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Abstract: With the increasing power and speed of laser welding, in-process monitoring has become
even more crucial to ensure process stability and weld quality. Due to its low cost and installation
flexibility, acoustic process monitoring is a promising method and has demonstrated its effectiveness.
Although its feasibility has been the focus of existing studies, the temporal resolution of acoustic
emissions (AE) has not yet been addressed despite its utmost importance for realizing real-time
systems. Aiming to provide a benchmark for further development, this study investigates the
relationship between duration and informativeness of AE signals during high-power (3.5 kW) and
high-speed (12 m/min) laser beam butt welding. Specifically, the informativeness of AE signals is
evaluated based on the accuracy of detecting and quantifying joint gaps for various time windows of
signals, yielding numerical comparison. The obtained results show that signals can be shortened up
to a certain point without sacrificing their informativeness, encouraging the optimization of the signal
duration. Our results also suggest that large gaps (>0.3 mm) induce unique signal characteristics in
AE, which are clearly identifiable from 1 ms signal segments, equivalent to 0.2 mm weld seam.

Keywords: laser beam butt welding; acoustic process monitoring; nondestructive testing (NDT);
joint gap detection; temporal resolution; clustering; neighborhood components analysis (NCA)

1. Introduction

New developments in solid-state lasers have led to the availability of higher-power
laser beam sources at relatively low investment costs [1]. This extra power is often used
to increase the welding speed, resulting in a significant improvement in economic effi-
ciency. However, while increasing the welding speed, the demands on process monitoring
methods increase as well. In this context, welding of high-alloy steels is particularly
challenging because the formation of spatter increases significantly as the welding speed
increases [2,3], especially between welding speeds of 10 m/min and 16 m/min, and the
high thermal expansion coefficient and low thermal conductivity contribute to the for-
mation of distortion [4,5]. This is particularly critical in butt weld applications, where the
thermal expansion during the melting process and the thermal contraction during the
solidification of the material create a gap between the parts to be joined. Since the gap has
a significant impact on process stability and weld quality [6], gap monitoring during the
welding process is essential for quality assurance and scrap reduction. Recent results have
shown that a critical gap can be formed in less than 1 s for welding at a welding speed of
1 m/min [7], and an increase in welding speed results in a reduction in critical gap size [8],
so a gap monitoring system for laser butt welding requires high temporal resolution and
low latency.

There exist various in-process monitoring methods to detect joint gaps for butt weld
applications, such as optical and tactile methods. However, these methods are cost-intensive
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as well as difficult to install, necessitating the usage of practice-friendly methods. Due to its
low cost and installation flexibility, acoustic process monitoring can be beneficial and has
been proven to provide weld-relevant information such as penetration depth [9,10] or heat
conduction level [11,12]. For tackling the aforementioned challenge in high-speed welding
of high-alloy steels, acoustic process monitoring has also been demonstrated to successfully
detect the spatter formation [13] and quantify the gap size in butt weld applications [14].
When it comes to real-time applications, however, it has remained unanswered whether
acoustic process monitoring is indeed feasible in real-time or not. Among the existing
studies, the reason for selecting signal duration is not clearly stated, raising the question
of whether the signals are sufficiently long or can be possibly shortened. In short, the
temporal resolution of acoustic process emissions for providing weld-relevant information
has not yet been addressed. Undoubtedly, the temporal resolution varies depending on the
type of information. Hence, this work focuses on the application of gap detection in laser
beam butt welding configuration, aiming to answer this question.

Upon investigating its temporal resolution, however, the informativeness of signal
segments should be evaluated and desirably quantified. Since signal informativeness has
not been the focus of existing studies, no metric has been yet established. Nevertheless,
existing studies provide insights on selecting criteria for correlating acoustic emissions
with the welding process and/or weld-relevant parameters. A common approach is based
on signal energy, using raw signals [11] or denoised ones via simple filtering [9,15,16] or
wavelet [17]. There exist statistical approaches as well by combining different statistical
measures [17,18] or by computing the Rényi entropy of high-resolution time-frequency
distribution [19]. Yet, as the authors of [17–19] suggest, relying on statistical measures
alone is not sufficient for classifying different weld characteristics. On the other hand,
the emerging number of machine learning approaches [20–22] utilize signal structure,
yielding higher classification accuracy than solely based on signal energy or statistical
measures. However, the correlation of acoustic emissions and weld-relevant parameters is
imperceptible for human visual inspection [12].

Overall, existing studies indicate that the structure of signals should be considered
for properly capturing their informativeness. For this purpose, measuring similarities and
dissimilarities of signals is beneficial. This can be easily done by comparing signals with a
representative one that corresponds to a weld-relevant parameter of interest. Nonetheless,
computing or choosing a reference signal from the available data is prohibited as it is still
unclear how a change in the welding process is expressed as a form of acoustic emissions.
Furthermore, a lack of knowledge of these signals makes it also difficult to identify the
outliers, and thus, using the mean of available data as a reference may not be reliable, if not
misleading, especially when working with a limited number of samples.

