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Abstract: The recognition of lane line type plays an important role in the perception of advanced
driver assistance systems (ADAS). In actual vehicle driving on roads, there are a variety of lane line
type and complex road conditions which present significant challenges to ADAS. To address this
problem, this paper proposes an improved YOLOv5 method for recognising lane line type. This
method can accurately and quickly identify the types of lane lines and can show good recognition
results in harsh environments. The main strategy of this method includes the following steps: first,
the FasterNet lightweight network is introduced into all the concentrated-comprehensive convolution
(C3) modules in the network to accelerate the inference speed and reduce the number of parameters.
Then, the efficient channel attention (ECA) mechanism is integrated into the backbone network to
extract image feature information and improve the model’s detection accuracy. Finally, the sigmoid
intersection over union (SIoU) loss function is used to replace the original generalised intersection
over union (GIoU) loss function to further enhance the robustness of the model. Through experiments,
the improved YOLOv5s algorithm achieves 95.1% of mAP@0.5 and 95.2 frame·s−1 of FPS, which
can satisfy the demand of ADAS for accuracy and real-time performance. And the number of model
parameters are only 6M, and the volume is only 11.7 MB, which will be easily embedded into ADAS
and does not require huge computing power to support it. Meanwhile, the improved algorithms
increase the accuracy and speed of YOLOv5m, YOLOv5l, and YOLOv5x models to different degrees.
The appropriate model can be selected according to the actual situation. This plays a practical role in
improving the safety of ADAS.
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1. Introduction

With the continuous increase in the number of motor vehicles, road traffic problems are
becoming increasingly serious. In many road accidents, a significant proportion is caused
by driver-related factors. To reduce the occurrence rate of road accidents and improve
driving safety, many domestic and international universities and companies have con-
ducted extensive research on ADAS [1–4]. Machine vision-based lane line type recognition
technology is part of the ADAS perception module. It collects environmental information
on lane lines using visual sensors and performs classification, playing an important role
in providing guidance for the decision-making, control, and execution modules of the
subsequent ADAS. Quickly achieving accurate recognition of lane line type is particularly
important for the driver to make correct judgements about the vehicle. It enables motor
vehicles to perform operations such as overtaking, lane changing, and U-turns without
violating traffic line rules, thus providing a certain guarantee for driving safety.

For lane line type recognition technology, it can be divided into traditional image
processing methods and deep learning methods. Traditional image processing methods,
generally based on information such as colour and texture direction, separate lane lines
from the background region by filtering. For example, Ma et al. [5] proposed a lane
marking region detection method based on Lab colour feature clustering. The RGB channel
of the original image is converted into a Lab channel so that it can bring in more lane line
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information. Eventually, the lane lines are identified using K-mean clustering. Rui et al. [6]
used grayscale space to identify white lane lines and HSV space to identify yellow lane lines.
The two lane line methods are merged, and the edges of the lane lines are extracted using
edge detection. Then, the image is converted to bird’s-eye view using inverse perspective
transform, and finally the lane lines are extracted through fitting. However, this type of
method is more demanding for the process of lane line painting. If the lane lines are broken
or defective, or there is complicated weather such as foggy or rainy days, then this method
will most likely fail.

Therefore, this paper proposes a deep learning-based method for detecting the cate-
gories of lane lines. Deep learning techniques have powerful learning capabilities and thus
have become the dominant approach in machine vision. Girshick proposed a region-based
convolutional neural network (R-CNN) [7], a fast region-based convolutional neural net-
work (Fast R-CNN) [8], and a faster region-based convolutional neural network (Faster
R-CNN) [9], which were initially applied to object detection tasks. However, these algo-
rithms suffered from slow detection speeds and struggled to meet real-time requirements.
Despite their improvement in many works in the literature [10–12], the results are still
unsatisfactory. The YOLO [13–18] series made significant improvements in detection speed.
Among them, the YOLOv5 algorithm has been widely used in various object recognition
scenarios, with many engineering projects incorporating and improving it.

Musha et al. [19] proposed a lightweight model called CEMLB-YOLO to detect maize
leaf blight in complex field environments. The method uses CIPAM attention mecha-
nism to retain key information. After that, feature re-structuring and fusion module is
introduced to extract semantic information, and finally MobileBit is added to the fea-
ture extraction network. The method achieves an accuracy of 87.5% on the NLB dataset.
Abolghasemi et al. [20], based on the improved YOLO model, applied it to the detection
of skin cancer. The method adds convolutional layers and residual blocks to the YOLO
model and also introduces feature splicing of different layers to achieve multi-scale fusion.
Tsoulos et al. [21] used bird image datasets captured in the field to train the YOLOv4 model.
Through experiments, it is demonstrated that YOLOv4 can be used for bird detection in
the field and has achieved good detection results. Pérez-Patricio et al. [22] detected the
behaviour of lambs based on predictive modelling and deep learning. In this regard, a
model, an object-tracking algorithm, and a decision tree-based behavioural classifier based
on YOLOv4 applied to top-view videos are proposed. Experimentally, the method achieved
99.85% accuracy in detecting lamb activity. He et al. [23] proposed a target recognition algo-
rithm named TF-YOLO based on the improvement of YOLOv3. The method firstly clusters
the dataset using K-means++, after which the base model is optimised using the idea of
FPN. Through the experimental surface, TF-YOLO can improve the detection accuracy of
small targets and achieve the light weight of the network.

