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Abstract: In recent decades, memory-intensive applications have experienced a boom, e.g., machine
learning, natural language processing (NLP), and big data analytics. Such applications often expe-
rience out-of-memory (OOM) errors, which cause unexpected processes to exit without warning,
resulting in negative effects on a system’s performance and stability. To mitigate OOM errors, many
operating systems implement memory compression (e.g., Linux’s ZRAM) to provide flexible and
larger memory space. However, these schemes incur two problems: (1) high-compression algorithms
consume significant CPU resources, which inevitably degrades application performance; and (2) com-
promised compression algorithms with low latency and low compression ratios result in insignificant
increases in memory space. In this paper, we propose QZRAM, which achieves a high-compression-
ratio algorithm without high computing consumption through the integration of QAT (an ASIC
accelerator) into ZRAM. To enhance hardware and software collaboration, a page-based parallel
write module is introduced to serve as a more efficient request processing flow. More importantly, a
QAT offloading module is introduced to asynchronously offload compression to the QAT accelerator,
reducing CPU computing resource consumption and addressing two challenges: long CPU idle
time and low usage of the QAT unit. The comprehensive evaluation validates that QZRAM can
reduce CPU resources by up to 49.2% for the FIO micro-benchmark, increase memory space (1.66×)
compared to ZRAM, and alleviate the memory overflow phenomenon of the Redis benchmark.

Keywords: memory compression; memory-intensive application; NLP; OOM; QAT

1. Introduction

With the development of hardware, the number of CPUs and GPUs is increasing,
and computing capacity has been greatly enhanced. This indicates that high-performance
computers and large-scale data applications can increasingly promote scientific research
breakthroughs. This further increases the demand for memory capacity in computers.
Memory-intensive applications are also growing rapidly, for example, natural language
processing (NLP) [1,2], fluid dynamics in climate simulations, particle simulations in
astrophysics, quantum mechanics, and so on. Obviously, such applications require more
and more memory. Due to the continuous growth of memory requirements, applications
often experience out-of-memory (OOM) errors.

An OOM error is a common type of error for programmers. It is one of the most
important bottlenecks in memory-intensive applications and can seriously affect and even
kill applications. As an example, in NLP, a pre-training algorithm can train models through
a series of universal languages to obtain a large number of datasets required for proprietary
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tasks. Google engineers have found that the addition of the Lamb optimizer to BERT [3]
training can greatly shorten training time by increasing the batch size. However, this
can lead to a sharp increase in BERT’s demand for memory space, which can easily lead
to a system memory overflow. When increasing the batch size to 1600 on ×86 servers,
the 240 G memory space will be quickly exhausted, and the BERT training system will
eventually interrupt the training task due to OOM errors. However, simply increasing
costly physical memory cannot solve the ever-increasing memory demands [4]. Memory is
the resource that restricts the development of such applications. So, efficient application
storage and processing of data will be an integral part of future storage systems. Data
compression re-encodes data using specific compression algorithms to reduce the storage
space occupied by the data, thereby improving data transmission, storage efficiency, and
processing efficiency [5,6]. So, memory compression, as one of the measures used to handle
increasing memory requirements, has been proposed and has rapidly developed.

Major operating systems have introduced swap-space compression (e.g., Linux’s
ZRAM [7]) as a type of memory compression. The main idea of these schemes is to
increase the number of available memory pages by compacting inactive pages. Any access
to the compressed pages would trigger a page fault, prompting the OS to decompress
the page into a full-page frame, which is more efficient than reading from secondary
storage. However, these schemes introduce additional computing loads, affecting the
overall performance of upper-layer applications.

This paper proposes a high-performance memory compression system known as
QZRAM. QZRAM has efficient data compression and provides application-agnostic and
cost-efficient data storage. It is based on the Intelr QAT accelerator [8]. Quick-Assist
Technology (QAT) is a hardware acceleration technology launched by Intel for network
security and data storage. ZRAM (mostly called compcache before 2014) is a very im-
portant function in Linux. It is mainly used to temporarily increase memory capacity
by compressing cold pages. ZRAM compresses the inactive virtual pages and transfers
them to physical memory to free virtual memory. If the compressed pages are accessed
by applications again, ZRAM will decompress them and return them to virtual memory.
Such a design can prevent cold pages from being exchanged with low-speed secondary
hardware devices (such as SSD and HDD), which reduces the delay in accessing data and
improves the performance of applications. Thanks to the high-performance computing of
QAT, QZRAM can use the GZIP algorithm and offload it to simultaneously attain a high
compression ratio and low computing resource consumption. In detail, QZRAM adds two
new modules instead of the original (de)compression procedures to offload compression to
QAT. Firstly, QZRAM adds a parallel page-based write module, which enables QZRAM
to better utilize multiple cores of computers and multiple computing units of QAT to
concurrently process write requests. Secondly, QZRAM adds a compression module based
on a parallel compressed stream, provides a transparent compression function entry, and
manages the QAT hardware-accelerated GZIP algorithm and pure software compression
algorithm libraries.