Considering our interests in classifying signal segments that represent weld-relevant
parameters, handling them as a set is an effective alternative. For instance, if a signal
segment is very similar to other segments of the same class and at the same time dissimilar
to the segments of the other classes, then this particular segment can be regarded as
highly informative. In this way, the informativeness of signal segments is represented by
intraclass similarities and inter-class dissimilarities. This boils down to a cluster analysis,
and the separability of different classes indicates how collectively informative those signal
segments are. By performing classification subsequently, the inter-class separability can
be numerically evaluated based on the resulting classification accuracy. As a result, the
segment informativeness can be numerically represented. It is worth emphasizing that the
term "clustering" in this work means general cluster analysis, including both supervised
and unsupervised ones, instead of restricting it to unsupervised learning tasks.

In an attempt to examine the feasibility of real-time acoustic monitoring and controlling
systems for laser beam butt welding, this work investigates the relationship between signal
duration and its informativeness. Specifically, the informativeness regarding the presence
and size of butt joint gaps is examined for various segment durations. By identifying how
much information is available for a particular signal duration, this work aims to provide a
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benchmark that can be utilized for the experimental design of developing such real-time
systems. Here, the focus was set on the current challenge of monitoring high-power and
high-speed laser welding, and our data were obtained accordingly. The contributions of this
work are as follows: First, the informativeness of signal segments is numerically evaluated
and compared for various durations. This was achieved by clustering signal segments
that correspond to different gap sizes and running classification on the resulting clusters.
Second, the performance is also compared among two sensor types, which are structure-
borne and airborne ultrasound sensors, highlighting the advantages and drawbacks of
these two sensor types under varying segment durations. Lastly, based on the findings
from this study, further research steps are suggested to advance the realization of real-time
acoustic monitoring and control systems.

2. Materials and Methods
2.1. Specimen Configuration

The specimen configuration was selected as comparable to [14]. Two notches (0.1 mm,
0.2 mm and 0.3 mm) were machined into one of the two butt-joined metal sheets of AISI 304
(X5CrNi18-10, 1.4301) high-alloy austenitic steel with a sheet thickness of 1 mm to introduce
defined gaps (cf. Figure 1). As a result, a total of 5 separate patch sections (3 × zero gap,
2 × joint gap) could be provided for each butt joint configuration. The tolerance of the
gaps is approximately 0.06 mm, which is the same as the overall production tolerances. The
rolling direction of the sheets was identical to the welding direction.

Figure 1. Specimen configuration including patch segmentation according to [14]: (a) schematic
illustration, (b) the photograph of an exemplary pre-welding sample, (c) the photograph of an
exemplary post-welding sample. The gap size of (b,c) is 0.2 mm.

2.2. Weld and Measurement Setup

For the weld experiments, a disk laser (TruDisk 5000.75, Trumpf Laser und Systemtech-
nik GmbH, Ditzingen, Germany) with a maximum power of Pmax = 5 kW and a wavelength
of λ = 1030 nm was used. The laser source was coupled to a stationary arranged welding
optic (BEO D70, Trumpf Laser und Systemtechnik GmbH, Ditzingen, Germany) as shown
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in Figure 2. A focus spot diameter of dspot = 600 µm was selected for the experiments of
this study. The specimens were fixed in a butt-joint configuration and handled by a six-axis
robot (Kuka KR 60HA, Kuka AG, Augsburg, Germany). The weld parameters were set for
full penetration, using a laser power of PL = 3.5 kW at a welding speed of vw = 12 m/min.
For the acoustic emission (AE) signal acquisition, an in-house built airborne sound sensor
(AB) was mounted on the stationary processing head. Furthermore, two structure-borne
sound sensors were integrated into the specimen clamping, positioned at the beginning
(SB1) and the end (SB2) of the notched sheet. Technical specifications of the sensors are
given in Table 1. The airborne and structure-borne AE sensor data were captured using a
data acquisition system (Optimizer 4D, QASS GmbH, Wetter, Germany) operating with
a sampling rate of approximately 6250 kHz at a 16-bit resolution per channel. Upon mea-
surements, several test experiments were conducted to determine the optimal operating
point of the preamplifier of the data acquisition system. The cross jet was disabled during
the experiments to provide an idealized data acquisition. Each gap configuration (0.1 mm,
0.2 mm and 0.3 mm) was repeated 30 times to ensure a sufficient input for data processing.

Figure 2. Experimental setup: (a) schematic illustration and (b) actual photograph of the set up.

Table 1. Technical specifications of the used airborne and structure-borne-sound sensors.