While deep learning techniques have been used in a number of fields, fine-grained
methods for recognising lane line type are not yet available. Some deep learning-based
lane line detection methods can only singularly go about identifying the shape or colour of
a lane line [24]. This is difficult for meeting the requirements of ADAS. In summary, this
paper proposes a lane line classification method based on improved YOLOv5. The main
contributions include incorporating the FasterNet [25] lightweight network into the C3
module of the overall network to achieve parameter reduction and speed improvement.
The ECA [26] mechanism is introduced to enhance the model’s feature extraction capability.
The SIoU [27] loss function is used instead of the original GIoU [28] loss function to further
improve the model’s inference speed and accuracy. Through experiments, it is found that
the method in this paper has high accuracy and very fast detection speed. The type of lane
lines can be identified even under adverse conditions. This can fully meet the needs of
ADAS. It also plays a role in promoting the development of ADAS.

The structure of the rest of this article is as follows. Section 2 outlines the underlying
network used in this paper and the strategy for improving the network. Section 3 outlines
the experimental setting, the dataset, and the evaluation metrics of the model for this paper.



Appl. Sci. 2023, 13, 10537 3 of 18

Section 4 analyses the experimental results of the network improved in this paper. Finally,
Section 5 summarises the article.

2. Method
2.1. Basic Principles of the YOLOv5 Algorithm

The YOLOv5 algorithm is a representative neural network in the field of deep learning.
It belongs to one-stage detection algorithms, which accomplish both object recognition
and classification. In one-stage algorithms, the input dataset images are passed through
only one network for feature extraction. Anchor frames are used in the last layer for
prediction, and the result generated contains both location and category information. In
contrast, two-stage detection algorithms requires first generating candidate frames. Based
on the candidate frames, the corresponding features are extracted, and a classifier is used to
classify the target for each candidate frame. Finally, based on this, bounding box regression
is performed on the candidate boxes to determine the target location. Compared to two-
stage algorithms, one-stage algorithms have lower accuracy but require less computation,
resulting in faster processing speed. Lane line classification is part of the perception module
in ADAS, which demands real-time capability. Taking these factors into consideration, the
YOLOv5 algorithm is selected for lane line classification.

The YOLOv5 algorithm has four versions: YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x, based on different model depths and feature map widths. Among them,
YOLOv5s has the smallest model depth and feature map width among all versions, fol-
lowed by YOLOv5m, YOLOv5l, and YOLOv5x. Specific data are shown in Table 1. As the
model size increases, the recognition accuracy gradually improves, but the inference speed
decreases. According to different tasks and requirements, you can choose the appropriate
version to use. For tasks requiring high detection speed, choose YOLOv5s or YOLOv5m.
For tasks requiring high accuracy, choose YOLOv5l or YOLOv5x. Considering the real-time
requirements of ADAS, this paper selects the YOLOv5s algorithm as the network model
for lane line classification.

Table 1. Parameters of different YOLOv5 versions.

Model Depth Multiple Width Multiple

YOLOv5s 0.33 0.50
YOLOv5m 0.67 0.75
YOLOv5l 1.00 1.00
YOLOv5x 1.33 1.25

YOLOv5s consists of the input, backbone network, neck network, and head output,
as shown in Figure 1. The input is augmented with mosaic data, adaptive anchor frame
computation, and adaptive image scaling. Its main role is to pre-process the dataset
images to improve the accuracy and generalisation of the model. The backbone network
contains a network of classifiers with good performance, including the C3 module, the
CBL module, and the spatial pyramid pooling (SPP) module. It is mainly used to extract
feature information from the input image for subsequent object detection tasks. The neck
network adopts the FPN [29] + PAN [30] structure. It can enhance the multi-scale semantic
representation and localisation ability of the model, and further improve the diversity and
robustness of image features. The header output layer is responsible for generating the
final object recognition result. This part applies multi-level feature fusion and loss function
to improve the detection performance of the model.
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Figure 1. YOLOv5s network structure.

2.2. Improved YOLOv5 Algorithm

This paper proposes an improvement scheme for the original YOLOv5s algorithm,
which has problems such as low detection accuracy and poor real-time performance. The
improved network structure is shown in Figure 2. The improvements are mainly reflected
in the following three aspects.
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1. In the C3 module of the backbone network and neck network, the FasterNet lightweight
network is introduced to form the C3_Faster module. This effectively reduces redun-
dant computations and memory access, reducing the model size and accelerating the
inference speed.

2. The ECA mechanism is introduced at the end of the backbone, which incorporates
attention on both channel and spatial dimensions. This significantly enhances the
model’s feature extraction capability.

3. In the localisation loss function, the SIoU is used instead of the original GIoU function.
SIoU takes into account the vector angle between the ground truth box and the pre-
dicted box, redefining the penalty metric. This further improves training convergence
speed and inference accuracy structure.

