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Abstract: A new 3D mesoscale computational approach to simulate the mechanical behavior of
soil–rock mixtures (SRMs) with the consideration of the grain-crushing process is proposed in
this study. The proposed approach adopts a random SRM mesostructure generation algorithm
to create a random SRM structure. Based on the generated mesostructure, the whole simulation
area is divided into discrete cubic numbers, and the mesostructure is transformed into a material
distribution matrix as an input for the computational approach. The computational approach is
achieved by the coupling calculation of Matlab and COMSOL. Theimulations are presented alongside
experimental data to validate the efficiency of the proposed approach. The simulation results indicate
that the proposed computational approach can accurately capture the mechanical behavior of SRMs
under loadings. This method helps to predict the physical properties of SRMs and has promising
applications in engineering.

Keywords: soil–rock mixture; mesostructure; grain crushing

1. Introduction

The deformation and deterioration of soil–rock mixtures (SRMs) are frequently en-
countered in most geotechnical disasters such as earthquake liquefaction, slope instability,
and earth dam collapse [1]. As defined by Medley [2], the threshold of soil and rock in a
soil–rock mixture is 5% of the characteristic length. Therefore, understanding the behavior
of soil–rock mixtures aids in the study of disaster early warnings such as landslides and
debris flows.

The first difficulty of studying the behavior of SRMs is to characterize the random
geometry feature in different engineering practices. Due to differences in geological activity,
the SRMs in different engineering practices have differences in their particle distributions,
shapes, and placement angles. In most recent studies, the geometry features of SRMs
have been characterized in two different ways. The first method is to use digital image
processing (DIP) methods in SRM structures captured by a high-resolution camera (2D
images) or X-ray CT (3D images). For example, Xu et al. [3] used the DIP method in their
captured images and reconstructed the mesostructures of SRMs. Based on the reconstructed
mesostructures, Xu simulated the mechanical behavior of the SRMs from a digital image
by using the finite element method (FEM). Similar to Xu, Meng et al. [4] used a DIP-based
discrete element method (DEM) to analyze the heterogeneous geomaterials of SRMs. The
second method of characterizing the geometry is to generate a random mesostructure of
SRMs with similar statistic geometry parameters, such as gradation and fractal dimension.
Xu developed random generation algorithms for the mesostructures of both 2D [5] and
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3D [6] SRMs. Xu’s approach involves growing new tetrahedrons on a hexahedron base;
therefore, it is suitable to generate angular rock particles. Meng [7] et al. developed a
different method that randomly picks vertices within a spherical domain to generate rock
particles, which is efficient in producing rounded rock particles. Li [8] integrated Xu and
Meng’s method and developed a new method that generates the mesostructures of SRMs
using their gradation and particle shape proportion.

The second challenge of investigating the behavior of SRMs is introducing the degra-
dation process of large grains under compression or shear loadings. A considerable amount
of the literature has revealed that the degradation process associated with loading-induced
grain crushing affects the macroscopic mechanical behavior of SRMs [9,10]. For example,
Li et al. [11] performed an in situ direct shear test on the soil–rock mixtures in the three
gorges reservoir area in China. The direct shear test showed that the grain breakage in SRMs
has a significant influence on the shear strength of SRMs. Similar conclusions have been
drawn by many other in situ or laboratory tests [12–15]. To account for the degradation
process of the large grains (or rock particles), several attempts have been made to develop
a constitutive model of SRMs. For example, Daouadji et al. [10] proposed an elastoplastic
model for grain materials that takes into account grain breakage. Cecconi et al. [9] devel-
oped a constitutive model for pyroclastic soil that considers the grain crushing process
under loading of the large particles. Zhang et al. [16] developed a viscoelastic model for
multi-layered coarse-grained soil that considers the interface-layer effect of SRMs. However,
these constitutive models are all theoretic models based on the homogenization assumption
and cannot be applied in the mesoscopic geometry models. Very few studies are avail-
able for considering the degradation process of large particles in a mesoscopic geometry
simulation.

Most of the studies that have been published so far about the mesoscale simulation of
SRMs suffer from lacking consideration of grain crushing during the loading process. For
example, Meng et al. [17] developed a mesoscale computational model based on the finite
element method (FEM). However, this study failed to characterize the degradation process
of rock particles. Xu et al. [18] developed a 3D random mesostructure modeling system of
SRMs based on the discrete element method (DEM). This study adopted a non-overlapping
combination method to model convex polyhedron rock blocks for DEM numerical simula-
tion. However, this study did not consider grain breakage either. Shan et al. [19] developed
a 2D model of SRMs based on the DEM and could not account for the grain-crushing
process of large particles.

