. end while 
11. return T 

Figure 3. Three-dimensional Hilbert curve.

3.3. Indexing Algorithm

Algorithm 2 presents the tree-building algorithm for an SbMBR tree. To implement it,
we use the bottom-up tree construction method. First, we regard spatiotemporal data as
several 1 × 1 MBRs. Then, Algorithm 1 is continuously used to merge MBR to the upper
layer, where the maximum error of each layer increases in the form of multiplication. At



Appl. Sci. 2023, 13, 10562 7 of 20

the same time, the relationship between the upper and lower layers is established. Until all
MBRs are merged into one MBR, the MBR is the root node of the SbMBR tree.

Algorithm 2: Build SbMBR tree

Input: spatial data D, the maximum error of leaf nodes x
Output: the SbMBR tree

1. T←∅
2. p←transform D into MBRs whose size is 1 × 1 and the maximum error is x
3. T.addNode(p)
4. while p.size > 1 do
5. x←2x
6. (q, R)←merge_MBR(p, x)//Algorithm 1
7. T.addNode(q)
8. T.addEdge(R)
9. p←q
10. end while
11. return T

A range query receives a query rectangle range and maximum acceptable maximum
error and returns a set of MBRs who can fill the space of the rectangle range and meet the
requirement of maximum error.

Algorithm 3 describes the range query algorithm. We mainly use recursive methods
to realize error-controllable range queries. I is the intersection of the MBR of the current
node and the query range. When I is empty, no MBRs are meeting the query requirement,
so an empty set is returned. When I is not empty and eps of the MBR of the current node is
less than or equal to the given eps, I has satisfied the requirement, so I is returned. Notably,
when the root node has no child, even if the error does not meet the condition, only I can
be returned. After the above conditions are eliminated, recursion calling is required.

Algorithm 3: Range query

Input: the root node of a subtree root, rectangle range R, maximum error eps
Output: A set of MBRs contained in range R

1. S←∅
2. I←R ∩ root.MBR
3. if I = ∅ then
4. return ∅
5. end if
6. if root.MBR.eps ≤ eps or the root node has no child then
7. return I
8. end if
9. for ch in all the children of root do
10. S←S∪range_query(ch, R, eps)//recursive function call
11. end for
12. return S

3.4. Error Estimation Method for Data Analysis

In order to better apply the methods mentioned above to data analysis, it is neces-
sary to establish error estimation methods to estimate the errors after data analysis or
prediction [33].

Assume that in a data analysis model, the input is X and the output is Y. This model
essentially maps X to Y, and if this mapping is f, the model can be expressed as follows:

Y = f (X) (5)



Appl. Sci. 2023, 13, 10562 8 of 20

where X is the input and Y is the output.
When compressing the input X, the accuracy of the output Y will decrease. This

section proposes a method for error estimation based on normalized mutual information.

3.4.1. Mutual Information

Mutual information is a measure of the mutual dependence between two random vari-
ables. The mutual information of two discrete random variables X and Y, namely,I(X; Y),
can be calculated as follows:

I(X; Y) = ∑
y∈Y

∑
x∈X

P(X,Y)(x, y) log

(
P(X,Y)(x, y)
PX(x)PY(y)

)
(6)

where P(X,Y) is the joint probability mass function of X and Y, and PX and PY are the
marginal probability mass function of X and Y, respectively.

In this section, X is the result of compressing the input and Y is the original output.

3.4.2. Normalization

In order to make the metric for error estimation comparable to different data, it should
be normalized.

The mutual information can be expressed in the form of entropy, as follows:

I(X; Y) = H(X) + H(Y)− H(X, Y) (7)

where H is the entropy function.
Therefore, the normalized mutual information of random variables X and Y can be

defined as below:

U(X; Y) =
2I(X; Y)

H(X) + H(Y)
(8)

where X and Y are both random variables.
In summary, the metric for error estimation can be calculated as follows:

U(X; Y) =

2 ∑
y∈Y

∑
x∈X

P(X,Y)(x, y) log
(

P(X,Y)(x,y)
PX(x)PY(y)

)
∑

x∈X
PX(x) log(PX(x)) + ∑

y∈Y
PY(y) log(PY(y))

(9)

where X is the input data, Y is the output data, P(X,Y) is the joint probability mass function of
X and Y, and PX and PY are the marginal probability mass function of X and Y, respectively.

The range of the normalized mutual information is from 0 to 1. The closer the normal-
ized mutual information value is to 1, the higher the correlation is and vice versa.

Therefore, we will use U(X;Y), namely, normalized mutual information, as the indica-
tor of error estimation.

3.5. Complexity Analysis

Lemma 1. The time complexity of merging n MBRs with the Hilbert curve is O(n).

Proof. We assume that the cost of merging two MBRs is constant time. Because variables i
and j in Algorithm 1 only increase in the loop, the maximum number of loops is 2n, and
the time complexity of Algorithm 1 is O(n). �

Lemma 2. In the case where k(k > 1) MBRs can be merged into 1 MBR on average, the time
complexity of building the SbMBR tree of data of scale n is O

(
kn

k−1

)
.