2.2.1. FasterNet Lightweight Network

The main idea behind using the FasterNet lightweight network is to achieve model
lightweight transformation and faster inference speed while ensuring recognition accu-
racy. This paper introduces the FasterNet lightweight network into the C3 module of the
original YOLOv5 network, forming the C3_Faster module, as shown in Figure 3. The
FasterNet block stack is added to each C3 module. The FasterNet block consists of a
PConv layer followed by two 1 × 1 convolution layers. To maintain feature diversity and
achieve lower latency, normalisation and activation functions are placed between these
two convolution layers.
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The partial convolution (PConv) layer performs conventional convolution on only
some of the input channels to extract spatial features while keeping the rest of the channels
unchanged, thus effectively reducing computational redundancy and memory access. For
consecutive or regular memory access, the first or last continuous “cp” channels are treated
as representatives of the entire feature map for computation. In general, it is assumed that
the input and output feature maps have the same number of channels. The floating-point
operations per second (FLOPS) of each PConv can be calculated as

h× w× k2 × c2
p (1)

where h and w represent the length and width of the feature, respectively, cp represents the
number of channels, and k represents the convolution kernel. The FLOPS of the PConv is
only 1/16 of the flops of a conventional convolution layer. Additionally, the PConv has a
smaller memory access and its data are approximately

h× w× 2cp + k2 × c2
p ≈ h× w× 2cp (2)

which is only 1/4 of a regular convolution layer.
The normalisation layer uses the batch normalisation (BN) [31] layer, which can be

fused into its adjacent convolution layer to accelerate the model’s inference speed. The
activation layer adopts the rectified linear unit (ReLU) [32] function to reduce runtime and
enhance the effectiveness of recognition.
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2.2.2. ECA Mechanism

The attention mechanism can be seen as a dynamic weight adjustment process based
on input features. In terms of vision, humans can naturally and effectively extract the
desired regions in complex scenes through their brains. Inspired by this observation,
attention mechanisms have been introduced in computer vision to mimic this aspect of the
human visual system.

In this paper, the ECA mechanism is used to implement a non-dimensional reduction
local cross-channel interaction strategy using one-dimensional convolution, as shown in
Figure 4. This module takes the global average pooling of the feature map for each channel
and generates a weight coefficient using a linear layer and sigmoid activation function. The
original feature map is then multiplied by this weight coefficient, resulting in a weighted
feature map. It requires only a small number of parameters to achieve performance
improvement. Avoiding dimensionality reduction is crucial for learning channel attention,
so the ECA mechanism enables cross-channel interactions while significantly reducing
model complexity and maintaining performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 20 
 

2.2.2. ECA Mechanism 
The attention mechanism can be seen as a dynamic weight adjustment process based 

on input features. In terms of vision, humans can naturally and effectively extract the de-
sired regions in complex scenes through their brains. Inspired by this observation, atten-
tion mechanisms have been introduced in computer vision to mimic this aspect of the 
human visual system. 

In this paper, the ECA mechanism is used to implement a non-dimensional reduction 
local cross-channel interaction strategy using one-dimensional convolution, as shown in 
Figure 4. This module takes the global average pooling of the feature map for each channel 
and generates a weight coefficient using a linear layer and sigmoid activation function. 
The original feature map is then multiplied by this weight coefficient, resulting in a 
weighted feature map. It requires only a small number of parameters to achieve perfor-
mance improvement. Avoiding dimensionality reduction is crucial for learning channel 
attention, so the ECA mechanism enables cross-channel interactions while significantly 
reducing model complexity and maintaining performance. 

 
Figure 4. ECA mechanism. 

Given the aggregated features [C, 1, 1] obtained through the average pooling layer, 
the ECA mechanism generates channel weights by performing one-dimensional convolu-
tion with a kernel size of k, as shown in this equation: 

( )( )ω σ= C1D yk  (3)

where C1D indicates 1D convolution. The adaptive determination of the kernel size k is 
based on the mapping of the number of channels C, as shown in this equation: 

γ
+

= 2

odd

log C b
k  (4)

where C represents the number of channels. Through ablation experiments, γ is set to 2 
and b is set to 1. These parameters are used to adjust the proportion between the number 
of channels C and the kernel size k. When the number of channels is large, the kernel size 
k will increase with C. Conversely, when the number of channels is small, the kernel size 
k will decrease with C. This approach enables effective interaction among different chan-
nels, thereby facilitating fusion. 

2.2.3. SIoU Loss Function 
The detection head of the YOLOv5 algorithm consists of three loss functions: classi-

fication loss, confidence loss, and localisation loss. In this paper, the GIoU loss function in 
the localisation loss is replaced with the SIoU loss function. SIoU takes into account the 
vector angle between the required regression loss and the matching direction of the 
ground truth box and the model-predicted box. It redefines the penalty metric, which can 
accelerate the convergence speed during training and improve the accuracy of inference. 
The SIoU loss function consists of four cost functions, including angle cost, distance cost, 
shape cost, and IoU cost. 

Figure 4. ECA mechanism.

Given the aggregated features [C, 1, 1] obtained through the average pooling layer, the
ECA mechanism generates channel weights by performing one-dimensional convolution
with a kernel size of k, as shown in this equation:

ω = σ(C1Dk(y)) (3)

where C1D indicates 1D convolution. The adaptive determination of the kernel size k is
based on the mapping of the number of channels C, as shown in this equation:

k =

∣∣∣∣ log2 C + b
γ

∣∣∣∣
odd

(4)

where C represents the number of channels. Through ablation experiments, γ is set to 2
and b is set to 1. These parameters are used to adjust the proportion between the number
of channels C and the kernel size k. When the number of channels is large, the kernel size k
will increase with C. Conversely, when the number of channels is small, the kernel size k
will decrease with C. This approach enables effective interaction among different channels,
thereby facilitating fusion.

