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Abstract: The incidence of melanoma cases continues to rise, underscoring the critical need for early
detection and treatment. Recent studies highlight the significance of deep learning in melanoma
detection, leading to improved accuracy. The field of computer-assisted detection is extensively
explored along all lines, especially in the medical industry, as the benefit in this field is to save
hu-man lives. In this domain, this direction must be maximally exploited and introduced into
routine controls to improve patient prognosis, disease prevention, reduce treatment costs, improve
population management, and improve patient empowerment. All these new aspects were taken into
consideration to implement an EHR system with an automated melanoma detection system. The first
step, as presented in this paper, is to build a system based on the fusion of decisions from multiple
neural networks, such as DarkNet-53, DenseNet-201, GoogLeNet, Inception-V3, InceptionResNet-V2,
ResNet-50, ResNet-101, and compare this classifier with four other applications: Google Teachable
Machine, Microsoft Azure Machine Learning, Google Vertex AI, and SalesForce Einstein Vision based
on the F1 score for further integration into an EHR platform. We trained all models on two databases,
ISIC 2020 and DermIS, to also test their adaptability to a wide range of images. Comparisons
with state-of-the-art research and existing applications confirm the promising performance of the
proposed system.

Keywords: melanoma detection; skin cancer; melanoma diagnosis system; convolutional neural
network; decision fusion

1. Introduction

Melanoma is a form of tumor that emerges when melanocytes experience a malignant
alteration. This sort of cancer initiates in the skin, yet as the tumor advances, it can
extend across the body as cancerous metastases [1]. One of the key factors that add
to the formation of melanoma is exposure to ultraviolet (UV) radiation, whether from
natural sunlight or artificial sources. This radiation can induce skin burns that result in
structural changes, potentially leading to scars that could eventually evolve into melanomas.
Furthermore, UV radiation can impact the skin’s healing process at a genetic level, causing
modifications to the DNA. This, in time, can trigger mutations in normal cells, causing
them to become cancerous. Genetic predisposition also plays a vital part, with a history
of cancer in the family indicating susceptibility to UV radiation, especially in individuals
with characteristics such as fair skin, blue eyes, or a higher number of skin features, such as
moles, freckles, or patches. Another contributing factor is the presence of benign growths
with an elevated concentration of melanocytes and melanin, presenting as dark areas
or moles [2,3]. Nevertheless, the most prevalent cause of melanoma is, as previously
mentioned, exposure to UV radiation, specifically from sunlight or artificial tanning devices
that emit such radiation.
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Prolonged or brief yet intense exposure to this form of radiation can lead to mutations
within melanocytes, which contributes further to the formation of melanoma. In approxi-
mately 25% of instances, melanocytes arise from the transformation of moles, exhibiting
characteristics, such as irregular shapes, alterations in color, significant sizes, compromised
skin, or itching [4,5]. In more advanced cases, there might even be instances of bleeding or
inflammation. Melanomas can manifest in areas of the skin devoid of visible indications,
on recently formed moles, or other skin marks. While certain moles can surpass a size of
5 mm, certain melanomas can be smaller than 5 mm, and their size does not necessarily
indicate malignancy. Interestingly, these melanomas can arise even in regions that have not
been exposed to UV radiation [6]. Melanoma ranks among the leading five causes of death
among men and the top seven among women. It develops either from pre-existing lesions
that undergo mutations or can originate in healthy skin [7]. According to [8], estimates
for the year 2023 in the United States indicate around 97,610 new cases of melanoma, with
58,120 occurring in males and 39,490 in females. Additionally, there are projections of
approximately 7990 deaths attributed to melanoma, comprising 5420 in males and 2570 in
females [9].

Melanoma undergoes two distinct growth phases: a vertical phase and a radial phase.
During the vertical growth phase, cancer cells penetrate deeply into the epidermis and, with
time, progress through vertical expansion. At this stage, the cells infiltrate the dermis and
give rise to metastasis, spreading throughout the body. Lesions resulting from melanoma
are categorized based on their depth: thin (up to one millimeter thick), moderate (between
1–4 mm thick), and thick (exceeding 4 mm in thickness) [9,10]. In the study outlined in [11],
it was reported that in 2020, skin lesions in the form of melanoma accounted for 1.3% of all
cancer-related deaths in European Union member states. Additionally, this type of cancer
constituted 4% of all newly identified cancer cases. These statistics consequently positioned
melanoma as the 15th most prevalent cause of cancer-related fatalities within European
Union member states [11].

On a global scale, approximately 57,000 deaths were recorded in 2020, reflecting a
mortality rate of 0.4 per 100,000 for women and 0.7 per 100,000 for men [12]. Presently, the
evaluation of such tumors involves a visual examination conducted by a specialized medical
professional utilizing a dermatoscope. The diagnostic process takes into account factors
such as asymmetry, irregular edges, color variations, size, and thickness. Additionally,
blood tests may be conducted to determine the disease’s stage. Biopsy results can also
provide insights into potential resection margins [13]. However, this type of examination is
time-consuming and susceptible to human errors.

The survival rate for this form of cancer is heavily dependent on its stage. In stage one,
where cancer is immediately detected, the survival rate stands at 90%. In stage two, this
rate drops to approximately 45%, and in stage three, it further declines to about 27% [14].
Consequently, delayed detection significantly increases the risk of fatality. The primary
solution in such cases is early detection and analysis of skin damage. Currently, this
necessitates a visit to a medical professional and involves a battery of tests for accurate
diagnosis. These tests often consume a considerable amount of time and may be invasive,
causing inconvenience and anxiety for the patient. Thus, the development of a computer-
assisted automatic system for detecting skin lesions with high accuracy becomes imperative.
In recent years, researchers have dedicated considerable effort to examining this topic
from both clinical and technical perspectives, seeking an optimal approach to skin lesion
detection. From a technical standpoint, various methods have been explored, with Deep
Learning (DL) techniques emerging as the most effective. In the following sections, we
will present the present state of research by delving into some studies conducted between
2020 and 2023 that utilized DL techniques to create systems capable of achieving high-
performance automatic detection of skin diseases.

Within the scope of the OPTIM Project (https://optim.upb.ro, accessed on 2 November
2022), our central aim was to create an Electronic Health Record (EHR) information system
seamlessly integrating advanced artificial intelligence (AI)-powered classification solutions

https://optim.upb.ro
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for medical images. Moreover, the project sought to introduce novel applications and
functionalities tailored to the intricate workflow demands of medical institutions. This
initiative was born out of the necessity to establish an information system that houses
all the essential modules essential for patient diagnosis and streamlined communication.
Given the modern emphasis on efficiency, consolidating interactions within a single plat-
form proves to be advantageous, especially considering the challenges and stress that
ailing patients experience while navigating multiple avenues for diagnostic purposes. In
essence, this research paper unveils a systematic, criterion-based approach to decision
fusion from multiple networks for melanoma detection. This work distinguishes itself
through the utilization of F1-score-based weighting, adaptability to dual databases, and
a comprehensive empirical assessment, thereby solidifying its superiority over existing
applications in the field. In this study, we introduce a multi-network system rooted in
decision fusion for melanoma detection, achieved by combining various high-performance
Convolutional Neural Networks (CNNs). Subsequently, we juxtapose this system against
several web-based tools designed for constructing machine learning models, assessing their
compatibility for integration into alternative platforms.

Our primary endeavor centers on the establishment of an EHR system intertwined
with an automated melanoma detection mechanism. This involves the creation of a bespoke
decision fusion classifier that seamlessly incorporates an array of neural networks, includ-
ing DarkNet-53, DenseNet-201, GoogLeNet, Inception-V3, InceptionResNet-V2, ResNet-50,
and ResNet-101. The core of our research focuses on implementing an EHR system fortified
with an automated melanoma detection system. This innovation harmonizes cutting-edge
advancements in machine learning, neural networks, and medical diagnostics to address
a critical healthcare challenge. The process entails intricately merging a diverse range of
neural networks within a tailored decision fusion classifier. The significance of our research
emanates from the urgency to enhance melanoma detection’s efficiency and accuracy within
the framework of an EHR system. Timely and accurate melanoma detection can profoundly
impact patient outcomes, thereby enhancing healthcare interventions. By automating the
detection process, we empower medical professionals with a potent tool for swift diagnosis
and informed decision-making, ultimately elevating patient care.

Furthermore, our research stands out for its comprehensive approach. It extends
beyond crafting the custom decision fusion classifier to encompass a comprehensive com-
parison with four prominent applications—Google Teachable Machine, Microsoft Azure
Machine Learning, Google Vertex AI, and Salesforce Einstein Vision. This comparative
analysis serves as a benchmark, affirming the effectiveness and superiority of our approach
in automating melanoma detection. In summary, our research introduction shines a light
on pivotal components: our ambition to integrate automated melanoma detection within
an EHR system, the development of a tailored decision fusion classifier utilizing diverse
neural networks, and the profound implications of enhancing medical diagnostics. This is
validated through a comprehensive comparison that underscores the efficacy of our system
when measured against established applications.

All the abbreviations in this study can be found in Abbreviation.

2. Related Work

In reference to [15], a CNN classifier was detailed and optimized using metaheuristic
techniques for pre-trained network models. The optimization of biases and weights within
the CNN models was executed through the implementation of a whale optimization
algorithm. Experimental results attained from the application of these algorithms to the
Dermquest and DermIS databases showcased superior performance metrics compared to
other Deep Learning (DL) techniques. Notably, the achieved metrics included a Sensitivity
of 0.95, Specificity of 0.92, and Accuracy of 0.91. Similarly, in the year 2020, Ref. [16]
proposed a system integrating an AlexNet CNN designed to detect four distinct classes:
Urticaria, Acne, Eczema herpeticum, and Keratosis. The system’s training on the DermNet
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database, followed by testing on 69 images, demonstrated a remarkable accuracy ranging
from 98.6% to 99.04% [16].

Another approach surfaced in the work by [17], which introduced an automatic system
that employed hyperspectral data and GoogLeNet CNN. This method entailed utilizing
a hyperspectral imager to gather position and wavelength information, and GoogLeNet
was employed for the classification of skin lesions into two classes. To accommodate the
network’s three input channels, a “Mini Network” layer was added to reduce channel
dimensions from 84 to 3. Subsequent evaluation of the system after data augmentation
yielded a specificity of 81.2%, accuracy of 77.2%, and sensitivity of 72.3% [17].

For instance, in [16], a CNN comprising three hidden layers with 64, 32, and 16 chan-
nels for each layer was proposed. Various optimizers, including Nadam, RMSprop, Adam,
and SGD Optimizers, were tested using a learning rate of 0.001. The Adam optimizer
emerged as the most effective for skin lesion detection. This system successfully differenti-
ated four distinct classes: melanoma, dermatofibroma, squamous cell carcinoma, and nevus
pigments. It achieved an accuracy of 99% and an F1 score close to unity when applied to
the ISIC database [18].