Appl. Sci. 2023, 13, 10562 9 of 20

Proof. According to Lemma 1, all the operations in the loop of Algorithm 2 are linear in
time. Therefore, the time cost can be denoted as the size of the SbMBR tree. The size of the
SbMBR tree S can be estimated as below:

S =
dlogk ne

∑
i=0

n
ki ≤ n

∞

∑
i=0

1
ki =

kn
k− 1

(10)

Therefore, the time complexity of building the SbMBR tree of data of scale n is O
(

kn
k−1

)
. �

Lemma 3. Under the circumstance that the compression ratio with an error of ε is denoted as r(ε),
and k(k > 1) MBRs can be merged into 1 MBR on average, the time complexity of range query of
size n is O(r(ε)n logk n).

Proof. The answer of Algorithm 3 can be considered to be a subset of MBRs in a certain
layer. When the compression ratio is r(ε), the size of the result MBRs is nr(ε). According
to the feature of the tree structure, the depth of the certain layer is logk n. In addition, the
complexity of the recursive algorithm merging process is linear complexity. According to
the master theorem, the time complexity is O(r(ε)n logk n). �

4. Experimentation and Results
4.1. Experimental Setup

To assess the merit of our proposed SbMBR tree with the Hilbert curve, we imple-
mented and ran experiments on a two-dimensional space. The method was implemented
in C++, under Linux. We compared our method against the quadtree [8] and brute R-tree.
The brute R-tree method is a method that uses an index structure similar to the SbMBR
tree but uses the O

(
n2) brute method instead of the Hilbert curve in the process of MBR

merging. In addition, we also compared our method with the JPEG compression algorithm
in machine learning scenarios.

The hardware specification is listed below:

• Processor: Intel© Core© i7-10875H CPU @ 2.30 GHz
• RAM: 16 GB
• OS: Ubuntu 22.04

The test data set used in the experiment is WorldClim version 2.1 climate data for
1970–2000 [34]. We mainly chose the data of the average temperature in July and solar
radiation in April. Total Table 1 shows the details of the data for the experiment.

Table 1. Details of data for the experiment.

Name of the Data Types of the Data Location of the Data Density of the Data Scale of the Data

Test 1 Average temperature in July 31◦40′ N–48◦20′ N,
96◦40′ W–80◦00′ W Dense 400 × 400

Test 2 Average temperature in July 30◦00′ S–6◦40′ N,
180◦00′–138◦20′ W Sparse 880 × 1000

Test 3 Solar radiation in April 33◦45′ N–50◦25′ N,
100◦50′ W–75◦50′ W Dense 600 × 400

Test 4 Solar radiation in April 30◦00′ S–6◦40′ N,
180◦00′–138◦20′ W Sparse 880 × 1000

Table 2 explains the details of the params used in all the methods when we experimented.



Appl. Sci. 2023, 13, 10562 10 of 20

Table 2. Params used in all the methods.

Method Param Name Explanation Value Range or Requirement

SbMBR tree
eps array eps of different layers when building the SbMBR tree [0,+∞), incremental
query eps eps of query area [0,+∞)

query area a rectangle area needed to query, containing the coordinate
of the bottom left corner and top right corner

Coordinates of two real
number points

brute R-tree
eps array eps of different layers when building the tree [0,+∞), incremental
query eps eps of query area [0,+∞)

query area a rectangle area needed to query, containing the coordinate
of the bottom left corner and top right corner

Coordinates of two real
number points

quadtree query eps eps of query area [0,+∞)

query area a rectangle area needed to query, containing the coordinate
of the bottom left corner and top right corner

Coordinates of two real
number points

JPEG ratio compression ratio [0, 1]

In our implementation, we used the coefficient of variation as eps in our algorithm.
The specific definition is as follows:

eps =
σ

µ
(11)

where σ is the standard deviation and µ is the average value. Different eps can also show
the advantages and limitations of the methods.

4.2. Visualization of Compression Results

Figures 4–6 show the effect of drawing the compressed data back to the metadata.
Each boxed area in the figure represents that all data in that area can be replaced by one
data point, thus achieving the compression effect. The rectangular boxed-out intersection
section then represents the location with a variety of different choices that are feasible for a
given error range.

From Figures 4–6, we can see that the major drawback of the quadtree is that all
regions of its partition are square, which seriously affects the flexibility of compression and
results in too many points in regions with more complex data, while the SbMBR tree and
brute R-tree solve such a problem by rectangular partitioning. In addition, the SbMBR tree
circumvents the overlapping of too many matrices, which increases the compression ratio
and query speed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21 
 

Table 2. Params used in all the methods. 

Method Param Name Explanation Value Range or Requirement 

SbMBR tree 

eps array eps of different layers when building the SbMBR tree ) + ∞，0 , incremental 

query eps eps of query area ) + ∞，0  

query area 
a rectangle area needed to query, containing the coordi-

nate of the bottom left corner and top right corner 
Coordinates of two real num-

ber points 

brute R-tree 

eps array eps of different layers when building the tree ) + ∞，0 , incremental 

query eps eps of query area ) + ∞，0  

query area 
a rectangle area needed to query, containing the coordi-

nate of the bottom left corner and top right corner 
Coordinates of two real num-

ber points 

quadtree 
query eps eps of query area ) + ∞，0  

query area a rectangle area needed to query, containing the coordi-
nate of the bottom left corner and top right corner 

Coordinates of two real num-
ber points 

JPEG ratio compression ratio   0,1  

4.2. Visualization of Compression Results 
Figures 4–6 show the effect of drawing the compressed data back to the metadata. 