This paper aims to develop a mesoscale computational approach that considers
the degradation process of large particles in a randomly generated three-dimensional
mesostructure of SRMs. Firstly, the generation algorithm of the random mesostructures
of SRMs was briefly introduced. Then, the details of the mesoscale computational ap-
proach, including the Matlab-COMSOL coupled simulation method, constitutive model,
and degradation process were established. Finally, the mesoscale computational approach
was verified based on several trial simulations.

2. Generation Algorithm of Random Soil–Rock Mixtures

The first step of the proposed mesoscale computational approach is to generate an
appropriate 3D geometry model that can capture the significant features of SRMs. In most
of the SRM simulation studies, a geometry model of SRMs can be generated in two ways.
The first method is to capture the real geometry shapes of SRMs from in situ samples
based on the DIP method. This method can capture all of the geometry features of in situ
samples; however, it is time-consuming and difficult to extrapolate the existing geometry
to other shapes with different gradations. The second method is to randomly generate an
SRM model with different shapes of rock particles. This method requires the generation
algorithm to capture most of the geometry features of the natural SRM materials such as the
gradation curve, shape of the rock particles, and fractal dimensions. In most SRM geometry
generation studies, only the gradation of rock particles was considered. However, an
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analysis of particle shapes indicated that the shape of rock particles has a significant effect
on the mechanical properties of SRMs [20–22]. In this study, a novel algorithm that can
randomly generate SRM geometry models with different gradations, fractal dimensions,
and particle shapes was adopted.

2.1. General Generation Algorithm

The adopted method used the Monte Carlo method to generate the SRM structure.
The first step of generating a mesoscale structure of a SRM is to assign target geometry
parameters for the generated model. These geometry parameters include gradation, fractal
dimension, and content of different particle shapes. The adopted algorithm can generate
both rounded grains and angular grains. Once the target parameters are obtained, the
second step is dividing the gradation curve into several groups. For each group, different
numbers of rounded particles and angular particles were generated until the volume
content met the gradation curve. Each generated particle was randomly rotated and placed
in a random location before collision detection with the existing structure that had been
generated. If a randomly rotated and placed particle intersects with the existing structure,
the particle will be rotated with another random angle and placed in a new random location,
then perform collision detection again until there is no intersection between the new particle
and the existing generated structure. A flowchart detailing the generation of the SRM
algorithm is shown in Figure 1. More details about generating a single grain and collision
detection are introduced in the following section.
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2.2. Generation of Single Rock Particle

As introduced in the previous section, the adopted algorithm can generate rock parti-
cles with two different shapes based on the given size: rounded and angular. Examples of
the generating of rounded and angular rock particles are shown in Figures 2 and 3. For
both rounded and angular rock particles, the first step of generating a single rock particle
is to generate a sphere boundary with the given particle size. No vertex or edge during
the generation process was allowed to exceed the sphere boundary. Based on the sphere
boundary, two antipodal points, A and B, were selected as the first two vertices of the
generated particle. The distance between two antipodal points was the diameter of the
sphere. With this method, the size of the generated particle could be controlled.
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To generate a rounded particle, the next step is to select several random tangential
sections that are perpendicular to the line segment connecting A and B. Then, several
random vertices are selected inside of each tangential section. The last step is to connect
the two antipodal points with the generated vertices.

To generate an angular rock particle, the second step is randomly selecting two vertices
inside of the sphere boundary, shown as vertexes C and D in Figure 3. Vertexes A, B, C, and
D can be connected to form a tetrahedron. After generating the first tetrahedron, the area of
each face is calculated. Once the area of each face is larger than the pre-defined threshold,
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a new random vertex (represented as vertex E in Figure 3) will be selected to form a new
tetrahedron. The final step is to combine all of the tetrahedrons into a new geometrical
object. More details about generating the rounded and angular particles can be found in
our previous studies [8].

2.3. Grain Placement and Collection Detection

After generating a single rock particle, the generated particle needs to be rotated at a
random angle and placed in a random location. The coordinates of each vertex could be
transferred by the following equation:

(x1, y1, z1) = (x0, y0, z0)

cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

1 0 0
0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)


+(r1L, r2W, r3H)

(1)

where (x0, y0, z0) are the initial coordinates of the vertex, (x1, y1, z1) are the transformed
coordinates; α, β, and γ are random angles ranging from 0 to 360 degrees; r1, r2, and r3 are
random constants ranging from 0 to 1; L, W, and H are the length, width, and height of the
generation area, respectively. Connecting the vertices after the transformation can transfer
the original rock particle into a new location with a random angle.

The collision detection method adopted in the generation method is the Gilbert–
Johnson–Keerthi (GJK) algorithm. The GJK algorithm is a widely used collision-detection
algorithm for convex shapes in computer graphics. More details about the principle and
steps of the GJK method can be found in related studies [8,23].