Name Type Specifications Distance

IZFP RI-MA71RC Airborne Center frequency: 520 kHz
(AB) ultrasound Transducer diameter: 23 mm amic = 297 mm

sensor Focal point: 50 mm
QASS QWT sensors Structure borne

(SB1: at the start, ultrasound Max frequency: 100 MHz asensor = 114 mm
SB2: at the end) sensor

3. Dataset and Cluster Analysis
3.1. Signal Analysis

In this section, measurement data are briefly analyzed based on their spectrograms. A
set of exemplary results are shown in Figure 3, where two metal sheets with two 0.3 mm
gaps (Figure 1) are welded using a laser beam. For the purpose of visualization, two sensor
signals are selected: the structure-borne sensor placed at the beginning of the specimen
(SB1) and the airborne ultrasound sensor (AB). For computing the spectrograms, we used
2048 frequency bins with a window size of 2048, which is equivalent to 0.328 ms. The
window type used here is the Hanning window [23] with an overlap of 50%.
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Figure 3. Exemplary measurement results of a specimen with 0.3 mm gaps. Top row (a,b): the
spectrograms of the structure-borne sensor signal placed at the beginning of the specimen (SB1),
bottom row (c,d): the spectrograms of the airborne sensor signal (AB). For both rows, the entire
frequency range (approximately 3.125 MHz) is shown in the left column, whereas the lower frequency
range (<760 kHz) is presented in the right column. Here, the measurement data up to 1.3 s are shown
for the sake of presentation.

In general, the acoustic process emissions consist of four types of signals: signals
correlated with properly welded joints in the Zero Gap sections, signals correlated with
erroneous joints in the Gap sections, the acoustic emissions from the robotic arm movement
and the environmental noise. In this work, the former two signals are denoted as weld-
relevant signals, from which the information relevant to the welding process is attainable,
and the latter two as the ambient noise. As mentioned in Section 2.2, acoustic emissions
from a cross jet are not included in this study.

Our results in Figure 3a,b show that the weld-relevant signals are present below
400 kHz in the structure-borne sensor signal (SB1). In the airborne sensor signal (AB), the
frequency range for the same information is reduced to below 125 kHz due to attenuation in
the air (Figure 3c,d). Above those ranges, no weld-relevant signals can be visually perceived
in the spectrograms for both sensor types. However, the relevant frequency range should
be selected with care. To determine the frequency range, a significant reduction in the signal
energy of interest needs to be identified. However, such reduction cannot be identified
meaningfully without filtering out the ambient noise. It is even reported that some intrinsic
changes in the signals are not easily perceptible for visual inspections [12]. Furthermore,
weld-relevant signals were reported to be clearly observed in the frequencies above 1 MHz,
when the measurements were conducted using three different types of steels (DC04, DX51D,
and S235JR+Z) with a focus spot diameter of 600 µm and the laser power of 2 kW at the
welding speed of 1.2 m/min [16]. Unquestionably, the selection of specimen materials
and/or the measurement configurations highly affect the frequency range. Yet, these
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suggest that there may be relevant information in higher frequencies of our measurement
data, which is not visually observable in their spectrograms.

Nevertheless, visual inspection of the spectrograms can further confirm the correlation
between the acoustic process emissions and the presence of a butt-joint gap or lack thereof.
First, the signal energy is lowered within gap sections (Gap patches) for both sensor signals
than within zero gap ones (Zero Gap patches). The distribution of the RMS values, which is
equivalent to the signal energy, is provided for different gap sizes in [14]. The presence of
a large-sized gap means less availability of the material to be welded, which consequently
reduces laser-material interactions and, thus, its acoustic emissions. On top of that, the
structure-borne sensor (SB1) reveals that the frequency range is also different between the
Zero Gap and Gap patches. While the signal in the Zero Gap patches is observable up to
400 kHz, the signal in the Gap patches is in a lower frequency range below 200 kHz and more
frequency selective. Such change in the frequency range is, at least from the spectrograms,
not observable in the airborne sensor signal (AB). It is also worth highlighting that the actual
gap size in Zero Gap patches is not truly zero, and the largest gap was found to be 0.1892 mm.
The possible causes and the effects of such unintended gaps are discussed in [14], reporting
increased difficulty in distinguishing 0.1 mm Gap signals from Zero Gap ones.

When it comes to ambient noise, multiple narrow-banded signals are prominently
present in the entire frequency range. For a better understanding, only the ambient noise
was recorded. Those recordings confirm that this narrow-banded interference was always
observed when the robotic arm was moved. Since the environmental noise is innately
wide-banded, it is highly likely that the robotic arm movement causes such narrow-banded
acoustic emissions. Obviously, these multiple-band signals are harmonics of fundamental
frequencies. However, the interval seems not to be constant, which makes it difficult to
identify the fundamental frequencies. For instance, in Figure 3b two bands can be observed,
one around 30 kHz and the other one around 60 kHz, yet the third one is not around 90 kHz
but instead around 120 kHz. While the harmonics of 30 kHz are then barely observable
between 250 kHz and 500 kHz, the trace of such harmonics can be perceived again above
500 kHz. Furthermore, some of the narrow-banded interference even fluctuates over the
course of measurement, for instance, the band around 400 kHz in Figure 3b. These all
suggest that canceling out such narrow-banded interference is not a trivial task. It requires
either manual fine-tuning and selection of those bands, which needs to be repeated anew
for different measurement setups, or an adaptive filtering technique.