Each boxed area in the figure represents that all data in that area can be replaced by one 
data point, thus achieving the compression effect. The rectangular boxed-out intersection 
section then represents the location with a variety of different choices that are feasible for 
a given error range. 

From Figures 4–6, we can see that the major drawback of the quadtree is that all re-
gions of its partition are square, which seriously affects the flexibility of compression and 
results in too many points in regions with more complex data, while the SbMBR tree and 
brute R-tree solve such a problem by rectangular partitioning. In addition, the SbMBR tree 
circumvents the overlapping of too many matrices, which increases the compression ratio 
and query speed. 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 4. eps = 0.005, compression effect in different methods. Figure 4. eps = 0.005, compression effect in different methods.



Appl. Sci. 2023, 13, 10562 11 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 5. eps = 0.0026, compression effect in different methods. 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 6. eps = 0.0005, compression effect in different methods. 

4.3. Comparison of Index Construction and Data Query Efficiency 
To compare our proposed SbMBR tree with quadtree and brute R-tree, we performed 

about 150,000 random queries with an allowable error of 0.1% to 0.5% on data of different 
densities and recorded the creating time and query time for different methods. The tem-
poral information is analyzed in Figure 7, where Figure 7a represents the performance of 
each method in sparse data and Figure 7b represents the performance of each method in 
dense data. 

 
(a) 

Figure 5. eps = 0.0026, compression effect in different methods.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 5. eps = 0.0026, compression effect in different methods. 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 6. eps = 0.0005, compression effect in different methods. 

4.3. Comparison of Index Construction and Data Query Efficiency 
To compare our proposed SbMBR tree with quadtree and brute R-tree, we performed 

about 150,000 random queries with an allowable error of 0.1% to 0.5% on data of different 
densities and recorded the creating time and query time for different methods. The tem-
poral information is analyzed in Figure 7, where Figure 7a represents the performance of 
each method in sparse data and Figure 7b represents the performance of each method in 
dense data. 

 
(a) 

Figure 6. eps = 0.0005, compression effect in different methods.

4.3. Comparison of Index Construction and Data Query Efficiency

To compare our proposed SbMBR tree with quadtree and brute R-tree, we performed
about 150,000 random queries with an allowable error of 0.1% to 0.5% on data of different
densities and recorded the creating time and query time for different methods. The tem-
poral information is analyzed in Figure 7, where Figure 7a represents the performance of
each method in sparse data and Figure 7b represents the performance of each method in
dense data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21 
 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 5. eps = 0.0026, compression effect in different methods. 

   
(a) brute R-tree (b) SbMBR tree (c) quadtree 

Figure 6. eps = 0.0005, compression effect in different methods. 

4.3. Comparison of Index Construction and Data Query Efficiency 
To compare our proposed SbMBR tree with quadtree and brute R-tree, we performed 

about 150,000 random queries with an allowable error of 0.1% to 0.5% on data of different 
densities and recorded the creating time and query time for different methods. The tem-
poral information is analyzed in Figure 7, where Figure 7a represents the performance of 
each method in sparse data and Figure 7b represents the performance of each method in 
dense data. 

 
(a) 

Figure 7. Cont.



Appl. Sci. 2023, 13, 10562 12 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

 
(b) 

Figure 7. Comparison of different methods under the same data. (a) Time comparison of different 
methods under the same sparse data. (b) Time comparison of different methods under the same 
dense data. 

In the Tables 3 and 4, relative time can be defined as follows: 

0

tRelativeTime
t

=  (12) 

where t means the absolute time of different methods and t0 means the fiducial time; in 
this case, the time scale of the quadtree is the fiducial time. 

Table 3. Relative time of different methods under the same sparse data. 

Method Relative Time of Creating Tree Relative Time of Multiple Querying Relative Total Time 
quadtree 100.0% 100.0% 100.0% 

SbMBR tree 195.1% 59.2% 60.2% 
brute R-tree 273.1% 89.1% 90.5% 

Table 4. Relative time of different methods under the same dense data. 

Method Relative Time of Creating Tree Relative Time of Multiple Querying Relative Total Time  
quadtree 100.0% 100.0% 100.0% 

SbMBR tree 496.1% 73.0% 73.2% 
brute R-tree 136,196.9% 70.5% 156.9% 

A comprehensive analysis of Figure 7 and Tables 3 and 4 show that the brute R-tree 
always leads to more time spent than the SbMBR tree and quadtree in construction, and 
even more so in the case of dense data. In addition, although the quadtree shows a better 
construction speed, its query speed is slow and will be a serious shortcoming in large-
scale queries, and the SbMBR tree seems to outperform the other methods in general. 

From analyzing the reason, we can see that the bottleneck of the brute R-tree is that 
it needs to traverse all the neighboring information to calculate and update the MBR, 
which will lead to an order of magnitude increase in time complexity compared with other 
methods. Each internal node has exactly four children in a quadtree, so a quadtree should 
not spend time considering the surrounding data, but rather should keep recursion down. 
So, quadtree has the best construction consumption. However, although brute R-tree 
spends so much time in construction, the detailed nodes’ information makes it query 

Figure 7. Comparison of different methods under the same data. (a) Time comparison of different
methods under the same sparse data. (b) Time comparison of different methods under the same
dense data.

In the Tables 3 and 4, relative time can be defined as follows:

RelativeTime =
t
t0

(12)

where t means the absolute time of different methods and t0 means the fiducial time; in this
case, the time scale of the quadtree is the fiducial time.