In another study, Ref. [19] employed a ResNet-50 CNN trained on 1072 acral benign
nevi images from a Korean hospital. The system aimed to detect acral lentiginous melanoma.
A comparative analysis was performed across three survey types: dermoscopic images
analyzed solely by 60 physicians, dermoscopic images combined with clinical information,
and all previous information supplemented by the CNN’s predictions. The conclusion
drawn indicated that detection performance increased progressively across the stages,
culminating in an accuracy of 86.9% [19].

Conducting a comprehensive overview in [20], researchers analyzed 5112 studies on
melanoma detection using DL techniques. Out of these, 55 papers were deemed reputable
and selected for in-depth analysis. The study offered insights into recent trends, solutions,
opportunities, and challenges concerning melanoma detection via DL techniques. The
authors also proposed a taxonomy to summarize various detection solutions [20].

Furthermore, a study by [21] delved into CNN models for melanoma detection. The
study employed TensorFlow and Keras to build the model, involving varying layers of
different network architectures. The system underwent data augmentation, normaliza-
tion, and transfer learning using CNNs such as InceptionResNet-V2, VGG16, MobileNet,
Inception-V3, and ResNet-50. Results demonstrated that InceptionResNet achieved the
highest performance, boasting an accuracy, recall, precision, and F1 score of 91%. The
system successfully differentiated seven categories of skin lesions [21].

The evaluation of an approved system in the European market for certain types of
skin lesions was conducted by [22], revealing favorable diagnostic support from the CNN.
However, performance limitations were noted for specific lesion types, such as subungual
or mucosal lesions. The study used six dermoscopic image sets, including 100 benign
lesions and 30 melanoma images each. High specificities and sensitivities were achieved
for nodular and superficial melanomas, while subungual and mucosa melanoma detection
presented lower performance [22]. Transitioning to 2021, Ref. [23] introduced a system
incorporating a MobileNet pre-trained CNN for feature extraction. Support Vector Machine
(SVM) and linear discriminant analysis (LDA) were utilized for classifying skin lesions into
melanoma and non-melanoma classes. By applying cropping and boundary localization to
PH2 database images, the proposed system achieved an exceptional specificity of 97.91%
and an accuracy of 95% [23].

In a similar vein, Ref. [24] proposed two systems involving a CNN model and a com-
bination of CNN and Neural Network NN. The combined model exhibited higher accuracy
(92.34%) compared to the standalone CNN model (73.69%). Performance assessments were
conducted on 1200 images from the ISIC database [24]. Additionally, Ref. [25] assessed the
performance of their CNN on the HAM10000 database. The system, incorporating 45 layers
and utilizing InceptionResNet-V2, achieved an impressive accuracy of 99.69%, with low
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false negatives. The system accurately classified images into nevi, non-nevi, and melanoma
categories [25].

In another study, Ref. [26] focused on pre-processing approaches to enhance a CNN-
based skin lesion detection system. Region of interest (ROI) extraction was accomplished
using a proposed algorithm, leading to improved CNN model training and evaluation
efficiency. InceptionResNet-V2’s performance notably improved by 2.18% when trained
on ROI images. ISIC-2019 served as the database for this study [26]. In a study by [27],
the author employed the EfficientNet-B6 CNN to capture fine-grained features, yield-
ing competitive results with an AUC-ROC score of 0.917 when applied to the ISIC 2020
database [27].

As research extended into 2022, Ref. [28] employed Deep Learning to accurately extract
skin lesions. A process involving Super-Resolution Generative Adversarial Networks
(ESRGAN) improved image quality, followed by the extraction of Regions of Interest (ROI).
Employing a CNN and a modified version of ResNet-50, the proposed method displayed
high potential with metrics such as F-score, recall, accuracy, and precision, reaching 0.86,
0.86, 0.86, and 0.84, respectively [28].

Alternatively, Ref. [29] introduced a novel approach considering a third dimension,
namely the depth of the skin lesion. This dimension, captured from light-field images,
was combined with two-dimensional (2D) information using Morlet scattering transform
and CNN. The combined three-dimensional (3D)–two-dimensional approach yielded the
highest accuracy of 94%, while 2D-only and 3D-only dimensions achieved accuracies of
84% and 74%, respectively [29].

A novel Fuzzy GrabCut-stacked convolutional neural network GC-SCNN-based
model was proposed by [30] for skin lesion detection. Utilizing PH2 and HAM10000
databases, fuzzy logic enabled boundary detection, and stacked CNNs (GC-SCNN) facili-
tated feature extraction. Segmentation-enhanced SVMs were then used for segmentation
and classification, achieving high metrics, including 100% specificity, sensitivity, and 99.75%
accuracy [30].

Continuing into [31], the ISIC 2018 database was leveraged to train and test the
proposed method. Pre-processing, subsampling, and down-sampling steps were conducted
to balance data, and VGG16 and ResNet-50 CNNs were used to detect melanoma. The
system demonstrated a dice coefficient of 97.4%, accuracy of 92.3%, recall of 90%, Jaccard
index of 99.8%, and precision of 93.3% [31]. By 2023, Ref. [32] proposed a CNN strategy
for early melanoma detection involving five convolution layers, five pooling layers, a fully
connected layer, an input layer, and an output layer. Employing 10,000 and 1000 images for
training and testing, respectively, the system achieved an accuracy of 91% [33].

Lastly, in [33], two decision fusion methodologies based on CNN models were intro-
duced, involving the extraction of Regions of Interest (ROI) using the Geometric Active
Contour (GAC) algorithm. Extracted features were then employed for classification through
Random Forest (RF) and NN. The second method included the fusion of features from
various CNN models, yielding an accuracy of 96.1%, an ACC of 94.41%, a precision of
88.69%, a sensitivity of 88.9%, and a specificity of 99.44% [33].

In [34], a model is presented that utilizes level-set segmentation for effectively seg-
menting images with non-uniform properties. This model, featured in the current research,
boasts exceptional attributes, including high accuracy, speed, rapid convergence, resilience
to varying starting contours, and resistance to noise interference. The proposed approach
delivers results characterized by a true detection rate of 94%, a false negative rate of 3.62%,
and an error rate of 3.3%. The testing outcomes substantiate the assertion that the recom-
mended method for lesion segmentation is robust and remains unaffected by factors such
as hair, blood vessels, changes in brightness, and variations in contrast.

In [35], the authors explore the application of various machine-learning techniques to
construct a high-performance ensemble classifier for six distinct skin lesions. Specifically,
the researchers utilize Adaboost, voted ensemble, random forest, boosted Gaussian Mixture
Model (GMM), voted Convolutional Neural Network (CNN), and boosted Support Vector
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Machine (SVM). The authors recognize an issue of imbalanced classification across all
classes, prompting them to adopt ensemble transfer learning and transfer learning tech-
niques. This strategic choice effectively mitigates the challenge posed by class imbalance.

The study encompasses a total of 19 classifiers, which include 5 ensemble transfer
learning models, 6 ensemble models, 4 Machine Learning (ML) and Deep Learning (DL)
models, and four transfer learning models. Performance metrics are thoroughly assessed
to gauge the effectiveness of each classifier. In the paper’s conclusions, the authors note
that the Ensemble voted, GMM, and random forest classifiers exhibit comparatively lower
performance than the Adaboost and boosted SVM classifiers. Notably, the ensemble CNN
achieves an impressive accuracy rate of 98.67% [35]. In conclusion, the field of melanoma
detection through CNNs and DL techniques has seen significant exploration over the years,
with various methodologies offering promising results. However, the challenge remains
open due to the need for systems trained on sufficient images that ensure high accuracy
and minimal chance of misclassification.

These studies explore various methodologies, architectures, and databases for the
purpose of identifying skin lesions, particularly melanoma. Each study tackles the challenge
of accurate detection from different angles, often achieving promising results. However,
despite the multitude of efforts, the researchers point out that achieving high accuracy and
minimizing false detections remains an ongoing challenge due to factors such as dataset size
and complexity. In contrast, our paper takes a distinct approach by focusing on enhancing
the performance of melanoma detection through a multi-network system utilizing decision
fusion. We consider several high-performance CNN architectures, including DarkNet-53,
DenseNet-201, GoogLeNet, Inception-V3, InceptionResNet-V2, ResNet-50, ResNet-101,
and Xception. The selection of these networks is guided by specific criteria outlined in the
methodology section, indicating a methodical approach to network selection.

The key innovation lies in the establishment of decision fusion weights based on F1-
scores from each CNN combined with the utilization of specific criteria to select the CNN
demonstrating the highest performance based on state-of-the-art analysis. By leveraging
these scores, we optimize the performance of our proposed system. We test the system’s
effectiveness on two distinct databases, ISIC 2020 and DermIS, highlighting its adaptability
to varying datasets. Our approach involves training, validation, and testing on 700, 300,
and 200 images, respectively, showcasing rigorous empirical evaluation. Moreover, we
conduct a comprehensive comparison of our system’s performance against four other
existing applications that utilize CNN combinations, such as Google Teachable Machine,
Microsoft Azure Machine Learning (ML), Google Vertex AI, and Salesforce Einstein Vision.
This comparison underscores our proposed system’s superior performance.

The structure of this study is as follows: Section 3 provides insights into the utilized
databases and outlines the various CNN architectures applied for skin lesion detection.
The methodology employed for validating system performance is also detailed. Section 4
delves into the experimental results. Section 5 engages in a discussion of the proposed
methodologies and includes a comparison with existing systems. Finally, Section 6 presents
the conclusion of this research.

3. Materials and Methods

To begin, we provide an overview of the databases employed in this study. Sub-
sequently, we delve into the methodologies employed for skin lesion detection. From
a hardware perspective, all the software architecture we proposed was executed on a
computing device equipped with 16 GB RAM and a 4.5 GHz Core i7 Intel processor. The
architecture for our study flow is presented in Figure 1.
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Figure 1. Architecture for the proposed method for the study.

3.1. Databases and Image Pre-Processing

Images from two different dermoscopic image databases, namely, ISIC 2020 and
DermIS, were used to test and train the proposed architectures.

3.1.1. ISIC Database

As stated in reference [36], the complete ISIC database comprises a total of 93,083 images,
with 71,372 designated for training purposes and 21,711 earmarked for testing, constituting
the most extensive publicly available collection of dermoscopic skin lesion images [35].
In our previous study conducted in 2022 [37], we demonstrated that ISIC is the preferred
database among researchers for developing high-performance melanoma detection systems.
This is due to the meticulous expert labeling of images in the field and the annual challenge
that offers monetary rewards.

One of ISIC’s primary objectives is to foster the discovery of optimal computational
solutions for skin lesion detection, achieved by offering training and testing databases. The
repository primarily encompasses several smaller databases, such as MSK, HAM10000,
and BCN2000 [37,38]. As previously mentioned, this current paper employs training and
testing data drawn from the ISIC 2020 database. This repository contains 33,126 images of
skin lesions designated for system training and 10,982 images intended for system testing.
These images have been sourced from various institutions situated in diverse global regions
and involve over 2000 patients [36,39,40].