2.2.3. SIoU Loss Function

The detection head of the YOLOv5 algorithm consists of three loss functions: classi-
fication loss, confidence loss, and localisation loss. In this paper, the GIoU loss function
in the localisation loss is replaced with the SIoU loss function. SIoU takes into account
the vector angle between the required regression loss and the matching direction of the
ground truth box and the model-predicted box. It redefines the penalty metric, which can
accelerate the convergence speed during training and improve the accuracy of inference.
The SIoU loss function consists of four cost functions, including angle cost, distance cost,
shape cost, and IoU cost.
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The schematic diagram of the SIoU loss function calculation scheme is shown in
Figure 5. The definitions of each cost function are as follows:

1©Angle cos t :Λ = 1− 2 ∗ sin2
(

arcsin
( ch

σ

)
− π

4

)
= cos

(
2 ∗
(

arcsin
( ch

σ

)
− π

4

))
(5)

where σ =

√(
Bgt

cx − Bcx

)2
+
(

Bgt
cy − Bcy

)2
, and ch = max

(
Bgt

cy , Bcy

)
− min

(
Bgt

cy , Bcy

)
.(

Bgt
cx , Bgt

cy

)
and

(
Bcx , Bcy

)
represent the centre coordinates of the true and predicted

boxes, respectively.

2©Distance cos t :∆ = ∑
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy (6)

where ρx =

(
Bgt

cx−Bcx
Cw

)
, ρy =

(
Bgt

cy−Bcy
Ch

)
, and γ = 2−Λ. Cw and Ch represent the width

and height of the minimum enclosing rectangle for the ground truth box and predicted
box, respectively.

3©Shape cos t :Ω = ∑
t=w,h

(
1− e−wt

)θ
=
(
1− e−ww

)θ
+
(
1− e−wh

)θ (7)

where ww =
|w−wgt|

max(w,wgt)
and wh =

|h−hgt|
max(h,hgt)

; w and h represent the width and height of the
predicted box, respectively; wgt and hgt represent the width and height of the ground truth
box, respectively. The parameter “θ” controls the attention given to shape loss. To prevent
excessive emphasis on shape loss, which could hinder the movement of the predicted box,
the parameter range is constrained to [2,6].

4©IoU cos t : IoU =

∣∣B∩ Bgt∣∣∣∣B∪ Bgt∣∣ (8)

where B and Bgt represent the region framed by the model prediction and the region framed
by the actual label, respectively.

Based on the calculations mentioned above, the SIoU loss function can be obtained:

SIoU : Lbox = 1− IoU +
∆ + Ω

2
(9)
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3. Experimental Section
3.1. Experimental Environment and Hyperparameters

The software and hardware environment configurations used for algorithm training
in this paper are shown in Table 2.
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Table 2. Experimental environment.

Type Parameter

CPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz
RAM 45 GB
GPU NVIDIA RTX3090 GPU with 24 GB of VRAM

VRAM 24 GB
Programming language Python 3.7

Deep learning framework and
dependency library

Pytorch 1.10.2, CUDA 11.6, Cudnn 8.3.2,
Numpy 1.19.5, tqdm 4.64.1, tensorboard 2.10.1,

OpenCV-Python 4.6.0.66

The hyperparameter settings for the algorithm are presented in Table 3.

Table 3. Hyperparameter settings.

Hyperparameter Value

Epochs 300
Batch size 16
Image size 640
Optimiser SGD

Learning rate 0.01
Momentum 0.937

3.2. Experimental Dataset

The dataset used for the experiments includes the CULane [33] dataset and custom
dataset with inverse perspective transformation. As shown in Figure 6, the road image is
transformed using inverse perspective transform to create a bird’s-eye-view road image
that reflects the real world. This image shows lane line features more clearly and facilitates
feature extraction for the network.
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In the inverse perspective transformation, the relationship between the original image
and the transformed image can be represented by a 3 × 3 transformation matrix. This
matrix is computed based on four corresponding points in the data image, as shown in
this equation: tix′i

tiy′i
ti

 = map_matrix ·

xi
yi
1

 (10)

where map_matrix represents the computed 3× 3 inverse perspective transformation matrix,
and (xi, yi) and (x′i , y′i) represent the coordinates of the input point and the output point,
respectively. The value of i ranges from 0 to 3, indicating the corresponding four points.
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This method allows us to obtain a bird’s-eye view of the road without requiring exten-
sive computational resources. It is a simple operation that only requires processing the
region of interest (ROI) containing the lane lines, thereby removing significant amounts of
irrelevant information.

According to GB 5768.3-2009 National Standard of China [34], the classification of
road traffic markings includes categories such as white dashed lines, white solid lines,
yellow dashed lines, yellow solid lines, double white dashed lines, double white solid
lines, white dash-solid lines, double yellow solid lines, double yellow dashed lines, yellow
dash-solid lines, orange dashed lines, orange solid lines, blue dashed lines, and blue solid
lines. Among these, the type of lane markings used to separate traffic flows or restrict
vehicle crossings include white dashed lines, white solid lines, yellow dashed lines, yellow
solid lines, white dash-solid lines, double yellow solid lines, double yellow dashed lines,
and yellow dash-solid lines. The white dash-solid lines and yellow dash-solid lines can
be further classified as left-dashed right-solid and left-solid right-dashed based on their
position in the driving lane. These lane line types are the targets we need to identify in this
paper. The dataset categories are annotated, and the label names are shown in Table 4.

Table 4. Lane line type data and labels.

Label Name Lane Line Name Legend

s_w_i white dashed line
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The data images were filtered to exclude road images that do not contain lane lines. 
Data images with different weather conditions and brightness levels were collected to 
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The data images were filtered to exclude road images that do not contain lane lines. 
Data images with different weather conditions and brightness levels were collected to The data images were filtered to exclude road images that do not contain lane lines.