Table 3. Relative time of different methods under the same sparse data.

Method Relative Time of
Creating Tree

Relative Time of
Multiple Querying Relative Total Time

quadtree 100.0% 100.0% 100.0%

SbMBR tree 195.1% 59.2% 60.2%

brute R-tree 273.1% 89.1% 90.5%

Table 4. Relative time of different methods under the same dense data.

Method Relative Time of
Creating Tree

Relative Time of
Multiple Querying Relative Total Time

quadtree 100.0% 100.0% 100.0%

SbMBR tree 496.1% 73.0% 73.2%

brute R-tree 136,196.9% 70.5% 156.9%

A comprehensive analysis of Figure 7 and Tables 3 and 4 show that the brute R-tree
always leads to more time spent than the SbMBR tree and quadtree in construction, and
even more so in the case of dense data. In addition, although the quadtree shows a better
construction speed, its query speed is slow and will be a serious shortcoming in large-scale
queries, and the SbMBR tree seems to outperform the other methods in general.

From analyzing the reason, we can see that the bottleneck of the brute R-tree is that
it needs to traverse all the neighboring information to calculate and update the MBR,
which will lead to an order of magnitude increase in time complexity compared with



Appl. Sci. 2023, 13, 10562 13 of 20

other methods. Each internal node has exactly four children in a quadtree, so a quadtree
should not spend time considering the surrounding data, but rather should keep recursion
down. So, quadtree has the best construction consumption. However, although brute
R-tree spends so much time in construction, the detailed nodes’ information makes it query
recursive depth lower and more efficient to query. On the contrary, the simple splitting of
the quadtree makes the overall depth higher, and the query must recurse more layers.

4.4. Comparison of Compression Ratio and Nodes Number

To further identify the advantages and disadvantages of different methods, we counted
the number of nodes compressed with different data and different error ranges. The number
of nodes will visually show the compression efficiency.

In Tables 5 and 6, volume reduction ratio can be defined as follows:

VolumeReductionRatio =
sum
sum0

(13)

where sum means the size of data after being compressed and sum0 means the initial data size.

Table 5. Volume reduction ratio of different methods under the same sparse data.

eps Method Volume Reduction Ratio

0.005
SbMBR tree 0.000236
brute R-tree 0.002945

quadtree 0.000309

0.0046
SbMBR tree 0.000254
brute R-tree 0.002963

quadtree 0.000527

0.0042
SbMBR tree 0.000327
brute R-tree 0.002981

quadtree 0.001018

0.0038
SbMBR tree 0.000563
brute R-tree 0.003036

quadtree 0.001290

0.0034
SbMBR tree 0.000727
brute R-tree 0.003127

quadtree 0.001345

0.003
SbMBR tree 0.000763
brute R-tree 0.003200

quadtree 0.001727

0.0026
SbMBR tree 0.000945
brute R-tree 0.003363

quadtree 0.002072

0.0022
SbMBR tree 0.001490
brute R-tree 0.003418

quadtree 0.002509

0.0018
SbMBR tree 0.001909
brute R-tree 0.003654

quadtree 0.002800

0.0014
SbMBR tree 0.002636
brute R-tree 0.003890

quadtree 0.003236

0.001
SbMBR tree 0.003581
brute R-tree 0.004636

quadtree 0.005163



Appl. Sci. 2023, 13, 10562 14 of 20

Table 6. Volume reduction ratio of different methods under the same dense data.

eps Method Volume Reduction Ratio

0.005
SbMBR tree 0.0018
brute R-tree 0.0011

quadtree 0.0060

0.0047
SbMBR tree 0.0030
brute R-tree 0.0015

quadtree 0.0060

0.0044
SbMBR tree 0.0032
brute R-tree 0.0017

quadtree 0.0080

0.0041
SbMBR tree 0.0042
brute R-tree 0.0021

quadtree 0.0100

0.0038
SbMBR tree 0.0056
brute R-tree 0.0028

quadtree 0.0140

0.0035
SbMBR tree 0.0071
brute R-tree 0.0035

quadtree 0.0170

0.0032
SbMBR tree 0.0096
brute R-tree 0.0067

quadtree 0.0210

0.0029
SbMBR tree 0.0176
brute R-tree 0.0099

quadtree 0.0320

0.0026
SbMBR tree 0.0221
brute R-tree 0.0112

quadtree 0.0380

0.0023
SbMBR tree 0.0309
brute R-tree 0.0215

quadtree 0.0560

0.002
SbMBR tree 0.0397
brute R-tree 0.0237

quadtree 0.0750

0.0017
SbMBR tree 0.0672
brute R-tree 0.0459

quadtree 0.1040

0.0014
SbMBR tree 0.1032
brute R-tree 0.0885

quadtree 0.1600

0.0011
SbMBR tree 0.1550
brute R-tree 0.1064

quadtree 0.2550

0.0008
SbMBR tree 0.4742
brute R-tree 0.3733

quadtree 0.4500

0.0005
SbMBR tree 0.5471
brute R-tree 0.3982

quadtree 0.9880

The results of our test are shown in Figure 8 and Tables 5 and 6. The experimental
comparison results for sparse data are in Figure 8a and for dense data are in Figure 8b. For