For our study, we selected a subset of 1000 images from the ISIC 2020 database,
out of which 700 images were utilized for training the proposed architectures, while the
remaining 200 images were used for testing purposes. Examples of images from the ISIC
2020 Database are presented in Figures 2 and 3.
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3.1.2. DermIS Database

The DermIS database stands as the most comprehensive repository of dermatological
information available on the internet. It encompasses a wide array of images depicting
nearly all categories of skin conditions and diagnoses, supplemented with differential
diagnoses, case reports, and additional pertinent data such as medical journals. This
collaborative project is conducted in conjunction with the Department of Socio-Clinical
Medicine at the University of Heidelberg and the Department of Dermatology at the
University of Erlangen. Within this database, there are 500 images portraying melanoma
cases and another 500 images depicting healthy skin conditions [41,42].

Much like our utilization of the ISIC database, this paper similarly leverages the entire
collection of 1000 images within the DermIS database. Out of these images, 700 were
allocated for training purposes, while the remaining 200 were dedicated to testing the
proposed algorithms. Examples of images drawn from the DermIS Database are showcased
in Figures 4 and 5.
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As commonly understood, the development of a highly effective medical diagnosis
system for image classification necessitates the utilization of high-quality input images.
Given the absence of suitable databases, image pre-processing becomes an imperative step.
Enhancing image quality is pivotal, as it facilitates subsequent processing stages. Initially,
this entails adjustments to brightness and contrast, often followed by converting color
images to grayscale. The selection of specific image processing techniques hinges on the
nature of the classification task at hand. These techniques encompass noise reduction,
image resizing, color correction, segmentation, and feature extraction [43–45]. In this study,
we employ pre-processing techniques that involve adjusting image dimensions through
resizing and eliminating hair artifacts. The resizing is tailored to the specific requirements
of each CNN utilized. For instance, in the case of the GoogLeNet architecture, images
were resized to dimensions of 256 × 256 × 3 pixels, and the aspect ratio was 1:1 (this is
the case with all the images we pre-processed). Concerning skin lesion images, certain
elements can be regarded as image artifacts, as they impede the computer-aided diagnosis
process. Notably, some images suffer from blurriness due to either human movements (by
the operator or patient) or the presence of hair or water droplets. Additionally, annotations,
such as measuring scales, might be present in certain images, potentially misleading
the system.

Our research is dedicated to propelling the field of dermatology and the precise
classification and diagnosis of skin conditions through meticulous analysis of skin lesions.
In pursuit of this goal, we have deliberately chosen to incorporate the ISIC 2020 and DermIS
datasets into our study. The selection of the ISIC 2020 and DermIS datasets for our research
is substantiated by a range of factors. Firstly, these datasets hold considerable prominence
and are widely employed in the realm of dermatology and the analysis of skin images.
They have undergone exhaustive curation and validation by domain experts, instilling
confidence in the quality and dependability of the data. Furthermore, the ISIC 2020 dataset
centers specifically on images of skin lesions, presenting an extensive compilation of diverse
cases encompassing melanoma, nevi, and various other prevalent skin conditions. This
dataset showcases a diverse array of images, facilitating the training and assessment of our
models across a broad spectrum of skin ailments, thereby amplifying the applicability of our
findings. In tandem, the DermIS dataset supplements the ISIC 2020 dataset by furnishing
an extensive trove of dermatological images, spanning both clinical and dermoscopic
views. This dataset bestows invaluable insights into the visual attributes and patterns
of diverse skin disorders, allowing us to delve into and dissect multifaceted aspects of
dermatological ailments. Our intent in utilizing these datasets is to harness the collective
wisdom and dexterity embedded within the data to engineer robust and accurate algorithms
for analyzing skin images. Both the ISIC 2020 and DermIS datasets have undergone rigorous
curation procedures, validating the accuracy and authenticity of the data. The involvement
of esteemed institutions and experts in dermatology in the compilation of these datasets
bolsters their credibility.

Both datasets showcase a diverse array of skin lesions spanning different types, sever-
ities, and anatomical locations. This diversity guarantees the precision of our analysis
while concurrently ensuring its adaptability to a wide spectrum of skin conditions, thus
enhancing the reliability of our conclusions. These datasets have gained substantial recog-
nition as benchmarks within the dermatology community. By incorporating the ISIC 2020
and DermIS datasets, we ensure that our research is benchmarked against established
studies, enabling meaningful assessments of the advancements we propose. Moreover,
both datasets are openly accessible to the research community, certifying the reproducibility
of our experiments and extending the opportunity for fellow researchers to authenticate
our findings. This transparent approach bolsters the integrity of our study and cultivates
an environment of collaboration.

Fortunately, over time, numerous researchers have addressed the issue of skin lesion
image pre-processing, providing effective solutions. In [46], the authors introduced the
DullRazor application, which has gained popularity as a software dedicated to hair removal
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in skin lesion images. This software employs morphological closing operations followed
by the replacement of extracted pixels through bilinear interpolation. The replaced pixels
are then smoothed using a median filter. Other techniques encompass various morpho-
logical operations along with operators such as bottom-hat [47], Sobel [48], Tophat [49],
Laplacian [50], Radon transform (E-shaver) [51], and multiscale skeleton-morphological
operators (“Virtual Shaver” method) [52]. In this study, we applied the DullRazor algorithm
to eliminate hair artifacts from the selected images sourced from the ISIC 2020 and DermIS
databases. This software was chosen due to its superior performance in hair removal, as
acknowledged in the current state of the art. The outcomes of employing the DullRazor
algorithm on the chosen images are depicted in Figures 6 and 7.
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The results achieved are notably favorable, although it is worth mentioning that in
the case of the ISIC 2020 database, for certain images, we found it necessary to apply the
DullRazor algorithm twice. This decision stemmed from the initial outcomes not meeting
our satisfaction. The approach involved initially applying the algorithm to the original
image. Subsequently, the resulting image underwent the same algorithm again to yield
improved outcomes. This two-step process was undertaken because images in the ISIC
2020 database tend to exhibit more noise, annotations, and even thicker hairs intersecting
the lesion area. During the initial run, annotations were sometimes eliminated, whereas
during the second run, hair removal was the focus. As demonstrated in Figure 6, due to
the thickness of certain hairs, complete removal was not always achieved.

In this research, we will utilize a dataset comprising 1200 images for the purposes
of training, validation, and testing. However, this quantity might not provide an ample
number of examples for the CNNs to learn effectively. These images have undergone
comprehensive labeling, enabling us to possess precise knowledge about each image,
including both the predicted and actual labels. Non-random data selection implies that the
testing dataset has been intentionally designed to mirror real-world scenarios. This ensures
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that the model’s performance evaluation is based on data that truly reflect the situations
it will encounter in practical use and that we have a robust understanding of the true
outcomes for each instance in our testing set. This high-quality ground truth information
enables a meaningful assessment of the model’s predictions. Considering these factors, it is
possible that the current testing setup, which benefits from non-random data and thorough
labeling, may provide reliable insights without the immediate need for larger sample sizes
or other validation methods.

3.2. Skin Lesion Detection Using Various CNNs

We employed MATLAB R2023b to implement the various CNN methodologies de-
scribed. The process of selecting software tools for a project entails a thorough assessment
of several factors, which includes analyzing the particular task’s requirements, the avail-
ability of relevant functions, and the ease of putting the solution into practice. In our
situation, our choice to employ MATLAB and construct the decision fusion classifier within
this environment stemmed from a blend of practicality, our existing expertise, and the
distinctive features that MATLAB provides. Our team possesses a strong background in
MATLAB, which has been developed over years of experience. This familiarity with MAT-
LAB’s programming language, built-in functions, and toolboxes allowed us to expedite the
development process and focus on the core aspects of our research.

MATLAB boasts an array of specialized toolboxes catered to diverse scientific and
engineering domains. These toolboxes offer a comprehensive selection of functions and
algorithms purpose-built for tasks such as data analysis, signal processing, and machine
learning. Given the intricate decision fusion techniques involved in our project, the Signal
Processing Toolbox and Statistics and Machine Learning Toolbox within MATLAB were
invaluable in efficiently implementing these methods. The visual capabilities of MATLAB
empower us to visualize and meticulously examine the outcomes of the decision fusion
process. The capability to create insightful plots, graphs, and visual presentations enhances
our comprehension of the classifier’s performance and aids in conveying our findings to
colleagues and stakeholders. MATLAB’s programming environment affords a considerable
level of flexibility when it comes to realizing intricate algorithms. This was especially
advantageous for our decision fusion classifier, which necessitated complex data manipula-
tion and fusion strategies. The comprehensive array of functions within MATLAB enabled
us to fine-tune the implementation to our precise needs. MATLAB’s interactive nature and
immediate feedback loop expedite swift prototyping and experimentation. This proved
pivotal during the iterative progression of our decision fusion classifier, allowing us to
promptly evaluate various approaches, refine parameters, and evaluate performance. Fur-
thermore, MATLAB’s optimization capabilities, which encompass vectorized operations,
streamlined the execution of our decision fusion classifier. This efficiency is of utmost
significance, particularly when grappling with extensive datasets or algorithms demanding
significant computational resources.

The CNNs used were initially pre-trained on the ImageNet database. Therefore, the
outcomes we achieved were based on the application of transfer learning techniques. These
pre-trained CNNs already possess the ability to differentiate between various fundamental
objects. To adapt these CNNs for skin lesion detection, we followed a sequence of steps.
Initially, we fine-tuned the pre-trained CNNs to enable the classification of skin lesions
into two categories: melanoma and non-melanoma. Subsequently, we initiated the data
loading process, specifying the image locations. As elaborated in the preceding section, we
partitioned the data into training and testing datasets, each accounting for approximately
70% and 20% of the data, respectively. Following this, we loaded the pre-trained networks.
For network retraining, we substituted the final two layers with a new fully connected
layer and a classification layer. To accelerate the learning process, we adjusted the weight
learn rate factor by increasing its value. To facilitate the training procedure, image resizing
was performed. All necessary training options were then configured. Validation images
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were subjected to classification, and we additionally generated a confusion matrix for each
executed architecture [53,54].

3.2.1. DarkNet-53

Darknet is an open-source neural network framework specifically designed for tasks
related to object detection and recognition in the field of computer vision. Joseph Redmon
is the developer behind Darknet, which is renowned for its effectiveness and accuracy in
real-time object detection. This framework is coded in C and CUDA languages, rendering it
compatible with both CPU and GPU processors. It has widespread applications, spanning
surveillance systems, autonomous vehicles, robotics, and more. One of its notable features
is the inclusion of pre-trained models, such as YOLO (You Only Look Once), which is used
for object detection tasks [37,38].