3.2. Dataset Preparation

Based on the specimen configuration in Section 2.1, each recording file includes five
160 ms patches as illustrated in Figure 3. This yields three Zero Gap and two Gap patches
per file. Additionally, there are parts in each file that only capture the ambient noise, as the
recording of the acoustic sensors extends beyond the period where the laser was actively
welding. For the Gap class, a further classification is possible depending on the size as
Gap 0.1 (0.1 mm gap), Gap 0.2 (0.2 mm gap) and Gap 0.3 (0.3 mm gap). This enables the
investigation of two different scenarios. Scenario I aims to investigate how the segment
duration affects the accuracy of detecting a gap. This is achieved by classifying the segments
into three classes, which are Zero Gap, Gap, and Noise. Scenario II, on the other hand, examines
the relationship between the segment duration and the accuracy of identifying the gap size,
coping with the more detailed information about the severity of weld failures. Here, the signal
segments are classified into five classes, which are Zero Gap, Gap 0.1, Gap 0.2, Gap 0.3, and
Noise.

The segments of Noise class are selected from the signal part after 1.2 s, including the
environmental noise as well as the interference from the robotic arm movement discussed in
Section 3.1. Noise segments are included for the following reasons. Noise and interference
from the environment are always present and appear as multiple narrowband signals in
the same frequency range as that of the acoustic emissions from welding, as discussed in
Figure 3. Although filtering out such interference is beyond the scope of this study, their



Appl. Sci. 2023, 13, 10548 7 of 17

impact on the informativeness of signal segments, especially when dealing with a very
short segment, is of great interest. For instance, if a Gap 0.1 segment is misclassified as a
Zero Gap segment, this still ensures that the segment contains at least some information
about the welding process. However, if the same segment is misclassified as Noise, this
implies that the weld-relevant information can no longer be extracted.

To align with the purpose of this study, some files and parts of the recording need to
be excluded, such that each signal segment corresponds to a single class regardless of its
duration. As discussed in Section 3.1, the presence of unintended large gaps in Zero Gap
patches makes the distinction between Zero Gap and small-sized Gap patches ambiguous [14].
For this reason, the recording files containing any Zero Gap patches larger than 0.07 mm
were excluded from the dataset. A summary of the file count for each gap size is provided in
Table 2. It is important to note that this study sticks to the labels based on the original specimen
configurations. However, relabeling of the data is possible, which is discussed in [14]. Another
measure was to remove the transitions between two consecutive patches from the dataset.
This is due to its extremely short and unknown duration, prohibiting it from forming its
own class with a sufficient number of samples. To ensure that no signal segments include
any transition phase, the transitions were eliminated from each recording by trimming the
beginning and end of each patch by 20 ms.

Table 2. Summary of file counts.

File Type File Count

Gap 0.1 + Zero Gap + Noise 15
Gap 0.2 + Zero Gap + Noise 22
Gap 0.3 + Zero Gap + Noise 23

3.3. Clustering Technique

A crucial step of cluster analysis is selecting a similarity metric. A similarity met-
ric determines how the available data are evaluated and placed accordingly in a given
coordinate and/or scored for clustering. Clearly, the performance of clustering highly
depends on the quality of the metric. Since general-purpose metrics such as the Euclidean
distance often fail to capture the intrinsic yet possibly not obvious features of the data of
interest, an appropriate metric needs to be selected with care [24]. For selecting a similarity
metric, which is closely related to distance metric learning, the task at hand needs to be
taken into account. Considering the interests of this study, the k-nearest neighbors (kNN)
algorithm [25] is selected as a classifier since it is non-parametric and does not require any
training, making its results directly reflect the cluster performance. Among the distance
metric learning methods specifically targeted for kNN classification, Neighborhood Com-
ponents Analysis (NCA) [26] is selected for this study as it allows the reduction of the data
dimension [24]. Dimension reduction is useful for our research, where the input data size is
much larger compared to the number of classes and possibly the size of the relevant feature
domain. In essence, NCA is a supervised Mahalonobis distance learning, which linearly
transforms the input data x ∈ RN into a suitable domain with the output y ∈ RM. NCA is
also a non-parametric method and thus does not make any assumption on data statistics or
shapes, which is also favorable for this study.

4. Results and Discussions

In this section, the informativeness of acoustic process emissions is evaluated and
compared for various durations. As previously discussed, the informativeness of signal
segments is represented by the performance of NCA cluster analysis, specifically the
separability of different classes. The class separability is assessed based on the classification
accuracy of resulting clusters, which enables numerical comparison. Since NCA requires
training to learn the optimal distance metric, the available dataset needs to be split into the
training and test sets. To mitigate the effect of such randomness on the results, this study
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conducted repeated learning-testing (RLT) validation [27], which is also known as Monte
Carlo cross-validation. This method repeats the learning-testing process where the dataset
is randomly split anew for each iteration.