Appl. Sci. 2023, 13, 10562 15 of 20

the brute R-tree, it can be seen via the sparse and dense data that the number of nodes of
the brute R-tree generally remains stable for different error ranges, with more nodes in the
sparse data and fewer nodes in the dense data. The quadtree has a better compression ratio
at a larger error tolerance. However, when the error tolerance becomes smaller, the number
of nodes of the quadtree immediately grows massively, far exceeding the brute R-tree and
SbMBR tree. The SbMBR tree has the best performance in sparse data, while guaranteeing
the construction speed and compression ratio in dense data. Overall, it is the most stable
and efficient.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21 
 

of the brute R-tree generally remains stable for different error ranges, with more nodes in 
the sparse data and fewer nodes in the dense data. The quadtree has a better compression 
ratio at a larger error tolerance. However, when the error tolerance becomes smaller, the 
number of nodes of the quadtree immediately grows massively, far exceeding the brute 
R-tree and SbMBR tree. The SbMBR tree has the best performance in sparse data, while 
guaranteeing the construction speed and compression ratio in dense data. Overall, it is the 
most stable and efficient. 

 
(a) 

  
(b) 

Figure 8. Comparison of nodes number under the same data. (a) Nodes number comparison of 
different methods under the same sparse data. (b) Nodes number comparison of different meth-
ods under the same dense data. 

4.5. Comparison of Peak Signal-to-Noise Ratio (PSNR) under the Same Compression Ratio 
The peak signal-to-noise ratio (PSNR) measures the difference between the original 

and compressed versions of an image or video in terms of the peak signal power and the 
amount of noise introduced during the compression process. The PSNR–compression ra-
tio curve serves as a visual tool to understand the trade-offs between compression and 

Figure 8. Comparison of nodes number under the same data. (a) Nodes number comparison of
different methods under the same sparse data. (b) Nodes number comparison of different methods
under the same dense data.

4.5. Comparison of Peak Signal-to-Noise Ratio (PSNR) under the Same Compression Ratio

The peak signal-to-noise ratio (PSNR) measures the difference between the original
and compressed versions of an image or video in terms of the peak signal power and the
amount of noise introduced during the compression process. The PSNR–compression ratio



Appl. Sci. 2023, 13, 10562 16 of 20

curve serves as a visual tool to understand the trade-offs between compression and quality
in a compression algorithm and to evaluate its performance compared to other algorithms.

PSNR can be defined as follows:

PSNR = 10 · log10

(
(m− n)2

e

)
(14)

where m means the max value in the data set, n means the min value in the dataset, and e
means the mean-square error between the compressed data and the origin data.

Figure 9 shows the comparison results between methods based on the SbMBR tree,
quadtree, and brute R-tree. The meanings of Test 1, Test 2, Test 3, and Test 4 are described
in detail in Section 4.1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

quality in a compression algorithm and to evaluate its performance compared to other 
algorithms. 

PSNR can be defined as follows: 

( ) − ⋅
 
 

=
2

10log10
m n

e
PSNR  (14) 

where m means the max value in the data set, n means the min value in the dataset, and e 
means the mean-square error between the compressed data and the origin data. 

Figure 9 shows the comparison results between methods based on the SbMBR tree, 
quadtree, and brute R-tree. The meanings of Test 1, Test 2, Test 3, and Test 4 are described 
in detail in Section 4.1. 

  
(a) Test 1 (b) Test 3 

  
(c) Test 2 (d) Test 4 

Figure 9. Comparison of PSNR–compression ratio curve between methods based on SbMBR tree, 
quadtree, and brute R-tree. 

The data used in Test 1 and Test 3 are dense, while the data used in Test 2 and Test 4 
are sparse. In sparse data, the method based on the SbMBR tree is generally superior to 
the method based on quadtree and brute R-tree. And in dense data, the method based on 
the SbMBR tree is generally superior to the method based on quadtree, but inferior to the 
method based on brute R-tree. 

  

Figure 9. Comparison of PSNR–compression ratio curve between methods based on SbMBR tree,
quadtree, and brute R-tree.

The data used in Test 1 and Test 3 are dense, while the data used in Test 2 and Test 4
are sparse. In sparse data, the method based on the SbMBR tree is generally superior to
the method based on quadtree and brute R-tree. And in dense data, the method based on
the SbMBR tree is generally superior to the method based on quadtree, but inferior to the
method based on brute R-tree.

4.6. Case Study of Using SbMBR Tree in Data Analysis

To demonstrate the effectiveness of the error control method, we provided a case
study where the SbMBR tree is applied in a typical data analysis scenario. The typical data
we used is the precipitation in January, February, March, and April from 2017 to 2019 in



Appl. Sci. 2023, 13, 10562 17 of 20

WorldClim version 2.1 climate data for 1970–2000 [34]. In this section, we always regard the
compressed data of the precipitation in January, February, and March as the model input,
and the precipitation in April as the model output.

4.6.1. Results of Error Estimations

We used the SbMBR tree algorithm and JPEG algorithm with different parameters to
compress the precipitation in January, February, and March. Then, we used the error estima-
tion method mentioned in Section 3.3 to calculate the normalized mutual information. The
result is shown in Figure 10 in the form of the normalized mutual information–compression
ratio curve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 21 
 

4.6. Case Study of Using SbMBR Tree in Data Analysis 
To demonstrate the effectiveness of the error control method, we provided a case 

study where the SbMBR tree is applied in a typical data analysis scenario. The typical data 
we used is the precipitation in January, February, March, and April from 2017 to 2019 in 
WorldClim version 2.1 climate data for 1970–2000 [34]. In this section, we always regard 
the compressed data of the precipitation in January, February, and March as the model 
input, and the precipitation in April as the model output.  