3. Mesoscale Simulation of Soil Rock Mixtures

The second step of the mesoscale approach is to import the generated mesostructure
of an SRM into a numerical simulation platform. For most of the related studies, the
generated SRM mesostructure was imported directly into the simulation software COMSOL
Multiphysics 5.6 as the geometry model. However, this method has two drawbacks. Firstly,
the generated SRM structure is usually composed of numerous differently shaped and
sized polyhedrons, which can easily cause difficulties in mesh generation. Secondly, once
the geometry structure of the SRM is determined, it is difficult to achieve the boundary
destruction and breakage of large particles during the numerical simulation process. In this
study, the generated SRM mesostructure was not imported into the numerical simulation
platform in the form of geometric boundaries but in the form of a material distribution
matrix. Based on the generated mesostructure, the whole simulation area was divided into
discrete cubic numbers, and the mesostructure was transformed into a material distribution
matrix as an input for the computational approach. The details of the material distribution
matrix are introduced in the following section.

3.1. Area Discretization and Material Distribution Matrix Calculation

After generating the SRM mesostructure, the whole simulation area is divided into
numbers of the cubic area with the same size. The location of each cubic area could be
represented by its coordinates in the x, y, and z axess, and the information of each cubic
area could be stored in a three-dimensional matrix, i.e., the material distribution matrix.
Then, collision detection will be performed between each cubic area and the generated
SRM mesostructure through the GJK algorithm. If the SRM structure intersects with
the cubic area, then the cubic area will be represented as 1 in the material distribution
matrix, otherwise the cubic area will be represented as 0 in the material distribution matrix.
During the computational approach, if a rock element is damaged into a soil element, then
the corresponding value in the matrix will change from 1 to 0. An example of the area
discretization is shown in Figure 4. In Figure 4, the generated rock particle is shown as the
red area, and the cubic area which intersects with the generated rock particle is shown as
the green area. The cubic area which does not intersect with the rock particle is shown as the
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white area. The smaller the size of the cube, the higher the resolution of the discretization,
and the more accurate the material distribution matrix will be.
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distribution matrix could be calculated based on the following equation:

→
E =

→
n ·Esoil +
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M·(Erock − Esoil) (2)

where
→
E is the Young’s modulus distribution matrix,

→
n is a matrix in which all elements

are 1,
→
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→
E ,
→
n , and

→
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Figure 5 shows an example of three generated SRM structures before and after the

discretization process. The diameters of the three models are all 0.5 m, and the height is 1m.
The resolution during the discretization is 0.002 m; therefore, the whole computation area
was divided into 250 × 250 × 500 = 31,250,000 elements.

3.2. Implementation of the Mesoscale Computational Approach

Based on the generated random SRM structure, the mesoscale computational approach
can be performed by using the coupling calculation of COMSOL Multiphysics and Mat-
lab. In this study, the SRM mesostructure generation, material discretization, material
degradation, and material distribution matrix updates were performed by Matlab. The
establishment of the initial condition and boundary condition, constitutive model, and
calculation of stress and strain was performed by COMSOL. The coupling computation
of Matlab and COMSOL was realized through the COMSOL livelink for Matlab. The
communication between the two softwares was achieved through a generated txt file.
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The general flowchart of the mesoscale computational approach is shown in Figure 6.
To realize the initial parameters, a set of values of the gradation curve, volume content
with different particle shapes, and fractal dimension is assigned to generate a random SRM
structure. At the same time, the material discretization resolution and element number N of
the whole simulation area is determined. The damage criterion and degradation rule are pre-
defined as well in Matlab. In this study, the maximum tensile stress criterion (Equation (3))
and the Mohr–Coulomb criterion (Equation (4)) were chosen to determine whether the
element is damaged.

F1 = −σ3 − σt0 = 0 (3)

F2 = σ1 − σ3
1 + sin ϕ

1− sinϕ
− σc0 = 0 (4)

where σ1 and σ3 are the maximum and minimum principal stress, σt0 and σc0 are the uniax-
ial tensile strength and uniaxial compressive strength, and ϕ is the internal friction angle.

The constitutive model, initial condition, and boundary condition were selected in
COMSOL. To save computational resources and improve computational efficiency, a lin-
ear elastic model was used in this study. At the same time, the geometry model and
computational mesh were established in the initialization process.

Then, a random SRM mesostructure was generated by the algorithm mentioned above.
After that, the whole computational area was discretized into numbers of cubic areas, and
a material distribution matrix was generated based on collision detection.