In a study conducted by [50], a hybrid approach was introduced that combined
Residual Network, YOLOv2, and Darknet-19. This network configuration encompasses
a total of 53 convolutional layers, employing consecutive 1 × 1 and 3 × 3 convolutional
layers. The outcomes presented by [55] indicate that this architecture outperforms others,
including ResNet-152, Darknet-19, and ResNet-101. Darknet is predominantly utilized
for YOLO workflows and addressing object detection challenges [56]. The architectural
depiction of DarkNet-53 is illustrated in Figure 8.
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3.2.2. DenseNet 201

DenseNet is a commonly employed architecture in approaches related to Skin Lesion
detection due to its remarkable accuracy and efficiency [37]. The design of DenseNet centers
around dense blocks, serving as fundamental components. An illustration of this structure
can be observed in Figure 8. Within each dense block, four densely connected layers are
incorporated, characterized by a growth rate of 4. A skip-connection scheme is employed,
in which the current layer is connected to all the preceding layers. This configuration
efficiently tackles challenges associated with the vanishing gradient problem [57], Ref. [58]
by aggregating input from previous layers and utilizing it iteratively with fewer convolution
kernels. The architectural layout of DenseNet-201 is visualized in Figure 9.
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3.2.3. GoogLeNet

GoogLeNet, also recognized as Inception v1, is a convolutional neural network
(CNN) framework crafted by Google researchers. It was developed for the 2014 ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC), where it showcased notable perfor-
mance enhancements compared to prior models. The distinctive feature of GoogLeNet
lies in its “Inception module”, which integrates nine such modules side by side. This
design choice enables the network to capture information across diverse spatial scales
by utilizing multiple filters with varying receptive field sizes. A significant innovation
occurs at the culmination of the final Inception module, where global average pooling is
employed. This technique adeptly extracts both local and global features from images.
Additionally, the Inception module incorporates 1 × 1 convolutions, which serve to reduce
the dimensionality of feature maps and enhance computational efficiency.

GoogLeNet is composed of numerous stacked Inception modules, complemented by
supplementary layers for classification purposes. In total, the architecture comprises 22 lay-
ers and replaces fully connected layers at the network’s end with global average pooling.
This strategy curtails the number of parameters within the model and mitigates the risk of
overfitting. Despite incorporating 100 independent building blocks, the network retains
computational efficiency and adaptability for diverse label sets [59]. The architectural
configuration of GoogLeNet is depicted in Figure 10.

The Inception architecture is a complex neural network featuring recurrent modules
(illustrated in Figure 11) accompanied by subsequent max-pooling layers, which effectively
halve the grid resolution. For the purpose of optimizing training efficiency, Inception
modules are exclusively employed in the higher layers, while lower layers incorporate
standard convolution layers. This approach permits the augmentation of units at each stage
without compounding computational intricacies.

3.2.4. Inception V3

Inception V3 was developed with the aim of reducing the number of parameters and
connections while preserving the network’s efficiency. In this iteration, the 7 × 7 convolu-
tional layer has been decomposed into three consecutive 3 × 3 convolutions. Following
each convolution, ReLU activation blocks and Batch Normalization are employed. As
for the inception blocks within the network, three 35 × 35 inception modules are inte-
grated, each equipped with 288 filters. Additionally, five other grids with dimensions
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of 17 × 17 and a total of 768 filters, along with two more grids of size 8 × 8 × 1280, are
utilized [37,60,61]. The architectural arrangement of Inception V3 is depicted in Figure 12.
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3.2.5. ResNet-50 and ResNet-101

ResNet stands as a widely adopted convolutional neural network architecture that
employs residual blocks to construct a network capable of progressively comprehending
intricate features as data pass through its layers. This architecture has garnered remarkable
success in diverse tasks such as image recognition, object detection, and image segmenta-
tion. Originating from the endeavors of Microsoft Research researchers in 2015, ResNet
addresses the challenge of training profoundly deep neural networks while evading the
performance degradation that often accompanies depth.

The foundational version of ResNet, ResNet-34, encompasses 34 layers and integrates
shortcut connections, as depicted in Figure 13a. These connections imbue the network
with residual properties, resulting in fewer filters and a streamlined complexity. Further
iterations include ResNet-50 and ResNet-101, housing 50 and 101 layers, respectively, and
adopting residual connections [48]. In ResNet-50, a three-layer bottleneck block supplants
each two-layer block found in ResNet-34, yielding a network of 50 layers. Similarly, the
integration of more three-layer blocks produces ResNet-101. It is commonly recognized
that both ResNet-101 and ResNet-50 exhibit superior accuracy compared to ResNet-34.
Figure 13b visually illustrates the architecture of ResNet [62].

3.2.6. Xception

Xception, a convolutional neural network architecture unveiled by François Chollet
in 2016, stands as a variation of the Inception architecture, dubbed “Extreme Inception.”
Designed to enhance the efficiency and effectiveness of conventional Inception models,
Xception introduces the concept of depthwise separable convolutions. In conventional
convolutional layers, each filter carries out both spatial convolution and channel mixing.
However, Xception adopts depthwise separable convolutions, which disentangle these
operations into distinct layers.
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Depthwise convolutions focus on performing spatial convolution separately for each
input channel, while pointwise convolutions execute 1 × 1 convolutions to intermingle the
channels. This segmentation of processes mitigates computational intricacies and fosters
more streamlined learning. By incorporating depthwise separable convolutions, Xception
attains a commendable equilibrium between model intricacy and accuracy. Its adeptness
has been demonstrated across a spectrum of image classification tasks, rendering it a staple
in numerous computer vision applications [49]. The architecture of Xception is visually
outlined in Figure 14 [63].
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3.2.7. Inception-ResNet-V2

Inception-ResNet-V2 stands as a sophisticated CNN architecture that amalgamates
the attributes of both Inception and ResNet models. Its development aimed at enhancing
the efficacy of image recognition endeavors, such as object classification and detection. The
essence of Inception-ResNet-V2 revolves around the synergy of inception modules and
residual connections as seen in Figure 15, which collectively facilitate efficient and precise
extraction of features from images. This architecture has gained widespread traction in
the realm of computer vision applications, consistently attaining cutting-edge results in
various image recognition challenges. The structure of Inception-ResNet-V2 encompasses
an array of layers and modules that collaborate to extract features from input images.
The journey begins with a sequence of convolutional layers dedicated to initial feature
extraction. Subsequently, the architecture integrates the Inception module, characterized
by parallel convolutional branches equipped with varying filter sizes. This arrangement
empowers the network to apprehend features across diverse scales.
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Moreover, Inception-ResNet-V2 integrates the ingenious concept of residual connec-
tions from the ResNet paradigm. These connections facilitate the learning of residual
mappings, which proves instrumental in training deeper networks and mitigating the
vanishing gradient predicament. The architectural repertoire extends to encompass other
vital components, such as batch normalization, pooling layers, and fully connected layers
tailored for classification purposes. Collectively, Inception-ResNet-V2 manifests as an
intricate and profound network, capitalizing on the strengths of both Inception and ResNet
models to attain remarkable performance in the domain of image recognition tasks [64].

3.3. Methodology for Skin Lesion Detection Using Web-Based Tools for Machine Learning Models

Our future objective is to research the possibility of integrating a melanoma classi-
fication system into an EHR medical information system to optimize the diagnosis and
treatment process. As mentioned earlier, we tried four web-based tools for creating machine
learning models. This type of application has some advantages:

• Ease of Use: Web-based tools are designed to be user-friendly, making them acces-
sible to individuals without extensive programming or technical expertise. Google
Teachable Machine, for example, provides a user-friendly interface that allows users
to create and train machine learning models using their own data without writing
complex code;

• Accessibility: Web-based tools are accessible from any device with an internet con-
nection, making them widely available to users worldwide. This accessibility enables
researchers, developers, and enthusiasts to access and utilize the tools without the
need for specialized hardware or software installations;

• Rapid Prototyping: Web-based tools often provide a streamlined process for quickly
prototyping and testing machine learning models. These tools offer pre-trained models,
pre-processing capabilities, and simplified workflows that facilitate the development
and iteration of models for various applications;

• Visualization and Interactivity: Web-based tools typically offer visualizations and
interactive features that enhance the understanding and exploration of machine learn-
ing models. These tools often provide visual feedback, real-time predictions, and
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interactive controls, enabling users to interact with their models and gain insights into
their behavior;

• Collaboration and Sharing: Web-based tools foster collaboration and knowledge shar-
ing among users. They often provide functionalities for sharing models, databases, and
project files, allowing researchers and developers to collaborate on projects, exchange
ideas, and learn from each other’s work;

• Cloud Infrastructure: Many web-based tools leverage cloud computing infrastructure,
enabling users to offload the computational requirements of training and inference
to powerful servers. This eliminates the need for local high-performance hardware
and allows users to leverage scalable cloud resources for faster and more efficient
model development;

• Community Support: Web-based tools often have active communities of users and
developers who share resources, provide guidance, and offer support. This community
aspect fosters learning, collaboration, and the exchange of best practices;

• Integration with Other Tools and Services: Web-based tools, such as Google Teach-
able Machine, often integrate with other services and platforms, allowing users to
incorporate their models into broader applications or workflows seamlessly. These
integrations may include exporting models for deployment, connecting to APIs, or
integrating with popular frameworks and libraries.