4.6.1. Results of Error Estimations 
We used the SbMBR tree algorithm and JPEG algorithm with different parameters to 

compress the precipitation in January, February, and March. Then, we used the error es-
timation method mentioned in Section 3.3 to calculate the normalized mutual information. 
The result is shown in Figure 10 in the form of the normalized mutual information–com-
pression ratio curve. 

 
Figure 10. Comparison of SbMBR tree and JPEG algorithm through normalized mutual information. 

From Figure 10, it can be concluded that with the compression ratio decreasing, the 
mutual dependence between compressed data and real data decreases, which means a 
low compression ratio leads to high error. In addition, using the SbMBR tree will result in 
higher similarity than using the JPEG algorithm at the same compression ratio. 

4.6.2. Validation of Error Estimation Method 
To further validate our error estimation method, we used the ConvLSTM [35] model 

to predict the precipitation in April by the precipitation after compression in January, Feb-
ruary, and March. The parameters of the ConvLSTM model are shown in Table 7. 

Firstly, we used the SbMBR tree algorithm and JPEG algorithm, respectively, to com-
press the data of the precipitation in January, February, March, and April in 2017, 2018, 
and 2019. 

Secondly, we spitted the rasterized data into many 216 × 216 submatrices. Then, we 
used the precipitation in January, February, and March as the input and used the com-
pressed precipitation in April as the output to train with the ConvLSTM model. 

We simply defined 1-error  as follows: 

 −
 =
 +
 

1- org

org

x x
error avg

x p
 (15) 

Figure 10. Comparison of SbMBR tree and JPEG algorithm through normalized mutual information.

From Figure 10, it can be concluded that with the compression ratio decreasing, the
mutual dependence between compressed data and real data decreases, which means a
low compression ratio leads to high error. In addition, using the SbMBR tree will result in
higher similarity than using the JPEG algorithm at the same compression ratio.

4.6.2. Validation of Error Estimation Method

To further validate our error estimation method, we used the ConvLSTM [35] model to
predict the precipitation in April by the precipitation after compression in January, February,
and March. The parameters of the ConvLSTM model are shown in Table 7.

Table 7. Params used in ConvLSTM.

Param Name Value

Convolution kernel 3 × 3
Number of Convolutional layers 4

Number of nodes per layer {1,16,32,64}
Optimizer AdamW

Loss Function L1Loss

Firstly, we used the SbMBR tree algorithm and JPEG algorithm, respectively, to com-
press the data of the precipitation in January, February, March, and April in 2017, 2018,
and 2019.

Secondly, we spitted the rasterized data into many 216 × 216 submatrices. Then,
we used the precipitation in January, February, and March as the input and used the
compressed precipitation in April as the output to train with the ConvLSTM model.



Appl. Sci. 2023, 13, 10562 18 of 20

We simply defined 1− error as follows:

1− error = avg

(∣∣x− xorg
∣∣

xorg + p

)
(15)

where xorg is the original data, x is the compressed data, p is a small constant number used
to avoid xorg + p = 0, and avg is the average value function.

After training, we obtained the predicted data from the compressed input. Then, we
calculated the 1− error mentioned above for all the inputs. The result is shown in Figure 11
in the form of the 1− error–compression ratio curve.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 21 
 

where orgx  is the original data, x  is the compressed data, p  is a small constant num-

ber used to avoid + = 0orgx p , and avg  is the average value function. 

Table 7. Params used in ConvLSTM. 

Param Name Value 
Convolution kernel 3 × 3 

Number of Convolutional layers 4 
Number of nodes per layer {1,16,32,64} 

Optimizer AdamW 
Loss Function L1Loss 

After training, we obtained the predicted data from the compressed input. Then, we 
calculated the 1-error  mentioned above for all the inputs. The result is shown in Figure 
11 in the form of the 1-error–compression ratio curve. 

 
Figure 11. Comparison of SbMBR tree algorithm and JPEG algorithm through by 1-error. 

From Figure 11, it can be concluded that with the compression ratio growing, the 1–
error between compressed data and real data increases, which is consistent with the result 
in Section 4.6.1. In addition, the curve of the SbMBR tree is overall above the curve of 
JPEG, which is also consistent with the result in Section 4.6.1. 

To sum up, our error estimation method is effective on these meteorological data, 
and our compression method performs better than the JPEG algorithm on these meteoro-
logical data. 

5. Conclusions 
In this paper, we propose the SbMBR tree, a novel indexing and error-bounded lossy 

compression method for spatiotemporal data. The proposed method hierarchically di-
vides the data space into several MBRs through Hilbert curves and builds an indexing 
structure on this basis. The range query algorithm in the SbMBR tree is also presented. 
For cross-domain data mining and analysis scenarios, mutual information is used to esti-
mate information loss. We evaluate the performance of our proposed methods on three of 
the most important aspects, including computational efficiency, compression ratio, and 
data utility. The results are compared with some of the typical indexing and compression 

Figure 11. Comparison of SbMBR tree algorithm and JPEG algorithm through by 1− error.

From Figure 11, it can be concluded that with the compression ratio growing, the
1–error between compressed data and real data increases, which is consistent with the
result in Section 4.6.1. In addition, the curve of the SbMBR tree is overall above the curve
of JPEG, which is also consistent with the result in Section 4.6.1.