Based on the material distribution matrix, geometry model, initial condition, and
boundary condition, a loop calculation was performed. For each loop, the maximum and
minimum principal stress, σ1 and σ3, and maximum and minimum principal strain, ε1 and
ε3, were calculated and outputted as txt files by COMSOL. Then, the damage criterion was
used to locate the damaged element. All damaged rock elements were transformed into
soil elements, and the degradation law was used to reduce the modulus and strength of
the damaged element. The material distribution matrix was updated after the degradation
process. At the end of each loop computation, the calculation results were checked to
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determine whether the precision requirement was satisfied. If the requirements were met,
the loop calculation would end. Otherwise, a new time step was added, and the loop
calculation was performed again.
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However, it should be noted that, due to the inherent limitation of the proposed
method, this method cannot simulate the contact behavior of soil matrix and rock particles,
which might induce errors during the simulation.

4. Model Validation and Parametric Study

To validate the proposed mesoscale computational approach, a numerical simulation
of a uniaxial compressive test and a triaxial compressive test was performed. The simulation
of the uniaxial compressive test is used to show the evolution of the SRM under loading,
and the simulation of the triaxial compressive test is used to compare our model results
with previous published experimental results.

For the simulation of the uniaxial compressive test, a numerical model with a diameter
of 0.05 m and a height of 0.1 m was established. The rock content of the generated SRM
structure was set as 15%. The Young’s modulus of the rock particles and soil matrix
was assumed as 3000 MPa and 50 MPa, respectively. The maximum tensile strength and
the maximum compressive strength of the rock particles were set as 8 MPa and 90 MPa,
respectively. The internal friction angle of the rock particles and soil matrix was set as 50◦

and 25◦, respectively, and the cohesion of the soil matrix was set as 100 kPa.
For the simulation of the uniaxial compressive test, the elements on the top and bottom

of the sample were fixed in the vertical direction but could move freely in the horizontal
direction. The simulations assumed a loading displacement increment of 0.005 m/step.
The evolution of the soil–rock distribution, von Mises stress, and accumulated damage are
shown in Figure 7. Figure 7 shows that the proposed mesoscale computational approach
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captured the breakage of rock particles during the uniaxial compressive test. The results
show that, in the SRM structure, the rock particles bear the majority of the load, and the
stress concentration phenomenon is observed at the edge of the rock particles. Due to the
stress concentration, large rock particles break down into several smaller rock particles,
and the stress is redistributed. In addition, the damage process of the soil matrix is also
defined in the simulation of the uniaxial compressive test. Once a soil element is damaged,
it will deteriorate and become a weaker element with a smaller Young’s modulus.
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uniaxial compressive strength.

A simulation of a triaxial compressive test was performed to validate the proposed
computational approach. The experimental results of a SRM sample with rock contents
of 30% were used to validate the simulation field [24]. Samples with a diameter of 0.1 m
and height of 0.2 m were used in the triaxial compressive test. The triaxial compression
test was conducted at three different confining pressures, namely 100 kPa, 200 kPa, and
300 kPa. In the simulation, the size of the model was adjusted to the same size as the
experimental samples. Because the mechanical properties such as the Young’s modulus,
friction angle, and internal cohesion of rock particles and soil matrix are not mentioned in
the reference, the mechanical properties used in the simulation were calibrated by trial and
error. The stress–strain curves from the numerical simulation and experiment are presented
in Figure 8. The simulated stress–strain curve is in good agreement with the experimental
stress–strain curve under different confining loadings. In addition, compared with the
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experimental results, the stress–strain curve of the numerical simulation shows oscillatory
behavior, which is due to the redistribution of stress caused by the breakage of the rock
particles under loading.
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In summary, the numerical simulation results of the uniaxial and triaxial tests indi-
cated that the proposed mesoscale computational approach could capture the mechanical
behavior of SRMs and characterize the grain-crushing process of SRMs under loadings.

5. Conclusions

In this paper, a mesoscale computational approach for SRMs with the consideration of
the breakage of rock particles is proposed. The proposed computational approach adopts
a random SRM geometry generation algorithm, which can take into account the shape
content, gradation, and fractal dimension in the generation process. Based on the generated
SRM structure, the simulation area is discretized to calculate the material distribution
matrix. The material distribution matrix is used for the coupling calculation of Matlab
and COMSOL. Using this approach, we carried out a numerical simulation of a uniaxial
compressive test and a triaxial compressive test. Based on the analysis conducted as part of
this study, the following conclusions were drawn:

1. In contrast to other related studies, the proposed computational approach in this
study not only employs randomly generated geometric models but also takes into
account the breakage of rock particles under loadings;

2. The numerical simulation results of the uniaxial compressive test show that, in the
SRM structure, the rock particles bear the majority of the load, and the stress concen-
tration phenomenon is observed at the edges of the rock particles. Due to the stress
concentration, large rock particles break down into several smaller rock particles and
the stress is redistributed;

3. The stress–strain curve of the numerical simulation is in good agreement with the
results from the experiment. This result indicates that the proposed computational
approach can accurately characterize the mechanical behavior of SRM material.
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