Data images with different weather conditions and brightness levels were collected to en-
hance the model’s generalisation capability. After the filtering process, a total of 5480 images
containing lane lines were selected. The dataset was then divided into training, validation,
and testing sets in an 8:1:1 ratio.

The sample distribution of training dataset for each type of lane line is shown in
Figure 7.
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3.3. Evaluation Metrics

To evaluate the results of lane line category recognition and measure the performance
of the trained model, evaluation metrics are used. There are many types of evaluation
metrics, but they all rely on a confusion matrix, as shown in Figure 8.
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The four values in the confusion matrix are primary indicators: TP (true positive)
represents actual positive samples correctly predicted as positive; FN (false negative)
represents actual positive samples incorrectly predicted as negative; FP (false positive)
represents actual negative samples incorrectly predicted as positive; TN (true negative)
represents actual negative samples correctly predicted as negative.

To limit the values of the metrics between 0 and 1, secondary indicators are used to
calculate precision and recall. Precision is calculated using the following formula:

Precision =
TP

TP + FP
(11)

Recall is calculated using the following formula:

Recall =
TP

TP + FN
(12)

Precision and recall are conflicting measures. When a higher precision is desired, the
recall decreases and vice versa. Therefore, this paper uses mAP@0.5 as the evaluation
metric for the model. AP represents the accuracy based on the IoU threshold of positive and
negative samples, determining the correctness of sample classification based on confidence
levels. The AP value is calculated by measuring the area under the precision–recall curve
(P-R curve), effectively balancing the conflicting nature of the two indicators. The calcula-
tion formula for AP is

AP =
∫ 1

0
P(R)dR (13)
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mAP represents the average AP value across all classes and is calculated using the
following formula:

mAP =
∑k

i=1 APi

k
(14)

In this paper, mAP@0.5 is used as the evaluation metric to represent the average AP
values when the IoU threshold is set to 0.5.

The complexity of a model can be evaluated by the number of parameters it has,
which is mainly related to the overall structure of the model. Parameters represent the
total number of trainable parameters in the network model. The larger the number of
parameters, the more complex the model structure.

Real-time performance is an important metric for lane line category recognition in
ADAS. Frames per second (FPS) is used to evaluate the real-time capability of the model. A
higher FPS indicates faster detection speed and better real-time performance, while a lower
FPS indicates poorer real-time performance.

4. Result

In order to verify the effectiveness of the improved algorithm, this paper carries out
three sets of experiments based on the YOLOv5 network: the comparison experiment
of attention mechanisms, the comparison experiment of loss function, and the ablation
experiment of the improved algorithm. After that, comparison experiments with other
mainstream target recognition algorithms and YOLO series are also set up. Finally, different
environments are simulated using grayscale values and peak signal-to-noise ratios to
analyse the applicability of the algorithm in real road conditions.

4.1. Comparative Experiment of Attentional Mechanisms

To verify the effectiveness of the ECA mechanism, a comparison was made with other
attention mechanisms, including the convolutional block attention module (CBAM) [35]
and the squeeze-and-excitation module (SE) [36]. The experimental results are shown in
Table 5.

Table 5. Comparison of results with different attention mechanisms.

Model mAP@0.5 (%) Parameters (M) FPS (frame·s−1)

YOLOv5s 92.1 7.1 91.3
YOLOv5s + CBAM 94.1 7.6 82.6

YOLOv5s + SE 93.7 8.3 79.4
YOLOv5s + ECA 94.3 7.2 84.7

From the table, it can be observed that all three attention mechanisms can improve
the mAP@0.5 of the model. However, by comparison, it is found that introducing the
ECA mechanism has a higher improvement in mAP@0.5 compared to the SE and CBAM
mechanisms. It improved 2.2% over the original model.

4.2. Comparison Experiment of Loss Function

Based on the good performance of the ECA module in previous experiments. In
this section, the effectiveness of the SIoU loss function is evaluated on this basis. And
the training results are compared with the training results of the three loss functions,
GIoU, complete intersection over union (CIoU) [37], and efficient intersection over union
(EIoU) [38]. The experimental results are shown in Table 6.

From the table, it can be observed that using the SIoU loss function outperforms
the other three loss functions, effectively improving the model’s mAP@0.5. Compared
with the GIoU loss function in the original model, it was increased by 1.1%, and FPS also
improved slightly.
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Table 6. Comparison of results using different loss functions.

Model mAP@0.5 (%) Parameters (M) FPS (frame·s−1)

YOLOv5s + ECA + GIoU 94.3 7.2 84.7
YOLOv5s + ECA + CIoU 95.0 7.2 87.7
YOLOv5s + ECA + EIoU 94.8 7.2 89.3
YOLOv5s + ECA + SIoU 95.4 7.2 85.5

4.3. Ablation Experiment

To validate the overall effectiveness of the improved algorithm, a set of ablation exper-
iments were conducted. The experiment included six models with different configurations:
1© Original YOLOv5s; 2© YOLOv5s + C3_Faster; 3© YOLOv5s + ECA; 4© YOLOv5s + SIoU;
5© YOLOv5s + ECA + SIoU; 6© YOLOv5s + C3_Faster + ECA + SIoU. The experimental

results are shown in Table 7.

Table 7. Comparison of results from ablation experiments.