To sum up, our error estimation method is effective on these meteorological data, and
our compression method performs better than the JPEG algorithm on these meteorologi-
cal data.

5. Conclusions

In this paper, we propose the SbMBR tree, a novel indexing and error-bounded lossy
compression method for spatiotemporal data. The proposed method hierarchically divides
the data space into several MBRs through Hilbert curves and builds an indexing structure on
this basis. The range query algorithm in the SbMBR tree is also presented. For cross-domain
data mining and analysis scenarios, mutual information is used to estimate information
loss. We evaluate the performance of our proposed methods on three of the most important
aspects, including computational efficiency, compression ratio, and data utility. The results
are compared with some of the typical indexing and compression algorithms, and the
summaries are: (1) the loss control mechanism is unique among existing tree-indexed
lossy compression algorithms; (2) the compression algorithm based on the SbMBR tree has
slightly better compression performance compared to the quadtree and JPEG algorithms;
(3) the overall efficiency of the building and querying SbMBR trees is slightly better than that
of quadtree and brute R-tree; (4) the error estimation method based on mutual information
proposed in this paper is consistent with the real error. Overall, our results are promising
in that the SbMBR tree might be more efficient if it is applied to data sets that contain larger
spatiotemporal regions with high local similarities.



Appl. Sci. 2023, 13, 10562 19 of 20

Author Contributions: Conceptualization, B.S.; Methodology, R.G.; Validation, X.Z.; Formal analysis,
R.G. and X.P.; Investigation, Z.W.; Data curation, R.G., Z.W., X.P. and R.Z.; Writing—original draft,
R.G. and Z.W.; Writing—review & editing, B.S.; Supervision, X.Z.; Project administration, B.S. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to National Key Research and Development Program
of China (International Technology Cooperation Project No.2021YFE014400) and the National Science
Foundation of China (No.42175194) for funding this work.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Foster, I.; Ainsworth, M.; Allen, B.; Bessac, J.; Cappello, F.; Choi, J.Y.; Constantinescu, E.; Davis, P.E.; Di, S.; Di, W.; et al. Computing

Just What You Need: Online Data Analysis and Reduction at Extreme Scales. In Proceedings of the European Conference on
Parallel Processing (Euro-Par 2017), Jaipur, India, 23 June 2017; pp. 3–19.

2. Lee, J.-G.; Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2015, 2, 74–81. [CrossRef]
3. Huo, H.; Long, P.; Vitter, J.S. Practical High-Order Entropy-Compressed Text Self-Indexing. IEEE Trans. Knowl. Data Eng. 2023, 35,

2943–2960. [CrossRef]
4. Ghosh, S.; Eldawy, A. AID*: A Spatial Index for Visual Exploration of Geo-Spatial Data. IEEE Trans. Knowl. Data Eng. 2022, 34,

3569–3582. [CrossRef]
5. Kim, M.; Liu, L.; Choi, W. Multi-GPU Efficient Indexing for Maximizing Parallelism of High Dimensional Range Query Services.

IEEE Trans. Serv. Comput. 2022, 15, 2910–2924. [CrossRef]
6. Andrés, F.-R.; Eduardo, R.-M.; Carlos, A.-C.; Fidel, L.-S. Image Retrieval System based on a Binary Auto-Encoder and a

Convolutional Neural Network. IEEE Lat. Am. Trans. 2020, 18, 1925–1932. [CrossRef]
7. Moon, A.; Kim, J.; Zhang, J.; Son, S.W. Lossy compression on IoT big data by exploiting spatiotemporal correlation. In Proceedings

of the 2017 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA USA, 12–14 September 2017; IEEE:
Piscataway, NJ, USA, 2017.

8. Jo, B.; Jung, S. Quadrant-based minimum bounding rectangle-tree indexing method for similarity queries over big spatial data in
HBase. Sensors 2018, 18, 3032. [CrossRef] [PubMed]

9. Error-controlled lossy compression optimized for high compression ratios of scientific datasets. In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; IEEE: Piscataway, NJ, USA, 2018.

10. Wang, Z.; Guan, R.; Pan, X.; Song, B.; Zhang, X.; Tian, Y. Efficient Spatiotemporal Big Data Indexing Algorithm with Loss Control.
In Proceedings of the International Conference on Big Data and Security, Osaka, Japan, 17–20 December 2022; Springer Nature:
Singapore, 2022; pp. 524–533.

11. Ainsworth, M.; Tugluk, O.; Whitney, B.; Klasky, S. Multilevel techniques for compression and reduction of scientific data—The
univariate case. Comput. Vis. Sci. 2018, 19, 65–76. [CrossRef]

12. Lindstrom, P. Fixed-Rate Compressed Floating-Point Arrays. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2674–2683. [CrossRef]
[PubMed]

13. Jain, A.K. Image data compression: A review. Proc. IEEE 1981, 69, 349–389. [CrossRef]
14. Huffman, D.A. A method for the construction of minimum-redundancy codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
15. Al-Ani, M.S.; Awad, F.H. The JPEG image compression algorithm. Int. J. Adv. Eng. Technol. 2013, 6, 1055–1062.
16. Li, J.; Takala, J.; Gabbouj, M.; Chen, H. A detection algorithm for zero-quantized DCT coefficients in JPEG. In Proceedings of the

2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008;
IEEE: Piscataway, NJ, USA, 2008.