These advantages make web-based tools valuable for individuals and organizations
seeking to explore and utilize machine learning without extensive technical barriers. They
enable rapid prototyping, collaboration, and accessibility, opening doors for innovation
and experimentation in various domains. On the other hand, software-wise, because we
used MATLAB to create our classifier, this environment offers several advantages as well:

• Comprehensive Toolset: MATLAB provides a comprehensive set of tools, functions,
and libraries specifically designed for image processing and analysis. This includes
built-in functions for image pre-processing, feature extraction, and machine learning
algorithms, making it convenient for developing classifiers for medical images;

• Robust Image Processing Capabilities: MATLAB’s image processing toolbox offers
a wide range of functions for handling medical images, such as noise removal, im-
age enhancement, segmentation, and feature extraction. These capabilities enable
researchers and developers to pre-process and extract relevant features from medical
images effectively, improving the performance of classifiers;

• Integration with Other MATLAB Toolboxes: MATLAB offers various toolboxes, such
as the Statistics and Machine Learning Toolbox, which provide additional algorithms
and functionality for machine learning tasks. This integration allows for seamless use
of different algorithms and techniques to enhance classifier performance;

• Customization and Flexibility: MATLAB provides a flexible environment for devel-
oping and customizing classifiers. Users can easily modify and adapt algorithms,
fine-tune parameters, and incorporate domain-specific knowledge into their classifiers.
This flexibility is particularly valuable in medical imaging, where specific requirements
and constraints often exist;

• Extensive Documentation and Community Support: MATLAB has a vast commu-
nity of users and developers, which provides access to comprehensive documentation,
tutorials, and forums. This support network facilitates learning, troubleshooting, and
sharing knowledge, accelerating the development process and addressing challenges
encountered in classifier development for medical images;

• Visualization and Analysis Tools: MATLAB offers robust visualization tools that
enable users to visualize and analyze medical images and classifier outputs. These
tools assist in understanding the behavior of the classifier, validating results, and
gaining insights from the classification process;

• Deployment Options: MATLAB provides various options for deploying classifiers
developed within the MATLAB environment. These include generating standalone
executables, creating web applications, or integrating classifiers into other software
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frameworks or platforms. This flexibility allows for the seamless integration of MAT-
LAB classifiers into existing medical imaging workflows or systems;

• Research and Academic Support: MATLAB is widely used in the research and aca-
demic communities, and many medical imaging studies and papers employ MATLAB
for developing classifiers. This popularity leads to a wealth of research resources,
benchmark databases, and code examples that can serve as references or starting
points for developing classifiers in medical imaging. The workflow used to evaluate
the creation of models for the Google Teachable Machine, Azure Machine Learning,
Google Vertex AI, and SalesForce Einstein is in Figure 16.
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3.3.1. Google Teachable Machine

Teachable Machine is a web-based tool for creating machine learning models. The
models built with TensorFlow (TensorFlow.js library—open source for machine learning
and artificial intelligence) are used to train and run the models in a web browser. The
created models use transfer learning techniques. There is a pre-trained CNN where the
classes that the end-user works with become the last layer of the CNN. The model used for
image classification is MobileNet, and in the end, these models can be incorporated into any
application that uses JavaScript as the programming language. The advantage of this tool
is that it allows modification of the training parameters of the network for optimal results
(learning rate, batch size, number of epochs). Teachable Machine uses three types of models
for different types of classifications. It uses MobileNet for image classification, Speech
Commands for audio classification, and PoseNet for real-time body position classification
from a video capture [65].

3.3.2. Microsoft Azure Machine Learning

Azure Machine Learning provides various pre-trained CNN models for image classifi-
cation, including popular architectures such as ResNet, VGG, and DenseNet. The choice of
model depends on the specific requirements of the task and the database used.

A huge benefit of using Azure services (functions and APIs such as Computer Vision)
is the elimination of the need for companies to use individual servers, therefore reducing
implementation costs. Another benefit is that Microsoft-developed services that use image
processing on a very large scale can be used through cognitive services.

The algorithm starts with file upload and triggers an event that sends a notification
to trigger Azure functions that call the Azure Computer Vision API to analyze the newly
uploaded image. Subsequently, Azure functions store the Azure Computer Vision API
response, which includes the classification results, along with the metadata of the image.
Finally, the results can be reflected in a web interface or a mobile interface [65]. The main
components of the Azure Machine Learning system are [65,66]:

• Computer Vision API: Retrieves information about the uploaded image;
• Azure Functions: Processes the image;
• Azure Event Grid: Triggers the Azure functions;
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• Azure Blob Storage: Stores all uploaded images;
• Azure Cosmos DB: Stores metadata about each image and the classification results.

3.3.3. Google Vertex AI

Vertex AI utilizes various neural network architectures, including but not limited to
CNNs, RNNs, transformer models, and DNNs. The specific neural network architecture
used by Google Vertex AI can vary depending on the task or application being addressed.
Google Vertex AI supports various CNN models for image classification tasks [67].

Some commonly used CNN models in Google Vertex AI include:

• EfficientNet: EfficientNet is a family of CNN models that have achieved state-of-
the-art performance in image classification tasks while maintaining model size and
computational resources efficiency;

• ResNet: as already mentioned earlier in this paper, ResNet is a popular CNN architec-
ture known for its deep structure. It uses residual connections to address the vanishing
gradient problem and enables the training of very deep networks;

• Inception: also described earlier, Inception models are characterized by the use of
Inception modules, which allow efficient feature extraction at multiple scales;

• MobileNet: MobileNet is a lightweight CNN architecture designed for mobile and
embedded devices. It achieves a good balance between model size and accuracy by
using depth-wise separable convolutions [67].

3.3.4. Salesforce Einstein Vision

Einstein Vision and Language Model Builder is an application for automated image
analysis that performs image classification based on training a model on a database divided
into classes. The application is developed using the Apex, Java, Scala, and Node program-
ming languages. The Einstein Vision application uses a deep learning model based on
the API programming language, which allows access to pre-trained classifiers or training
custom classifiers to solve various practical cases in the field of computer vision. The
Einstein Vision package allows not only image classification but also object detection in an
image, optical character recognition (OCR), sentiment prediction from written text, and
intent categorization of unstructured texts to understand the user’s objective or desired
outcome. All these modules are used to enhance message understanding, conversion,
workflow optimization, and automation in the business environment.

Einstein Vision and Language Model Builder is a user interface layered over a REST
API (API—Application Programming Interface—a set of definitions and protocols for creat-
ing and integrating software applications—specifying the required information content for
the consumer (call) and producer (response), REST—Representational State Transfer—a set
of architectural constraints) [68–75]. When a client makes a request via the REST API, it
transfers the representation of the state of the resource to the requester (endpoint). This in-
formation is delivered in various formats (JSON—JavaScript Object Notation, XML, Python,
PHP, or text) for Einstein, enabling quick dataset uploading, deep learning model training,
and model performance testing through an easy-to-use graphical interface. Salesforce
Einstein utilizes various neural network architectures such as:

• Convolutional Neural Networks: CNNs are often used for image recognition tasks.
They consist of multiple layers, including convolutional layers, pooling layers, and
fully connected layers. CNNs are designed to learn and automatically extract features
from images;

• Recurrent Neural Networks: RNNs are suitable for processing sequential data, such as
natural language processing. They have recurrent connections that allow information
persistence across time steps;

• Long Short-Term Memory (LSTM) networks are a type of RNN that can efficiently
capture long-term dependencies in sequential data [75];

• These neural networks are used in different components of Salesforce Einstein, such
as natural language processing, image recognition, and predictive modeling, to en-
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able advanced AI functionalities. The specific architectures of neural networks used
by Salesforce Einstein can vary depending on the task and application and can be
customized as needed. The specific details of the neural network architectures and
training process used by Salesforce Einstein are not publicly available.

3.4. Methodology for Performance Evaluation

In this paper, we considered the following performance indicators: accuracy (ACC),
F1 Score, Sensitivity/Recall, and Specificity, described in Table 1 with their formulas.

Table 1. Expressions for the performance indicators.

Performance Indicators Formula

Precision
TP

TP+FP

Recall
TP

TP+FN

Accuracy
TP+TN

TP+FP+FN+TN

F1 score 2· Precision · Recall
Precision+Recall = TP

TP+ 1
2 (FP+FN)

TP = number of true positives (melanoma); FP = number of false positives (images predicted as melanoma but
in reality are non-melanoma); TN = number of true negatives (non-melanoma); FN = number of false negatives
(images predicted as non-melanoma but are melanoma).

• Accuracy—a commonly used metric to assess the overall performance of a melanoma
detection system. It measures the proportion of correctly classified melanoma and
non-melanoma cases. However, it is important to consider other metrics as well, as
accuracy alone may not provide a comprehensive evaluation;

• F1 Score—a metric that combines precision and recall. It considers both false pos-
itive (FP) and false negative (FN) and provides a balanced measure of a model’s
performance. Higher F1 scores indicate better performance in terms of both precision
and recall;

• Sensitivity/Recall—Sensitivity, also known as recall or true positive rate, measures the
proportion of actual melanoma cases correctly identified by the system. It focuses on
minimizing false negatives (FN) and is particularly important in medical applications
to avoid missing melanoma cases;

• Specificity—Specificity measures the proportion of non-melanoma cases correctly
identified as such by the system. It focuses on minimizing false positives (FP) and is
essential to reducing unnecessary biopsies or false alarms [76–83].

In the context of this study, our primary emphasis will be on the assessment of the
F1 score as opposed to accuracy. This preference stems from the heightened utility of the
F1 score, particularly in scenarios where the costs associated with FN and FP significantly
differ. As previously mentioned, the F1 score serves as an amalgamation of both recall and
precision, whereby achieving a higher F1 score inherently implies improved precision and
recall. Notably, the F1 score does not take into account the count of true negatives that were
accurately identified. It is particularly recommended to employ the F1 score in situations
where the concern about predicting false negatives is of substantial significance. This
approach aligns with our focus on optimizing the performance of our melanoma detection
system while considering the potential consequences of missing cases of melanoma.

3.5. Methodology for Skin Lesion Detection Using the Decision Fusion Classifier System

In our previous work [6], we introduced a decision fusion framework employing di-
verse classifiers encompassing Neural Networks (NN), feature-based techniques, and CNN.
However, the selection process for these classifiers was not addressed. The fusion weights for
this system were established solely on the basis of accuracy [6]. Building upon the insights
gleaned from the literature review in Chapter Two, wherein numerous authors demonstrated
remarkable outcomes using CNNs, our present endeavor introduces a novel decision fusion
classifier. This classifier is designed to amalgamate multiple CNN architectures, thereby
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striving to attain the utmost performance levels for melanoma detection while also ensuring
adaptability to varying databases. The selection of the eight CNN architectures was guided
by a comprehensive set of criteria grounded in various considerations:

• Performance—the neural network has a proven track record of achieving high accu-
racy and performance on melanoma detection tasks and on the specific databases
we used;

• Availability of pre-trained models on large-scale databases, such as ImageNet. Pre-
trained models can significantly speed up the training process and provide a good
starting point for transfer learning;

• Complexity—the neural network is not out of reach complex. The complexity of the
CNN architectures should be taken into consideration. Complex models may require
more computational resources and longer training times, which can be challenging in
practical applications. Hence, it is important to strike a balance between complexity
and performance;

• Generalization—the network should have a strong ability to generalize to unseen
data and can be applied to a variety of different images. Robustness and generalization
are crucial for real-world deployment;

• Diversity of architectural designs—in the selection of the neural networks, we took
into consideration diverse design principles. Each architecture has different features
and characteristics, such as the use of residual connections, inception modules, or
dense connections. Including diverse architectures can help capture a wider range
of melanoma characteristics and improve the chances of detecting different types
of melanomas. It is beneficial to choose CNNs that exhibit diverse architectural
designs and utilize different techniques. This increases the chances of capturing
complementary information and avoiding bias or limitations that might be present in
a single architecture;

• Previous success—the neural network has demonstrated exceptional performance in
melanoma detection or similar medical imaging tasks [76–79].