4.1. Validation Setup and Parameters

For each segment duration, 50 learning-testing iterations were conducted, each of
which consists of the following four steps (Figure 4). First, the signals are segmented with
the given duration T in the time domain. After segmentation, a fixed number of segments
are randomly selected from the measurement data for training and testing. To make the
training fair, the number of segments is kept constant for both the training and the test set,
regardless of the segment duration. Without this measure, very short-duration segments
yield a much larger sample size in the training set than long-duration segments, resulting in
easier training and, thus, higher accuracy. Second, the selected segments are preprocessed
to enhance the signal structure and format them into the same data size regardless of
their duration. This is achieved by computing short-time Fourier transform (STFT) and
averaging them over time. The averaged power spectral density is then standardized such
that each has a zero mean and unit variance. Third, NCA is trained using the training
segments to learn the optimal metric. This step is equivalent to supervised clustering.
Lastly, the test segments, which are not used for training, are linearly transformed by the
trained NCA and then classified using kNN.

Figure 4. Illustration of the validation procedure. (1) Signals are segmented with the given duration T
in the time domain. (2) The segments are preprocessed in the frequency domain. (3) The preprocessed
segments are clustered via NCA. (4) The test segments are classified via kNN.

A summary of the validation parameters is given in Table 3. For the investigation, the
range between 1 ms and 100 ms was selected for segmenting the recording of each patch.
As discussed in Section 3.2, both ends of each patch were trimmed by 20 ms to eliminate
the transitions, yielding 120 ms long recording for each patch. However, it is unclear how
long the effect of the transitions lasts, and a longer segment such as 120 ms one may be
affected by the transitions from both ends. In such cases, the performance comparison
among different durations becomes unfair. To mitigate the effect of transitions as much
as possible, an upper bound of 100 ms was introduced. Furthermore, no other processing
techniques were applied to the signals aside from resampling them with the sampling
frequency of 6 MHz prior to segmentation. To incorporate the possibly imperceptible
information hidden in the high-frequency range, the entire frequency range of 3 MHz was
used. For NCA clustering and kNN classification, the Python library scikit-learn [28] was
used. The clustering and classification parameters were empirically selected by comparing
the performance obtained using various values.
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Table 3. Validation parameter values

Operation Parameter Value

RLT validation Number of iterations 50
Segment durations 1. . .100 ms

Scenario I 120 segments per class
Scenario II 30 segments per class

Data split ratio 67% training
33% test

STFT Sampling frequency 6 MHz
Frequency bins 2048
Time window 2048 samples (≈0.341 ms)
Window type Hanning window

Overlap 50%
NCA Initialization linear discriminant analysis

Input size 2048
Output size Nclass − 1

kNN k 3

Strictly speaking, it is not fair to compare the performance among different sensor
signals listed in Table 1, as these sensors have different sensitivity and characteristics.
Nevertheless, comparing the performance among different sensor types can illuminate the
advantages and drawbacks of different sensing methods. To highlight the informativeness
of each sensor, the investigation of this study treats each sensor individually instead of
fusing them. Possible benefits of sensor fusion are discussed based on the obtained results
in Section 5. Note that the results of the structure-borne sensor placed at the end of the
specimen (SB2) are omitted from the discussion in the subsequent sections. This is because
they are found to be very similar to those of the other structure-borne sensor placed at
the beginning of the specimen (SB1). Although sensor location does not have a significant
effect on the informativeness of the signals of our study, a larger deviation will likely be
observed in the results if the sensors are placed farther apart.

4.2. Scenario I: Gap Detection

The investigation results of gap detection are presented in Figures 5 and 6. Figure 5a
shows the average accuracy over varying segment durations, while the average confusion
matrices are shown for a selected set of durations in Figure 5b. In Figure 6, a set of clustering
results are presented as examples.

Figure 5a demonstrates that overall the accuracy of both sensor types steadily increases
with duration until it starts to converge from a certain saturation point. This suggests that
the segments longer than such saturation point can be shortened without loss of weld-
relevant information. The saturation point, however, varies depending on the sensor
type. Specifically, the saturation points of the structure-borne sensor signals (SB1) and
the airborne sensor signals (AB) are around 50 ms and 25 ms, respectively. This difference
in their saturation behavior accounts for their performance difference. If segments are
longer than 40 ms, structure-borne sensor signals (SB1) slightly outperform the airborne
sensor signals (AB), resulting in the maximum accuracy of 95% for the structure-borne
sensor and 92.5% for the airborne sensor. This can be attributed to the information loss
in higher frequencies due to attenuation in air, as shown in Figure 3. For the segments
shorter than 40 ms, however, there seems to be no significant difference in performance
among different sensors. If a segment is shorter than 5 ms, the accuracy of both sensors
drops sharply, indicating the difficulty in extracting the weld-relevant information.