17. Kumar, B.; Thakur, K.; Sinha, G.R. Performance evaluation of JPEG image compression using symbol reduction technique. In
Proceedings of the First International Conference on Information Technology Convergence and Services (ITCS 2012), Bangalore,
India, 3–4 January 2012.

18. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [CrossRef]
19. Oswal, S.; Singh, A.; Kumari, K. Deflate compression algorithm. Int. J. Eng. Res. Gen. Sci. 2016, 4, 430–436.
20. Gailly, J.L. GNU Gzip. Available online: https://www.gnu.org/software/gzip/gzip.html (accessed on 2 July 2023).
21. Oberhumer, M.F.X.J. LZO-a Real-Time Data Compression Library. 2008. Available online: http://www.oberhumer.com/

opensource/lzo/ (accessed on 2 July 2023).
22. Lee, K. LZ4 Compression and Improving Boot Time; LinuxCon: Tokyo, Japan, 2013.

https://doi.org/10.1016/j.bdr.2015.01.003
https://doi.org/10.1109/TKDE.2021.3114401
https://doi.org/10.1109/TKDE.2020.3026657
https://doi.org/10.1109/TSC.2021.3079580
https://doi.org/10.1109/TLA.2020.9398634
https://doi.org/10.3390/s18093032
https://www.ncbi.nlm.nih.gov/pubmed/30201942
https://doi.org/10.1007/s00791-018-00303-9
https://doi.org/10.1109/TVCG.2014.2346458
https://www.ncbi.nlm.nih.gov/pubmed/26356981
https://doi.org/10.1109/PROC.1981.11971
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/TIT.1977.1055714
https://www.gnu.org/software/gzip/gzip.html
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/


Appl. Sci. 2023, 13, 10562 20 of 20

23. Mogul, J.C.; Douglis, F.; Feldmann, A.; Krishnamurthy, B. Potential benefits of delta encoding and data compression for HTTP. In
Proceedings of the ACM SIGCOMM’97 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, New York, NY, USA, 14–18 September 1997; pp. 181–194.

24. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, Boston, MA, USA, 18–21 June 1984.

25. Beckmann, N.; Kriegel, H.P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and
rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, USA,
23–25 May 1990.

26. Kamel, I.; Faloutsos, C. Parallel R-trees. ACM SIGMOD Rec. 1992, 21, 195–204. [CrossRef]
27. Kamel, I.; Faloutsos, C. Hilbert R-tree: An improved R-tree using fractals. In Proceedings of the VLDB Conference, Santiago,

Chile, 12–15 September 1994.
28. White, D.A.; Jain, R. Similarity indexing with the SS-tree. In Proceedings of the Twelfth International Conference on Data

Engineering, New Orleans, LO, USA, 26 February–1 March 1996; IEEE: Piscataway, NJ, USA, 1996.
29. Kumar, A.A.; Makur, A. Lossy compression of encrypted image by compressive sensing technique. In Proceedings of the

TENCON 2009-2009 IEEE Region 10 Conference, Singapore, 23–26 November 2009; IEEE: Piscataway, NJ, USA, 2009.
30. Xia, J.; Huang, S.; Zhang, S.; Li, X.; Lyu, J.; Xiu, W.; Tu, W. DAPR-tree: A distributed spatial data indexing scheme with data access

patterns to support Digital Earth initiatives. Int. J. Digit. Earth 2020, 13, 1656–1671. [CrossRef]
31. Griffiths, J.G. An algorithm for displaying a class of space-filling curves. Softw.-Pract. Exp. 1986, 16, 403–411. [CrossRef]
32. Moon, B.; Jagadish, H.V.; Faloutsos, C.; Saltz, J.H. Analysis of the clustering properties of the Hilbert space-filling curve. IEEE

Trans. Knowl. Data Eng. 2001, 13, 124–141. [CrossRef]
33. Baker, A.H.; Xu, H.; Dennis, J.M.; Levy, N.; Nychka, D.; Mickelson, S.A.; Edwards, J.; Vertenstein, M.; Wegener, A. A methodology

for evaluating the impact of data compression on climate simulation data. In Proceedings of the 23rd International Symposium
on High-Performance Parallel and Distributed Computing HPDC’14, Vancouver, BC, Canada, 23–27 June 2014; pp. 203–214.

34. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37,
4302–4315. [CrossRef]

35. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/141484.130315
https://doi.org/10.1080/17538947.2020.1778804
https://doi.org/10.1002/spe.4380160503
https://doi.org/10.1109/69.908985
https://doi.org/10.1002/joc.5086

	Introduction 
	Related Work 
	Data Compression Methods 
	Tree-Based Data Indexing Methods 

	Proposed Methodology 
	Structure of SbMBR Tree 
	Construct MBRs with Hilbert Curve 
	Indexing Algorithm 
	Error Estimation Method for Data Analysis 
	Mutual Information 
	Normalization 

	Complexity Analysis 

	Experimentation and Results 
	Experimental Setup 
	Visualization of Compression Results 
	Comparison of Index Construction and Data Query Efficiency 
	Comparison of Compression Ratio and Nodes Number 
	Comparison of Peak Signal-to-Noise Ratio (PSNR) under the Same Compression Ratio 
	Case Study of Using SbMBR Tree in Data Analysis 
	Results of Error Estimations 
	Validation of Error Estimation Method 


	Conclusions 
	References