YOLOv5s C3_Faster ECA SIoU mAP@0.5
(%)

Parameters
(M)

FPS
(frame·s−1)

Volume
(MB)

√
92.1 7.1 91.3 13.8√ √
91.9 5.8 99.0 11.4√ √
94.3 7.2 84.7 13.9√ √
93.8 7.1 92.6 13.8√ √ √
95.4 7.2 85.5 13.9√ √ √ √
95.1 6.0 95.2 11.7

√
: Introduction of the module.

From the table, it can be observed that compared to the original model, introducing the
FasterNet lightweight network in the C3 module alone speeds up the model’s processing
speed and reduces the number of parameters. The introduction of the ECA mechanism and
SIoU loss function both improve the model’s mAP@0.5. When the three improvements are
introduced simultaneously, the accuracy of the model increases by 3.0%, the FPS increases
by 3.9 frame·s−1, the number of parameters decrease by 1.1 M, and the volume decreases
by 2.1 MB. In conclusion, the method proposed in this paper has higher robustness and
real-time performance in lane line type recognition compared to other methods. Meanwhile,
the parameters and volume of the model are effectively reduced.

4.4. Comparative Experiment of Different Algorithms

To demonstrate the good performance of the YOLO algorithm on the task of lane line
species recognition, this section cites one two-stage algorithm, Faster R-CNN, and two
one-stage algorithms, SSD [39] and RetinaNet [40], as comparison networks. These are the
current mainstream target recognition algorithms. These algorithms have been applied
by many researchers in various task scenarios. The above algorithms are applied to the
lane line pattern recognition dataset for training and testing. And the results of YOLOv5
algorithm are compared with the results of the above algorithms. The results are shown in
Table 8.

As can be seen from the table, the detection speed of Faster R-CNN is too slow and
bulky. This is not suitable for application and deployment in ADAS. Compared with Faster
R-CNN, the SSD and RetinaNet algorithms improve the detection speed, but the average
accuracy is lower, which is still difficult for meeting the needs of ADAS. The YOLOv5
algorithm is superior to the above three algorithms in terms of average accuracy and
detection speed. On this basis, the improved YOLOv5 algorithm proposed in this paper has
further improved in each performance. This algorithm is fully applicable to the working
requirements of ADAS.
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Table 8. Comparison of results from different algorithms.

Model mAP@0.5 (%) FPS (frame·s−1) Volume (MB)

Faster R-CNN(Vgg16) 88.1 13.5 522.1
Faster R-CNN(ResNet50) 86.0 6.3 108.5

SSD(Vgg16) 86.7 45.5 95.1
SSD(ResNet50) 82.8 68.9 49.8

SSD(MobileNetv2) 73.1 71.2 18.8

RetinaNet 85.6 53.3 139.9

YOLOv5s 92.1 91.3 13.8

Oure-YOLOv5s 95.1 95.2 11.7

4.5. Comparative Experiment of YOLO Series Algorithms

In order to further verify the effectiveness of the improved algorithm, this paper
sets up a comparison experiment between different YOLO algorithms. It mainly includes
YOLOv3, YOLOv4, and YOLOv5. The experimental results are shown in Table 9.

Table 9. Comparison of results of different YOLO versions.

Model mAP@0.5 (%) Parameters (M) FPS (frame·s−1) Volume (MB)

YOLOv3 88.5 61.6 26.5 117.9
YOLOv3-tiny 76.8 8.7 140.8 16.7

YOLOv4 89.5 64.4 24.0 224.6
YOLOv4-tiny 81.5 5.9 128.4 22.6

YOLOv5s 92.1 7.1 91.3 13.8
YOLOv5m 94.4 20.9 41.2 40.3
YOLOv5l 95.5 46.2 25.1 88.6
YOLOv5x 96.7 86.3 13.4 165.2

Ours-YOLOv5s 95.1 6.0 95.2 11.7
Ours-YOLOv5m 95.8 15.8 43.7 30.6
Ours-YOLOv5l 96.1 32.3 26.9 62.1
Ours-YOLOv5x 96.9 57.0 15.3 109.4

From the table, it can be seen that although YOLOv3 and YOLOv4 have improved
their recognition accuracy compared to the other algorithms listed in the previous section,
their detection speeds are still far from adequate. YOLOv3-tiny and YOLOv4-tiny used
CSPdarknet53_tiny as the backbone network and improved on the basis of the original
network. Although the detection speed has been greatly improved, the detection accuracy
has dropped off a cliff. After the improved algorithm in this paper, compared with the
original YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, the four different models have
different degrees of improvement in detection accuracy and speed. The improved algorithm
reduces the parameters and volume of the model. In practical applications, the appropriate
detection model can be selected according to the embedded deployment of ADAS.

From Figure 9, the improved algorithm has a higher confidence in the recognition of
various types of lane lines. Especially in various complex situations, it can effectively avoid
leakage or misdetection. This suggests that the improved YOLOv5 algorithm has a wider
range of applications and is more suitable for ADAS applications and deployments.

As can be seen in Figure 10, the improved algorithm improves the detection accuracy
for all categories of targets to different degrees, especially for the lane line category with
more complex features. When using YOLOv5s, the detection of the yellow dash-solid line
is poor. However, under our improved algorithm, the detection results of the two types of
short yellow dash-solid lines are improved by 11% and 11.9%, respectively, which indicates
that our improved strategy has some effect.
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4.6. Analysis of Influence of Light Intensity

In this paper, in order to analyse the applicability of the improved algorithm in
different light intensities, different light intensities outdoors are simulated using different
levels of contrast and brightness. In order to simulate a real scene, the range of grayscale
values is set between 0–175, and the pixels of the pictures in the test set are modified.