Certainly, these factors are profoundly influenced by the databases utilized for CNN
training and the pre-processing methodologies implemented. To ascertain the optimal
combination of CNN architectures for our specific application, an iterative approach in-
volving experimentation and refinement is indispensable. In this context, our initial step
involves the selection of eight CNNs based on the specified criteria, a process informed
by a comprehensive examination of the current state of the field and the demonstrated
performance on the extensive ImageNet image database [83,84] and pre-processing the
images as we mentioned earlier by eliminating the hair and resizing them to fit the in-
put of the CNNs. The chosen CNNs encompass DarkNet-53, DenseNet-201, GoogLeNet,
Inception-V3, InceptionResNet-V2, ResNet-50, ResNet-101, and Xception. With the over-
arching goal of maximizing system performance, we embarked on the exploration of an
optimal approach for allocating decision fusion weights to each individual CNN. The
resultant architecture of our proposed system is elucidated in Figure 17.

Where the determination between melanoma and non-melanoma, executed by the decision
fusion classifier, is effectuated through the utilization of the following Equations (1) and (2):

DM =
8

∑
i=1

dM
i · wM

i (1)

DNM =
8

∑
i=1

dNM
i · wNM

i (2)

where DM is the decision in case of melanoma, where the false positive is considered
as being a non-melanoma predicted as melanoma, and DNM is the decision in case of
non-melanoma, where the false negative is considered as being a melanoma predicted as a
non-melanoma, i represents the image, and di is the partial decision made by each CNN
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and wi the weights calculated from the average mean of the F1 score obtained for ISIC and
DermIS database as seen in Expressions (3) and (4).

wM
1 =

FDermIS
1M (i) + FISIC

1M (i)
2

(3)

wNM
1 =

FDermIS
1NM (i) + FISIC

1NM(i)
2

(4)
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The ultimate verdict is determined by comparing the values of the Expressions (1) and
(2), with the higher value dictating the outcome. For example, if DM > DNM, then the
given result is melanoma. In the case of DM < DNM, then the result is non-melanoma. In
essence, through (1), we consider the objective melanoma, and through (2), we consider
the objective non-melanoma. The choice between using the raw scores before the sigmoid
activation function versus the binary decisions (0 or 1) for decision fusion can impact the
overall performance and information content of the system.

We took into consideration the advantages and disadvantages before taking the de-
cision to use binary decisions. The advantage of raw scores is that they preserve the
continuous nature of the model’s output, providing more nuanced information about the
model’s confidence in its predictions. It also maps raw scores to probabilities between 0 and
1, allowing for a gradual transition from very confident negative predictions (close to 0) to
very confident positive predictions (close to 1). The disadvantage is that raw scores require
additional interpretation to determine decision thresholds, potentially adding complexity
to the decision-making process. In addition, choosing appropriate thresholds for raw scores
might be subjective and could vary depending on the application and dataset.

The advantage of binary decisions is that they simplify the decision-making process as
they provide a clear and immediate answer of whether a lesion is classified as positive (1)
or negative (0). They are also straightforward to understand, making them more accessible
for medical professionals and users. The downside is that binary decisions discard the
nuanced information carried by the raw scores, potentially leading to a loss of subtleties in
model confidence. We chose the binary decision in the proposed classifier because it yields
some benefits that fit better in our end goal to integrate an automated melanoma detection
module into an EHR, such as:
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• Simplicity and Interpretability: Binary decisions provide a clear and straightforward
answer, making it easier for both medical professionals and general users to under-
stand the outcome of the classification. This simplicity is particularly valuable in
medical applications where quick and easy interpretation of results is crucial;

• Clinical Decision Support: In a clinical setting, where decisions need to be made
rapidly, binary outcomes can serve as valuable decision-support tools. For example, a
clear positive (1) or negative (0) result can guide medical professionals in determining
the next steps for patient care;

• Standardization: Binary decisions enable standardized reporting and communication
of results. A consistent binary output format simplifies data sharing, communica-
tion between different medical institutions, and comparisons across different studies
or systems;

• Regulatory and Legal Considerations: In medical applications, regulatory agencies
often require clear, easily interpretable outcomes. Binary decisions can align with
regulatory standards and facilitate compliance;

• Reduced Ambiguity: Binary outcomes reduce ambiguity in scenarios where nuanced
classifications might lead to confusion or differing interpretations. By providing a
direct answer, binary decisions can mitigate potential misunderstandings;

• Threshold Adaptation: Binary decisions allow for straightforward threshold adaptation.
If specific sensitivity or specificity requirements need to be met, adjusting the threshold
for positive predictions can be easily performed to achieve the desired balance;

• Efficient Workflow Integration: In automated systems, binary outputs can integrate
seamlessly into an HER and other medical record systems, enabling quick and efficient
data management and retrieval.

4. Experimental Results
4.1. Experimental Results for Skin Lesion Detection Using Various CNNs

To implement the CNN methodologies, we employed MATLAB. All CNN models
were pre-trained on the ImageNet database, leading to results that rely on the principles of
transfer learning. As previously indicated, each of the two databases (ISIC 2020 and DermIS)
were treated separately. For training, we allocated 700 images, alongside 300 for validation
and 200 for testing purposes. The training process encompassed several key aspects,
including validation accuracy, iterations per epoch, maximum iterations, and the time
taken for training, which was documented for all eight CNNs forming the comprehensive
decision fusion system. The specifics of this training progress are summarized in Table 2.
Our training configuration included 6 epochs, a learning rate of 0.0001, and a maximum of
276 iterations, with 46 iterations per epoch applied uniformly across all the CNNs.

Table 2. Training and validation progress.

CNN Database Time Required Validation Accuracy

DarkNet-53
DermIS 10 min 29 s 89.00%

ISIC 38 min 35 s 82.00%

Dense-Net-201
DermIS 24 min 40 s 81.00%

ISIC 44 min 47 s 77.00%

GoogLeNet DermIS 3 min 45 s 89.00%
ISIC 36 min 3 s 77.00%

Inception-V3 DermIS 9 min 30 s 84.00%
ISIC 39 min 30 s 75.50%

Inception-ResNet-V2 DermIS 25 min 21 s 86.00%
ISIC 49 min 0 s 75.50%

ResNet-50
DermIS 6 min 32 s 85.00%

ISIC 39 min 36 s 80.50%
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Table 2. Cont.

CNN Database Time Required Validation Accuracy

ResNet-101
DermIS 11 min 47 s 84.50%

ISIC 40 min 30 s 77.00%

Xception DermIS 16 min 38 s 77.00%
ISIC 42 min 47 s 73.50%

Looking at Table 2, the results are quite revealing. For the ISIC 2020 database,
DarkNet-53 achieved the highest accuracy, while for the DermIS database, GoogLeNet
came out on top. In terms of training duration, Inception-ResNet-V2 on the ISIC 2020
database required the longest training time (49 min and 0 s), whereas GoogLeNet on
the DermIS database boasted the shortest training time (3 min and 45 s). Notably, many
of the CNNs exhibited improved training times when applied to the DermIS database
compared to their performance on the ISIC 2020 database. This observation might relate
to the database’s quality and characteristics. Numerous factors can impact the duration
of the training, but our initial focus when addressing this aspect is the determination of
an appropriate learning rate for each CNN. It is established that reducing the learning
rate prolongs the CNN’s learning process while excessively elevating it can cause weight
divergence, ultimately diminishing training quality. As a prospective endeavor, we intend
to devise an efficient method for identifying suitable learning rates for individual CNNs.
This is important because assessing various constant learning rates for each CNN is both
time-intensive and prone to errors. To compute the F1 score, we employed MATLAB to
generate a confusion matrix for each CNN. The F1 score was then calculated using the
formula provided in Table 1.

Based on Figure 18, we can observe that for the DermIS database, DarkNet-53 achieved
the highest F1 score of 0.8899, closely followed by GoogLeNet with a score of 0.8898 and
Inception-ResNet-V2 with a score of 0.859. On the other hand, for the ISIC 2020 database,
DarkNet-53 once again stood out with the highest F1 score of 0.818. Following DarkNet-53,
ResNet-50 and DenseNet-201 attained F1 scores of 0.804 and 0.77, respectively. Once more,
we can note that a majority of CNNs yielded superior outcomes when employed on the
DermIS database compared to the ISIC database. This discrepancy further underscores the
distinction in image quality between these two databases. Enhanced image clarity, charac-
terized by minimal noise, corresponds to heightened performance levels. Consequently,
as part of our future endeavors, we plan to delve into more comprehensive and advanced
image-processing techniques to augment the performance of the diverse CNNs. Addition-
ally, we provided some predictions made by the CNNs during the testing phase for both
the ISIC and DermIS databases in Tables 3 and 4. We selected three images (Im1—Image 1,
Im2—Image 2, Im3—Image 3) from each database with the real label (NM—Non-Melanoma
and M—Melanoma) and tracked the result predicted by the architectures.

Table 3. Prediction of the used CNNs in the testing phase on the DermIS database.

Image

Im1 Im2 Im3
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Table 4. Prediction of the used CNNs in the testing phase on the ISIC database 

Image 

Im1 Im2 Im3 

   
Ground Truth NM M NM 
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CNN1 0.8543 0.8599 1 1 0 1 1 0 0 0 1 
CNN2 0.7897 0.7945 1 1 0 1 1 0 0 0 1 
CNN3 0.8296 0.8331 0 0 1 1 1 0 0 0 1 
CNN4 0.7972 0.8011 0 0 1 1 1 0 0 0 1 
CNN5 0.8020 0.8253 1 1 0 1 1 0 0 0 1 
CNN6 0.8274 0.8257 1 1 0 1 1 0 0 0 1 
CNN7 0.8070 0.7981 0 0 1 1 1 0 0 0 1 
CNN8 0.7513 0.7494 0 0 1 1 1 0 0 0 1 

DM 3.2734 6.4585 0.802 
DNM 3.1817 0 6.4871 

Decision M M NM 

4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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CNN4 0.7972 0.8011 0 0 1 1 1 0 0 0 1 
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CNN7 0.8070 0.7981 0 0 1 1 1 0 0 0 1 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 

Ground Truth NM M NM

CNN wM
i wNM

i Di dM
i dNM

i Di dM
i dNM

i Di dM
i dNM

i
CNN1 0.8543 0.8599 1 1 0 0 0 1 1 1 0
CNN2 0.7897 0.7945 0 0 1 1 1 0 0 0 1
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Table 3. Cont.
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Table 4. Prediction of the used CNNs in the testing phase on the ISIC database 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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Table 4. Prediction of the used CNNs in the testing phase on the ISIC database 
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Im1 Im2 Im3 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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Table 4. Prediction of the used CNNs in the testing phase on the ISIC database.
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications 
For model creation, we utilized the built-in interface provided by each application, 

creating the dataset and training the model. The outcomes of the testing phase are de-
picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
Machine yielded the highest number of false positives for the DermIS database, while for 
the ISIC 2020 database, Google Vertex AI recorded the highest count of false positives. 
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picted in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most re-
markable accuracy and F1 score were achieved using Microsoft Azure Machine Learning. 
On the other hand, for the DermIS database, the highest accuracy was observed with 
Google Vertex AI. Delving into the comparison between FP and FN, Google Teachable 
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4.2. Experimental Results for Skin Lesion Detection Using the Automated Applications