A similar behavior can be observed in the confusion matrices, too (Figure 5b). Compar-
ing the results of 100 ms and 50 ms, the difference seems to be marginal for both structure-
borne sensor signals (SB1) and airborne sensor signals (AB). This again suggests that 50 ms
suffices to extract the same amount of the information contained in a 100 ms segment,
which enables almost 90% accuracy to distinguish Zero Gap and Gap joints. If the segments
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are shorter than 5 ms, misclassification of noise segments starts to increase, also signifying
that extracting the relevant information becomes more challenging.

Figure 6 provides more insights into the segment separability. As an example, a set
of NCA clustering results are shown for 100 ms, 50 ms, 5 ms and 1 ms segments. Here,
clustering was computed using the test set, which is not used for training. In general,
the distance between clusters increases with segment duration. This suggests that longer
segments contain sufficient weld-relevant information, which allows NCA to learn an
appropriate transformation of the segments.

Figure 5. Illustration of how the gap detection accuracy changes depending on the segment duration
T. The equivalent weld seam length is provided on top (in purple), which indicates that the weld seam
is progressed for 0.2 mm in 1 ms. The results are obtained by conducting repeated learning-testing
validations for 50 iterations based on Scenario I, where the segments are classified into three classes
(Zero Gap, Gap, and Noise). Top row (a): average accuracy with error bars (standard deviation) and
bottom row (b): average confusion matrices for selected segment duration. The channels mentioned
in the results are the structure-borne ultrasound sensor at the beginning (SB1) and the airborne
ultrasound sensor (AB).

Comparing the separability of 100 ms and 50 ms segments in Figure 6, the separation of
clusters is strikingly similar, which also indicates that the same amount of the information
is preserved even if signal segments are halved from 100 ms to 50 ms. Another finding is
that the clusters of the airborne sensor segments (AB) are located closer to each other than
those of the structure-borne sensor segments (SB1). These results also imply that there
seems to be more weld-relevant information available in the structure-borne signals when
it comes to detecting joint gaps.
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Figure 6. Exemplary illustration of segments separability for different segment durations T. Since
the dimension of the input vectors x ∈ R2048 is reduced to 2 (=number of classes minus one) after
NCA clustering, the results shown here are the output vectors y = [c1, c2]

T ∈ R2 in two dimensional
images. The cluster regions are represented by different colors (purple for Zero Gap, blue for Gap and
yellow for Noise). For exemplary purpose, these results are obtained by running a single training-test
split for each duration. The channels mentioned in the results are the structure-borne ultrasound
sensor at the beginning (SB1) and the airborne ultrasound sensor (AB).

A noticeable change can be observed in the cluster separability for both sensor signals
when the results of 50 ms segments are compared to those of 5 ms. With 5 ms segments, the
Zero Gap cluster is closer to the Gap cluster, causing a larger overlap of these two classes.
Indeed, the average accuracy of distinguishing Zero Gap and Gap segments is significantly
reduced, as shown in Figure 5b. This may be attributed to the fact that the actual gap size of
Zero Gap patches is not zero, making the distinction of smaller gaps from Zero Gap difficult.
This trend continues when segments become further shorter to 1 ms, which is equivalent
to 0.2 mm weld seam, where the clusters of all classes are closer and the separation of one
another is ambiguous. It is also worth noticing that the size of the Zero Gap and the Gap
clusters resembles that of the noise cluster for shorter segments, implying that the effect of
noise becomes larger with decreasing duration.

4.3. Scenario II: Identification of Gap Size

This section provides the investigation results of Scenario II, where gap size is iden-
tified from acoustic process emissions. This scenario aims to illustrate whether the infor-
mation in a segment suffices to determine the severity of error in a joint, dealing with
more detailed information than Scenario I. Since it involves more classes than Scenario
I, visualizing the class separability is not possible. Consequently, the informativeness of
signal segments is assessed using both classification accuracy and relative recall presented
in Sections 4.3.1 and 4.3.2, respectively.

4.3.1. Classification Accuracy

Figure 7a shows the average accuracy of 50 RLT iterations over varying segment
durations. Overall, the accuracy of quantifying the gap size is lower compared to that of
gap detection. This is particularly true for the structure-borne sensor (SB1), whose highest
accuracy is around 90%. On the other hand, the highest accuracy of the airborne sensor
(AB) is slightly below 92.5%. Nevertheless, in a similar manner to that observed with gap
detection, the accuracy of identifying gap size increases with duration and starts to saturate
from a certain point. Contrary to gap detection, both sensors have similar saturation
points at around 25 ms when it comes to identifying the gap size. This indicates that signal
segments can be shortened to 25 ms while maintaining their informativeness about the
gap size. Noticeably, the accuracy of airborne sensor signals (AB) is consistently higher
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than that of structure-borne sensor signals (SB1). The possible reasons for this performance
difference will be discussed in this section.