Through experiments, the original YOLOv5s algorithm is able to correctly identify
lane line type with grayscale values ranging from 10–137, with detection failures in ranges
smaller than 6 and larger than 164. The rest of the ranges are false-positive cases, mainly
in that yellow lane lines are incorrectly identified as white lane lines. While the improved
YOLOv5s algorithm can correctly identify the type of lane line grayscale values ranging
between 8–155, less than 4 and greater than 171 are the range of detection failure. The
rest of the range are cases of false positives. As shown in Figure 11, where the Z-axis
indicates the detection results, 1 indicates accurate recognition, 0 indicates false positive,
and −1 indicates recognition failure.
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In summary, the method proposed in this paper has a wider detection range for
different light intensities compared to the original algorithm.

4.7. Analysis of the Influence of Noise

In this paper, in order to analyse the applicability of the improved algorithm in the
case of noise interference in different weather, different levels of Gaussian noise are added
to the images to simulate rain, snow, or foggy weather. The peak signal-to-noise ratio
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(PSNR) is utilised to evaluate the quality of the image after adding noise. PSNR is defined
based on mean square error (MSE). The definition of MSE is

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (15)

where m × n represents the size of the image, and I(i,j) and K(i,j) represent the pixels of the
original image and the pixels of the noisy image, respectively.

Then, PSNR can be defined as

PSNR = 20 log10

(
MAXI√

MSE

)
(16)

where MAXI is the maximum pixel value of the image.
Through experiments, under the influence of noise, the original YOLOv5s algorithm

correctly recognises lane line type in the range greater than 15.2 dB, while the range of
recognition failure is less than 11.8 dB. The rest of the ranges are false positives or false
negatives. While the improved algorithm correctly recognises the lane line type in the
range greater than 13.3 dB, the range of recognition failure is less than 9.8 dB. The rest of
the ranges are false positives or false negatives. As shown in Figure 12, where the Z-axis
indicates the detection results, 1 indicates accurate recognition, 0 indicates false positive or
false negative, and −1 indicates recognition failure.
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In summary, compared to the original algorithm, the method proposed in this paper is
able to accurately recognise lane line type in more severe weather.

5. Conclusions

To ensure the accuracy and real-time performance of lane line category recognition,
this paper proposes an improved YOLOv5 algorithm. Through experiments, the following
conclusions have been drawn:

1. Introducing FasterNet into the C3 module of the backbone and necking networks can
speed up the inference speed of the model and reduce the calculation parameters.

2. Introducing the ECA mechanism into the backbone network can significantly improve
the recognition accuracy of the model.

3. The use of SIoU loss function can further improve the accuracy of the model and
speed up the inference speed to some extent.

According to the experimental results on the dataset, the improved YOLOv5 model
achieves the mAP@0.5 of 95.1% and the FPS of 95.2 frames·s−1 in the test. This meets
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the requirements for accuracy and real-time performance in lane line type recognition.
Moreover, the parameters and the volume of the model are only 6.0 M and 11.7 MB,
respectively. It also has a wider detection range than the original YOLOv5 algorithm in
different environments. Therefore, the proposed method can be effectively applied to lane
line category recognition and has practical significance for application in ADAS.

Author Contributions: Conceptualisation, B.L., H.W. and L.C.; methodology, B.L. and H.W.; software,
B.L.; formal analysis, B.L. and H.W.; validation, B.L. and H.W.; resources, Y.W. and C.Z.; data curation,
B.L. and L.C.; writing—original draft preparation, B.L.; writing—review and editing, H.W., Y.W.
and C.Z.; supervision, Y.W. and C.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Beijing Smarter Eye Technology Co., Ltd. cooperation
project, grant numbers 2200010047, 2000010012, 1700010013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to authorised access to data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wippelhauser, A.; Edelmayer, A.; Bokor, L. A Declarative Application Framework for Evaluating Advanced V2X-Based ADAS

Solutions. Appl. Sci. 2023, 13, 1392. [CrossRef]
2. Zou, Y.; Ding, L.; Zhang, H.; Zhu, T.; Wu, L. Vehicle Acceleration Prediction Based on Machine Learning Models and Driving

Behavior Analysis. Appl. Sci. 2022, 12, 5259. [CrossRef]
3. Ulrich, L.; Nonis, F.; Vezzetti, E.; Moos, S.; Caruso, G.; Shi, Y.; Marcolin, F. Can ADAS Distract Driver’s Attention? An RGB-D

Camera and Deep Learning-Based Analysis. Appl. Sci. 2021, 11, 11587. [CrossRef]
4. Park, C.; Chung, S.; Lee, H. Vehicle-in-the-Loop in Global Coordinates for Advanced Driver Assistance System. Appl. Sci. 2020,

10, 2645. [CrossRef]
5. Ma, C.; Xie, M. A Method for Lane Detection Based on Color Clustering. In Proceedings of the 2010 Third International Conference

on Knowledge Discovery and Data Mining, Phuket, Thailand, 9–10 January 2010; pp. 200–203. [CrossRef]
6. Rui, R. Lane line detection technology based on machine vision. In Proceedings of the 2022 4th International Conference on

Artificial Intelligence and Advanced Manufacturing (AIAM), Hamburg, Germany, 7–9 October 2022; pp. 562–566. [CrossRef]
7. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

8. Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083.
9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
10. Xiang, J.; Shi, H.; Huang, X.; Chen, D. Improving Graphite Ore Grade Identification with a Novel FRCNN-PGR Method Based on

Deep Learning. Appl. Sci. 2023, 13, 5179. [CrossRef]
11. Wang, H.; Xiao, N. Underwater Object Detection Method Based on Improved Faster RCNN. Appl. Sci. 2023, 13, 2746. [CrossRef]
12. Liang, B.; Wang, Z.; Si, L.; Wei, D.; Gu, J.; Dai, J. A Novel Pressure Relief Hole Recognition Method of Drilling Robot Based on

SinGAN and Improved Faster R-CNN. Appl. Sci. 2023, 13, 513. [CrossRef]
13. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

14. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

15. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
16. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
17. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. arXiv 2020, arXiv:2011.08036.
18. YOLOv5. 2021. Available online: https://github.com/ultralytics/yolov5 (accessed on 10 December 2022).
19. Leng, S.; Musha, Y.; Yang, Y.; Feng, G. CEMLB-YOLO: Efficient Detection Model of Maize Leaf Blight in Complex Field

Environments. Appl. Sci. 2023, 13, 9285. [CrossRef]

https://doi.org/10.3390/app13031392
https://doi.org/10.3390/app12105259
https://doi.org/10.3390/app112411587
https://doi.org/10.3390/app10082645
https://doi.org/10.1109/WKDD.2010.118
https://doi.org/10.1109/AIAM57466.2022.00113
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/app13085179
https://doi.org/10.3390/app13042746
https://doi.org/10.3390/app13010513
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://github.com/ultralytics/yolov5
https://doi.org/10.3390/app13169285


Appl. Sci. 2023, 13, 10537 18 of 18

20. Singh, S.K.; Abolghasemi, V.; Anisi, M.H. Fuzzy Logic with Deep Learning for Detection of Skin Cancer. Appl. Sci. 2023, 13, 8927.
[CrossRef]

21. Mpouziotas, D.; Karvelis, P.; Tsoulos, I.; Stylios, C. Automated Wildlife Bird Detection from Drone Footage Using Computer
Vision Techniques. Appl. Sci. 2023, 13, 7787. [CrossRef]

22. González-Baldizón, Y.; Pérez-Patricio, M.; Camas-Anzueto, J.L.; Rodríguez-Elías, O.M.; Escobar-Gómez, E.N.; Vazquez-Delgado,
H.D.; Guzman-Rabasa, J.A.; Fragoso-Mandujano, J.A. Lamb Behaviors Analysis Using a Predictive CNN Model and a Single
Camera. Appl. Sci. 2022, 12, 4712. [CrossRef]

23. He, W.; Huang, Z.; Wei, Z.; Li, C.; Guo, B. TF-YOLO: An Improved Incremental Network for Real-Time Object Detection. Appl.
Sci. 2019, 9, 3225. [CrossRef]

24. Farag, W.; Saleh, Z. Road Lane-Lines Detection in Real-Time for Advanced Driving Assistance Systems. In Proceedings of the
2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier,
Bahrain, 18–20 November 2018; pp. 1–8. [CrossRef]

25. Chen, J.; Kao, S.H.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural
Networks. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada, 17–24 June 2023; pp. 12021–12031. [CrossRef]

26. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 11531–11539. [CrossRef]

27. Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740.
28. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss

for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [CrossRef]

29. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
[CrossRef]

30. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
[CrossRef]

31. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the 32nd International Conference on Machine Learning, Lile, France, 6–11 July 2015; pp. 448–456.

32. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

33. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial cnn for traffic scene understanding. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 7276–7283. [CrossRef]

34. State General Administration of the People’s Republic of China for Quality Supervision and Inspection. Quarantine and National
Standard of the People’s Republic of China. In Road Traffic Signs and Markings: Part 3, Road Traffic Markings; Standards Press of
China: Beijing, China, 2009.

35. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer
Vision—ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018; pp. 3–19. [CrossRef]

36. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

37. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression.
arXiv 2019, arXiv:1911.08287. [CrossRef]

38. Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression.
arXiv 2021, arXiv:2101.08158. [CrossRef]

39. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37. [CrossRef]

40. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13158927
https://doi.org/10.3390/app13137787
https://doi.org/10.3390/app12094712
https://doi.org/10.3390/app9163225
https://doi.org/10.1109/3ICT.2018.8855797
https://doi.org/10.1109/CVPR52729.2023.01157
https://doi.org/10.1109/CVPR42600.2020.01155
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/cvpr.2018.00913
https://doi.org/10.1145/3065386
https://doi.org/10.1609/aaai.v32i1.12301
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1609/aaai.v34i07.6999
https://doi.org/10.1016/j.neucom.2022.07.042
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2017.324

	Introduction 
	Method 
	Basic Principles of the YOLOv5 Algorithm 
	Improved YOLOv5 Algorithm 
	FasterNet Lightweight Network 
	ECA Mechanism 
	SIoU Loss Function 


	Experimental Section 
	Experimental Environment and Hyperparameters 
	Experimental Dataset 
	Evaluation Metrics 

	Result 
	Comparative Experiment of Attentional Mechanisms 
	Comparison Experiment of Loss Function 
	Ablation Experiment 
	Comparative Experiment of Different Algorithms 
	Comparative Experiment of YOLO Series Algorithms 
	Analysis of Influence of Light Intensity 
	Analysis of the Influence of Noise 

	Conclusions 
	References