For model creation, we utilized the built-in interface provided by each application,
creating the dataset and training the model. The outcomes of the testing phase are depicted
in Figure 19. As illustrated in Figure 19, for the ISIC 2020 database, the most remarkable
accuracy and F1 score were achieved using Microsoft Azure Machine Learning. On the
other hand, for the DermIS database, the highest accuracy was observed with Google
Vertex AI. Delving into the comparison between FP and FN, Google Teachable Machine
yielded the highest number of false positives for the DermIS database, while for the ISIC
2020 database, Google Vertex AI recorded the highest count of false positives.
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The primary aim of evaluating the performance of different machine learning models
and platforms, such as Google Teachable Machine, Google Vertex AI, Salesforce Einstein
Vision, and Microsoft Azure Machine Learning, against a custom classifier that combines
these CNNs’ decisions, is to determine the most appropriate option for integrating into an
EHR system equipped with an automated melanoma detection module. This assessment is
a pivotal stage in EHR system development and aids in well-informed decision-making
during the planning and solution analysis phases. The main goal is to appraise the accuracy
and dependability of each model and platform in accurately identifying cases of melanoma.
By considering the combined decisions of various classifiers, decision fusion plays a role in
reducing false positives and false negatives. Different CNNs might excel in distinct aspects
of melanoma detection due to variations in their designs and training data. Decision fusion
capitalizes on classifier diversity to address uncertainties and fluctuations in detection,
which is crucial in real-world situations where data can be noisy or exhibit unexpected
variations. It is vital to test the models on a diverse dataset encompassing various types of
melanoma images to gauge their resilience and ability to apply to different scenarios. Robust
models can handle changes in lighting, perspectives, and skin tones. The comparative
analysis seeks to assess how clinically applicable each solution is within the healthcare
context, as precise and reliable outcomes are crucial for informed clinical decisions.

Evaluating the speed of inference and resource efficiency for each model holds signif-
icance, particularly in a real-time healthcare environment. Models that deliver accurate
results swiftly are preferred for integration into an EHR system. Real-time performance is
essential for seamless incorporation into the fast-paced realm of healthcare delivery. The
evaluation also involves scrutinizing the integration potential of each solution into the
existing EHR system infrastructure. Factors such as compatibility, API, and deployment
choices must be taken into account. A solution that seamlessly aligns with the system’s
architecture saves time and resources during implementation.

Furthermore, scalability is assessed for each solution, gauging their ability to accom-
modate larger datasets and future expansion. Solutions that can scale in accordance with
the evolving needs of a growing healthcare practice are sought after. The capacity of the
chosen solution to scale alongside increased data and usage is imperative for long-term
viability. Cost analysis is crucial to ascertain the expenses associated with adopting each so-
lution and to ensure compatibility with the project’s budget. The cost-effectiveness of each
solution is evaluated, encompassing development, deployment, and maintenance expenses.
Optimal value delivery within the project’s financial constraints is a pivotal consideration.

Finally, the user interface and user experience of the chosen solution must align with
the design and user requisites of the EHR system. By systematically evaluating these
aspects, we can determine which of the evaluating models or platforms is the most reliable
and effective solution to integrate into the EHR system with an automated melanoma
detection module. This analysis will help inform the decision-making process during the
planning and solution analysis phases of the EHR system development project. In the
present paper, we assessed the way in which we would approach the melanoma detection
module by developing a custom decision fusion melanoma classifier and comparing it with
some of the well-known web-based models online.

After evaluating the results, Google Teachable Machine emerges as a highly versatile
option. The model exhibits commendable accuracy and offers seamless integration into
architectures utilizing Java as the programming language. The process of uploading images,
training the model, and subsequent cloud-based utilization is provided without any charge.
An additional advantage lies in the flexibility to adjust network training parameters, such
as learning rate, batch size, and number of epochs, for optimal outcomes. This renders the
application suitable for integration into an EHR system. For a comprehensive overview, we
present a comparison of accuracy and F1 scores among the four web-based applications in
Table 5.
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Table 5. Experimental results for the decision fusion classifier vs. the automated applications.

CNN Database Accuracy F1 Score

Google Teachable Machine DermIS 0.7800 0.7786
ISIC 0.7600 0.7597

Google Vertex AI DermIS 0.8333 0.8331
ISIC 0.7400 0.7370

Microsoft Azure Machine Learning DermIS 0.7967 0.7966
ISIC 0.8200 0.8200

SalesForce
Einstein

DermIS 0.8033 0.8025
ISIC 0.7933 0.7900

4.3. Experimental Results for Skin Lesion Detection Using the Decision Fusion Classifier

To be able to create a more performant system, the weights presented in Table 6 were
assigned for each implied CNN, where M—Melanoma, NM—Non-Melanoma.

Table 6. Decision Fusion classifier weights.

Convolutional Neural Network wM wNM

DarkNet-53 0.8543 0.8599
DenseNet-201 0.7897 0.7945

GoogLeNet 0.8296 0.8331
Inception-V3 0.7972 0.8011

InceptionResNet-V2 0.8020 0.8253
ResNet-50 0.8274 0.8257
ResNet-101 0.8070 0.7981

Xception 0.7513 0.7494

The objective of appropriately configuring the weights is to enhance the effectiveness
of the decision fusion-oriented system by influencing the ultimate decision made by the
classifiers with higher weights. This trend is evident in Table 6, where, among the initial
five CNNs, the weight wNM surpasses wM, while for the remaining three CNNs, wM takes
precedence over wNM. This indicates that the first five CNNs exhibit a partial inclination
toward predicting a Non-Melanoma outcome, whereas the other three display a preference
for predicting Melanoma. The confusion matrix on both ISIC 2020 and DermIS databases of
the proposed system was generated and presented in Figure 20. Based on these confusion
matrices, the F1 score was calculated for each database.
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The performance of our proposed decision fusion classifier is depicted in Figure 20.
Notably, this classifier demonstrates remarkable performance in terms of accuracy and F1
score for both the DermIS and ISIC 2020 databases. The outcomes from the four applications
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are also illustrated in Figure 20 for comparison. Evidently, our proposed system yields
superior results compared to those obtained from the four applications. Additionally, it
is apparent that, apart from Microsoft Azure Machine Learning, better outcomes were
achieved on the ISIC 2020 database. Our proposed method attains an F1-score of 0.955 for
the DermIS database and 0.9350 for ISIC 2020. As previously stated within the paper, our
perspective is that a system should ideally produce a higher count of FP than FN. This
preference stems from the notion that it is more advantageous for both the system and
the patient to recommend further investigations than to incorrectly label a melanoma as
a benign lesion, which could potentially elevate the risk of patient mortality. Figure 20
illustrates that our proposed system indeed generated a greater number of False Positives
in both the ISIC and DermIS datasets.

5. Discussion

In this paper, we introduced a multi-network system that employs decision fusion for
melanoma detection, utilizing eight high-performance CNNs: DarkNet-53, DenseNet-201,
GoogLeNet, Inception-V3, InceptionResNet-V2, ResNet-50, ResNet-101, and Xception. The
selection of these CNNs was guided by a thorough analysis of the state-of-the-art. The
fusion system’s weights were determined based on the F1 scores achieved by each individ-
ual CNN. We evaluated the performance of each architecture on two distinct databases,
considering both databases when assigning the fusion weights to enhance adaptability.

As mentioned in our earlier work [6], the DullRazor algorithm could not completely
remove hair from all ISIC 2020 images, partially due to the presence of annotations and
thick hair in some images. In Equations (5) and (6), the variables represented by terms
such as “dDarkNet” and “dXception” are decisions made by the neural network architectures.
The formula essentially represents a weighted combination of these measurements. Each
architecture’s measurement is multiplied by a specific weight (such as 0.8543 for DarkNet
and 0.7513 for Xception) and then added together. This combination is represented by “DM”
and “DNM” for two different scenarios.

DM = dDarkNet·0.8543 + . . . + dXceptio·0.7513 (5)

DNM = dDarkNet·0.8599 + . . . + dXception·0.7494 (6)

It is notable that results obtained from the DermIS database tend to be superior to
those from the ISIC 2020 database, both in the decision fusion classifier and the web-
based applications. This could be attributed to the fact that ISIC 2020 comprises images
collected from various sources with different equipment, conditions, and populations. To
improve results, a pre-processing step involving hair removal and resizing was necessary
for ISIC 2020 images. All results obtained are presented in Table 7, alongside recent
work by other researchers who evaluated their models based on accuracy and F1 score.
Our proposed classifier demonstrates superior performance compared to most evaluated
classifiers. Although the web-based applications yielded less accurate results, they hold
promise in terms of rapid prototyping without the need for pre-processing steps.

Table 7. Experimental results for the decision fusion classifier vs. other classifiers vs. the auto-
mated applications.

Classifications Methods Database Accuracy F1 Score

Google Teachable Machine DermIS 0.7800 0.7786
ISIC 0.7600 0.7597

Google Vertex AI DermIS 0.8333 0.8331
ISIC 0.7400 0.7370

Microsoft Azure Machine Learning DermIS 0.7967 0.7966
ISIC 0.8200 0.8200
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Table 7. Cont.

Classifications Methods Database Accuracy F1 Score

SalesForce
Einstein

DermIS 0.8033 0.8025
ISIC 0.7933 0.7900

Proposed Decision Fusion Classifier DermIS 0.9550 0.9550
ISIC 0.9350 0.9350

Proposed by [85] ISIC 2020 0.904 0.448

Proposed by [86] ISIC 2017 0.76 0.73

Proposed by [87] ISIC 0.76 0.76

Proposed by [88] ISIC 0.94 0.93

Both MATLAB-made classifiers proposed in this paper and web-based tools have
their own advantages and use cases. MATLAB offers extensive capabilities, flexibility, and
advanced image processing functionalities suitable for complex medical image analysis.
On the other hand, web-based tools provide user-friendly interfaces, rapid prototyping,
accessibility, collaboration features, and integration with cloud infrastructure. The choice
between the two depends on the specific requirements, expertise, and preferences of the
user or development team.

Regarding the easiness of integration vs. performance, web-based tools are often de-
signed with simplicity and ease of use in mind. They typically provide user-friendly interfaces
and streamlined workflows that make it easy to train and deploy machine learning models.
Integration into another platform can be straightforward, as these tools often offer export
options or APIs to facilitate model integration. Integrating MATLAB-made classifiers into
another platform may require additional steps, as MATLAB is standalone software. Depend-
ing on the platform and desired integration method, it may involve exporting the model,
converting it to a compatible format, leveraging MATLAB Compiler to create standalone
executables, or integrating MATLAB scripts with other programming languages.