Figure 7. Illustration of how the classification accuracy of gap size changes depending on the segment
duration T. The equivalent weld seam length is provided on top (in purple), which indicates that
weld seam is progressed for 0.2 mm in 1 ms. The results are obtained by conducting repeated learning-
testing validations for 50 iterations based on Scenario II, where the segments are classified into five
classes (Zero Gap, Gap 0.1, Gap 0.2, Gap 0.3 and Noise). Top row (a): average accuracy with error bars
(standard deviation) and bottom row (b): average confusion matrices for selected segment duration.
The channels mentioned in the results are the structure-borne ultrasound sensor at the beginning
(SB1) and the airborne ultrasound sensor (AB).

For further insights, the average confusion matrices are provided in Figure 7b for three
different durations. Compared to other classes, classification accuracy for identifying a
0.3 mm gap (Gap 0.3) remains remarkably high under varying durations for both sensor
types. This implies that an adequate-sized gap results in signal characteristics that are
observable in a very short duration of acoustic process emissions. Interestingly, if segment
duration is 1 ms, the Gap 0.3 segments can be better predicted than the Noise segments,
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where the Noise segments are misclassified more as Zero Gap segments than Gap 0.3 ones.
This suggests that the acoustic emissions induced by a large-sized gap are not merely
the lack of emissions and a decrease in signal energy but also have distinctive signal
characteristics.

When the results of both sensor types are compared, the accuracy of classifying
Gap 0.2 is significantly different. If segments are longer than 25 ms, airborne sensor
signals (AB) yield 94% accuracy of correctly classifying the Gap 0.2 segments, whereas
the accuracy of structure-borne signals (SB1) is low around 75%. This tendency continues
when segments become shorter. A possible explanation for the impaired accuracy is the
difficulty in maintaining the same measurement condition for the structure-borne sensors.
The structure-borne sensors were mounted anew every time a new specimen was set.
Since each file corresponds to a different specimen, the variance among files may be larger
for the structure-borne sensor signals. Moreover, during the measurement of Gap 0.2
specimens, the sensors needed to be recalibrated, which may have led to a change in
signal characteristics before and after the calibration. Both suggest that a stable mounting
technique should be established for structure-borne sensors to ensure consistent and reliable
inspection quality.

4.3.2. Separability Analysis Using Relative Recall

Contrary to Scenario I, visualizing the separability of five classes is not trivial as
the clustering outputs consist of four features, requiring 4D plots. However, considering
only two classes at a time enables to handle the classification results as that of binary
classification. One metric to evaluate binary classification is recall, also known as the true
positive rate. The recall is essentially a ratio of the true positive to all positive predictions.
As an example, consider the confusion matrix of the structure-borne sensor (SB1) for 25 ms
shown in Figure 7b. Its relative recall of the Gap 0.1 class with respect to Zero Gap one
can be computed as 0.76

(0.76+0.16) = 0.826. The reason for using recall to evaluate the class
separability is that the relative recall represents the misclassification rate. If, for instance,
Gap 0.1 segments tend to be misclassified as Zero Gap one, then the Gap 0.1 cluster is likely
to be very close to the Zero Gap cluster than other clusters whose misclassification rate is
low. This means that a high relative recall indicates good separability of the reference class
from another one and vice versa.

The relative recall results over varying durations are presented in Figure 8. Figure 8a
shows the relative recall with respect to the Zero Gap class, aiming to demonstrate how
separable the Zero Gap cluster is from the other classes. Using the same analogy, Figure 8b
presents the relative recall with respect to the Noise class.

Focusing on the results shown in Figure 8a, two things are common for both sensor
types. First, the Gap 0.1 segments seem to be very difficult to distinguish from the Zero
Gap ones. Here, even 100 ms segments can achieve only around 85% recall, demonstrating
that making a segment longer does not necessarily increase the sensitivity with regard to
the gap size. This can be attributed to two factors. On the one hand, the actual gap size of
Zero Gap patches is not exactly zero, as discussed in Section 3.1, making the distinction
between these two classes ambiguous. On the other hand, the laser spot diameter (0.6 mm)
is large relative to the gap size of 0.1 mm. Such a relatively large laser beam can ignore a
small-sized gap and may produce acoustic process emissions very similar to the one that is
produced with Zero Gap joints. Another finding is that the relative recall of the Gap 0.3
class is and remains very high up to 1 ms. This suggests high separability of the Zero Gap
and the Gap 0.3 clusters. This is also true for the Noise class, yet its recall reduces slightly
more than that of the Gap 0.3 class if the segments are shorter than 5 ms.

A striking difference among different sensor types can be observed with the relative
recall of the Gap 0.2 class. In the same way as the confusion matrices, the structure-borne
sensor signal (SB1) exhibits a much lower recall regardless of the segment duration. This is
suspected to result from the aforementioned inconsistency in the signals. In contrast, the
airborne sensor signals (AB) yield a very high recall of the Gap 0.2 class, indicating that
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the Zero Gap class is also well separable from the Gap 0.2 class. Comparing the airborne
sensor results (AB) of the Gap 0.2 and the Gap 0.3 class, the Zero Gap cluster seems slightly
closer to the Gap 0.2 cluster than to the Gap 0.3 one.