Performance comparison between MATLAB-made classifiers and web-based tools,
such as Google Teachable Machine, depends on various factors, including the complexity
of the problem, database size, and the specific algorithms and techniques employed. Both
MATLAB and web-based tools can achieve good performance, but it ultimately depends
on the implementation and customization of the classifiers. MATLAB provides extensive
capabilities for customization, algorithm selection, and fine-tuning, allowing users to
optimize classifiers for specific tasks. This flexibility may result in better performance for
complex or domain-specific applications where advanced image processing or tailored
algorithms are required.

Web-based tools, such as Google Teachable Machine, are designed for ease of use
and rapid prototyping. They often leverage pre-trained models or simplified workflows,
which may provide good performance for simpler tasks or generic image classification.
However, they may have limitations in terms of customization and adaptability to specific
requirements. Ultimately, the choice between MATLAB-made classifiers and web-based
tools for integration into another platform depends on the specific requirements, available
expertise, and the desired trade-off between ease of integration and performance optimiza-
tion. If the integration process needs to be simple and streamlined, with a focus on ease of
use, web-based tools, such as Google Teachable Machine, may be a more suitable choice.
On the other hand, if customization, advanced algorithms, and fine-tuning are critical for
achieving optimal performance, MATLAB, with its extensive toolset and flexibility, may be
the preferred option.

The novelty and distinctions of this work lie in the fact that this paper focuses on en-
hancing the performance of a multi-network system through decision fusion for melanoma
detection to leverage the strengths of diverse CNN architectures, potentially leading to
improved accuracy. The selection of CNN architectures is not arbitrary but guided by
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specific criteria outlined in the methodology section, and furthermore, instead of treating
all networks equally, the paper introduces a weighted decision fusion system. The weights
assigned to each network are based on the F1 scores achieved by each CNN. This weight-
ing approach considers the networks’ individual strengths in melanoma detection. This
indicates a deliberate and informed approach to choosing networks that are best suited for
the task at hand.

On the other hand, the system’s performance optimization takes into consideration
two distinct databases, ISIC 2020 and DermIS, that employ real-world data consisting of
1200 images in total for training, validation, and testing. This practical evaluation underscores
the system’s applicability to genuine scenarios. The assignment of weights considers both
databases, which contributes to the adaptability of the system to varying datasets. This
dual-database approach acknowledges the need for robustness across different data sources.

Also, to establish the system’s effectiveness, a comprehensive comparison is conducted
against four existing applications: Google Teachable Machine, Microsoft Azure Machine
Learning, Google Vertex AI, and Salesforce Einstein Vision. The comparison showcases
the superior performance of the proposed system in melanoma image classification. The
quantitative comparison substantiates the advancements achieved by the novel approach,
positioning it as a valuable contribution to the field of melanoma detection, taking into
consideration that the end goal here is to develop an EHR system that has an automated
melanoma detection module in order to introduce a way to make melanoma investigations
introduced into routine controls in order to improve patient prognosis, disease prevention,
reduce treatment costs, improve population management and improve patient empow-
erment so that patients would take better control of their health and would educate the
population that it is better to prevent than to treat. In order to do this, researchers need to
give people the means to do so effectively.

6. Conclusions

In conclusion, the incidence of melanoma cases is on the rise, necessitating the need
for early detection to prevent further growth. Deep learning has shown promising results
in melanoma detection, with increased accuracy observed over time. Our endeavor to
develop an EHR system with an automated melanoma detection system has led us to
meticulously assess the computational complexity of our approach, which involves the
integration of a custom decision fusion classifier utilizing multiple neural networks. This
endeavor necessitates a thorough justification, considering the intricate nature of the prob-
lem, the significance of accuracy, and the complexities involved in implementation and
integration. Addressing the challenge of automating melanoma detection within an EHR
system demands a solution that is both sophisticated and accurate. Our custom decision
fusion classifier, which combines neural networks such as DarkNet-53, DenseNet-201,
GoogLeNet, Inception-V3, InceptionResNet-V2, ResNet-50, and ResNet-101, emerges as a
pioneering resolution. This multifaceted approach harmonizes effectively with the intrica-
cies of melanoma detection, enabling us to exploit the strengths of diverse neural networks
to enhance accuracy. Our system, built upon a fusion of high-performance CNN architec-
tures including DarkNet-53, DenseNet-201, GoogLeNet, Inception-V3, InceptionResNet-V2,
ResNet-50, ResNet-101, and Xception, demonstrates a clear superiority over existing appli-
cations in melanoma detection. The decision fusion procedure, optimized based on the F1
scores of each network, exhibits a level of accuracy, precision, and sensitivity that sets a
new standard in this critical domain. The experimental evaluation of our proposed multi-
network decision fusion system for melanoma detection yields significant implications
for both medical research and clinical practice. The outcomes of our rigorous evaluation
underscore the remarkable performance and distinct advantages of our approach.

The empirical evaluation, conducted on diverse datasets, including ISIC 2020 and
DermIS, reaffirms our system’s adaptability across different image sources, enhancing its
potential for real-world deployment. Our careful consideration of two distinct databases
in weight assignment contributes to robust and versatile performance. As indicated in
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Table 7, our suggested decision fusion classifier displayed the most impressive performance
when considering the DermIS database. It achieved a value of 0.9550 for both accuracy
and F1 score. Among the other four applications we assessed, Google Vertex AI yielded
the next best outcome with an accuracy of merely 0.8333 and an F1 score of 0.8331. This
underscores the demonstrated superiority of our proposed system. In the case of ISIC, our
system exhibited an accuracy and F1 score of 0.9350.

In light of the decision fusion classifier’s complexity, we conducted an extensive
comparison with established applications, namely Google Teachable Machine, Microsoft
Azure Machine Learning, Google Vertex AI, and Salesforce Einstein Vision. This com-
prehensive evaluation substantiated that our approach yields substantial accuracy gains,
thereby validating its justification. While the integration complexities presented by the
decision fusion classifier are acknowledged, the commendable performance it delivers
serves as a counterbalance, accentuating its significance. The implications of these results
are substantial. Our proposed multi-network decision fusion system not only advances
the state of the art in melanoma detection but also holds immense potential for clinical
implementation. By offering superior accuracy and a refined decision-making process, our
system stands as a powerful tool for medical practitioners, aiding in early detection and
improving patient outcomes.

Given the medical context of melanoma detection, precision is of paramount impor-
tance. The combination of neural networks within our custom decision fusion classifier
contributes synergistically to elevating accuracy. This heightened accuracy holds direct im-
plications for dependable melanoma detection within the EHR system, potentially assisting
medical professionals in prompt diagnosis and treatment decisions. Acknowledging the
integration challenges associated with the decision fusion classifier, we are cognizant that
incorporating this advanced system may be more intricate compared to alternative options.
However, this complexity is offset by the exceptional accuracy it offers. Furthermore, the
efficiency and scalability of the decision fusion classifier, despite its complexity, render
it aptly suited for the EHR system’s context. The decision to integrate the customized
decision fusion classifier bears enduring value. Leveraging multiple neural networks
enhances adaptability across a broad spectrum of melanoma cases, ensuring resilience
against variations. While the initial integration hurdles are acknowledged, the sustained
benefits in terms of accuracy, early detection, and dependable patient care overshadow
these challenges.

In conclusion, our work not only introduces a novel methodology but also delivers
on the promise of enhanced accuracy and performance. The computational complexity
of our tailor-made decision fusion classifier is substantiated by its distinctive and inno-
vative methodology, heightened accuracy in melanoma detection, a well-documented
comparative assessment, and the enduring value it brings to the EHR system. Despite
the integration challenges, the advantages it confers to medical diagnostics validate this
as a prudent and justified choice. The implications of our experimental evaluation point
towards a future where melanoma detection can be augmented by our innovative ap-
proach, ultimately contributing to more effective and reliable healthcare interventions. The
next steps for improving the solution would be to find a way to integrate our classifier
obtained using MATLAB to have better accuracy and flexibility to adapt algorithms for
an unlimited number of tasks. This will require an integration between MATLAB and the
SalesForce Platform.
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RF Random Forest
RNN Recurrent Neural Network
SVM Support Vector Machine
TN True Negative
TP True Positive
UV Ultraviolet Radiation
VGG Visual Geometry Group
XML Extensible Markup Language
YOLO You Only Look Once

References
1. Ott, P.A. Intralesional Cancer Immunotherapies. Hematol. Oncol. Clin. N. Am. 2019, 33, 249–260. [CrossRef] [PubMed]
2. Liu, Y.; Sheikh, M.S. Melanoma: Molecular Pathogenesis and Therapeutic Management. Mol. Cell. Pharmacol. 2014, 6, 228.
3. Strashilov, S.; Yordanov, A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int. J. Mol.

Sci. 2021, 22, 6395. [CrossRef] [PubMed]
4. National Cancer Institute. Melanoma Treatment for Health Professionals (PDQ). Available online: www.cancer.gov/types/skin/

hp/melanoma-treatment-pdq (accessed on 2 February 2020).
5. Stewart, B.W.; Wild, C.P. World Cancer Report 2014; World Health Organization, International Agency for Research on Cancer,

IARC Publications: Geneva, Switzerland, 2014.

https://doi.org/10.1016/j.hoc.2018.12.009
https://www.ncbi.nlm.nih.gov/pubmed/30832998
https://doi.org/10.3390/ijms22126395
https://www.ncbi.nlm.nih.gov/pubmed/34203771
www.cancer.gov/types/skin/hp/melanoma-treatment-pdq
www.cancer.gov/types/skin/hp/melanoma-treatment-pdq


Appl. Sci. 2023, 13, 10536 35 of 38

6. El-Khatib, H.; Popescu, D.; Ichim, L. Deep Learning–Based Methods for Automatic Diagnosis of Skin Lesions. Sensors 2020,
20, 1753. [CrossRef] [PubMed]

7. Ghazawi, F.M.; Darwich, R.; Le, M.; Rahme, E.; Zubarev, A.; Moreau, L.; Burnier, J.V.; Sasseville, D.; Burnier, M.N.; Litvinov, I.V.
Uveal melanoma incidence trends in Canada: A national comprehensive population-based study. Br. J. Ophthalmol. 2019, 103,
1872–1876. [CrossRef]

8. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [CrossRef]
9. Ward, W.H.; Lambreton, F.; Goel, N.; Yu, J.Q.; Farma, J.M. Clinical Presentation and Staging of Melanoma. In Cutaneous Melanoma:

Etiology and Therapy [Internet]; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2018.
10. Patil, R.; Bellary, S. Machine learning approach in melanoma cancer stage detection. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34,

3285–3293. [CrossRef]
11. Koczkodaj, P.; Sulkowska, U.; Didkowska, J.; Rutkowski, P.; Mańczuk, M. Melanoma Mortality Trends in 28 European Countries:
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