Figure 8. Average relative recall with regard to the Zero Gap class (top row (a)) and the Noise class
(bottom row (b)) over varying duration T after 50 realizations. The results show how easy (high
recall) or difficult (low recall) it is to distinguish between the reference class and another class. This
serves as an indicator of how separable the cluster of the reference class is from that of another class.
The results show how the relative recall changes depending on the segment duration for each channel:
SB1 is a structure-borne sensor at the start of a specimen, and AB is an airborne sensor.

The same behavior can be seen in the relative recall of the Gap 0.2 class with respect
to the Noise class in Figure 8b. Here again the structure-borne sensor signals (SB1) yield
a much lower recall of the Gap 0.2 class than other classes, exhibiting the difficulty in
correctly classifying the Gap 0.2 segments. Considering its relative recall to the Zero Gap as
well, it is highly likely that the Gap 0.2 data have a larger variance than other classes. For
the rest of the classes, the relative recall with respect to the Noise class is very high (>97.5%)
up to 10 ms. This demonstrates that the Noise cluster is well separable, and therefore, the
weld-relevant information is sufficiently available in segments longer than 10 ms. It is
worth noticing that the Gap 0.3 class achieves almost 100% recall even with 1 ms segments,
equivalent to 0.2 mm of the weld seam. This is another indicator that the acoustic emissions
induced by a large-sized gap are not merely the absence of emission but also exhibit unique
signal characteristics.

Lastly, a few remarks on the effect of noise should be added. Both results in Figure 8
reveal that the separability of different classes becomes more challenging if segments are
shorter than 5 ms, which is equivalent to 1 mm weld seam. Because such short segments
tend to be misclassified as the Noise class, these results imply that the effect of noise
becomes more crucial when segments become shorter.
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5. Conclusions

In this study, the temporal resolution of acoustic process emissions is addressed
toward realizing real-time acoustic process monitoring and controlling systems for laser
welding. Considering that the resolution varies depending on the specific information
being sought, this study aims to investigate the relationship between the signal duration
and their informativeness to identify and quantify joint gaps in laser butt welding. For this
purpose, cluster analysis of signal segments was conducted, whose classification accuracy
was used for evaluating the segment informativeness.

The obtained results reveal that the signal segments can be shortened to a certain
point while preserving their informativeness. Such a point, however, varies depending
on the sensor type and the task at hand. With our specific configuration using the laser
power of 3.5 kW at a welding speed of 12 m/min, structure-borne sensor signals can be
shortened to 50 ms, yielding almost 95% gap detection accuracy. For the same task of gap
detection, airborne sensor signals can be shortened further to 25 ms, maintaining 92.5%
accuracy. When it comes to identifying the gap size, 25 ms suffices to maximize the segment
informativeness regardless of sensor type. However, the highest achievable accuracy is
lower than that of gap detection. These findings encourage the optimization of the segment
duration in accordance with the task and the required accuracy.

Furthermore, the airborne sensor in our study demonstrates more reliable detection
and classification accuracy compared to its structure-borne counterparts. This results
from a large variability in structure-borne sensor signals due to their susceptibility to
renewal mounting. For maintaining signal quality, a reliable mounting technique needs
to be established. Another remarkable finding is that large-sized gaps, specifically 0.3 mm
asymmetric gaps, demonstrate the induction of unique characteristics in the acoustic
process emissions, which is not a mere decrease in signal energy. This poses the question
of what such unique characteristics look like and how they differ from those induced by
small-sized gaps.

The following are the possible research topics for enabling real-time acoustic moni-
toring systems based on the findings of this study. The obtained results demonstrate that
the effect of noise increases when signal segments become shorter. This indicates that
alleviating the effects of noise is beneficial for real-time applications. Sensor data fusion can
also improve the temporal resolution because the kind and the availability of weld-relevant
information seem to vary depending on the sensor type. To optimally place the sensors,
the emission directivity needs to be identified. Considering the actual monitoring setups,
the monitoring system also needs to cope with the transitions between a zero gap patch
and a gap one, requiring further investigation. Because different welding configurations,
such as welding speed or different materials, effect the signal characteristics of the acoustic
emissions, such effects need to be studied as well. Another important aspect of the prac-
tice is compatibility with a crossjet, which produces substantial acoustic emissions in the
same frequency range as that of the weld-relevant signals [13]. For realizing in-process
monitoring systems, a measure to mitigate its effect is indispensable.

Lastly, it is also worth paying attention to sensor integration. For achieving low latency,
recordings need to be synchronized with the welding process. This requires identifying
the exact time point when the welding process is started. For this purpose, this study
employed a synchronization device, which was triggered by a high-speed camera serving
as a reference. To ease the installation effort in practice, however, a synchronization measure
based solely on acoustic sensors is beneficial. Because the acoustic emission of the ambient
noise is shown to be easily distinguishable from that of weld-relevant signals, acoustic
sensor signals have the potential to be utilized for synchronization purposes as well.
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