In our evaluation, we use QZRAM as the swap device and measure its performance in
the FIO micro-benchmark and the practical Redis benchmark. In the FIO micro-benchmark,
QZRAM can attain a 1.6× average write throughput improvement with a 1.51× compres-
sion ratio and about a 43% reduction in computing resource consumption (from more than
49.2% CPU consumption to less than 36.6% CPU consumption). In the practical Redis
benchmark, by leveraging QAT acceleration, QZRAM (1) increases memory space (1.66×)
based on ZRAM, delaying the timing of OOM triggers; and (2) significantly reduces the
consumption of CPU resources during compression so that the CPU resources can be better
allocated, improving the performance of the upper-layer of the Redis server.

This paper makes the following contributions:

• We propose QZRAM, which leverages the Intelr QAT accelerator and integrates it
into ZRAM. In QZRAM, this integration can achieve efficient data compression and
provide application-agnostic and cost-efficient data storage. QZRAM is designed in
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the kernel, making it transparent to upper-level applications. It can support various
memory-intensive applications without modification.

• We implement a flexible and dynamic memory compression engine in QZRAM. Since
the GZIP compression algorithm is assisted by QAT, QZRAM improves the data
compression ratio based on ZRAM, thereby improving memory capacity and delaying
memory overflow opportunities.

• We add an offload module to QZRAM, which asynchronously offloads (de)compression
functions to the QAT accelerator. This way of offloading can reduce the CPU comput-
ing resource consumption during the QZRAM data compression process and address
the technical challenges of long CPU idle times and low usage of QAT computing units.

• We evaluated the performance of QZRAM through experiments, and the results show
that QZRAM can effectively reduce CPU resources in the FIO micro-benchmark,
increase memory space based on ZRAM, and alleviate the memory overflow phe-
nomenon of the Redis benchmark.

2. Background

In this section, we introduce the relevant technical background of memory compres-
sion, analyze ZRAM in detail, and state the motivation of hardware-assisted memory
compression for memory-intensive applications.

2.1. OOM Errors in Memory-Intensive Applications

OOM errors are a common issue in databases, mobile devices, JVMs, deep learning,
and more. With the increase in memory capacity demand, memory-intensive applications
may easily suffer from OOM errors, which can seriously affect a system’s performance. For
example, in NLP training, a large amount of task-specific data is required, and manually
labeled data are insufficient. In the pre-training phase, a series of training universal lan-
guage models are developed to obtain the large number of datasets required for proprietary
tasks. To reduce the training time, researchers add the Lamb optimizer to BERT training,
which increases the batch size and significantly increases the memory overhead, potentially
causing system OOM errors. But at the same time, it leads to a sharp increase in the cost
of memory, so memory space can be quickly exhausted, and the BERT training system
may eventually interrupt the training task. So, memory space has become one of the key
resources of modern and future computer systems.

However, simply expanding physical memory capacity is not a good solution [4].
There are two main reasons for this: (1) DRAM occupies a significant portion of the costs of
the entire computer system and power consumption; and (2) due to signal-integrity issues,
today’s high-frequency storage channels prohibit many DRAM modules from connecting
to the same channel, thereby limiting the maximum number of DRAMs in the system.
In contrast, memory compression has become an excellent solution that can increase the
memory capacity of computer systems without incurring significant hardware/energy
costs. Memory compression can increase the memory capacity of a computer system
without increasing physical memory, thus meeting the needs of applications running larger
data volumes for computation.

2.2. Memory Compression

Memory compression is widely used in servers, smartphones, and other computer
systems to save memory space [9]. In a memory compression system, virtual memory
is compressed and stored in physical memory or secondary storage devices (HDDs or
SSDs). Compressed memory blocks are set to inaccessible states, subsequent access to the
data triggers page faults and invokes the swap system to decompress and restore it. Com-
pression is compute-intensive. Software memory compression schemes [7,10,11] are often
bottlenecked by the computation overhead. Other memory compression schemes [9,12–18]
are performed by a dedicated processor between the CPU cache and physical memory,
which is called hardware memory compression.
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2.3. ZRAM Memory Compression System

We revisit a popular Linux kernel software memory compression subsystem, namely
the ZRAM module. As shown in Figure 1, ZRAM compresses the inactive virtual pages
and transfers them to the physical memory, which can free a lot of physical memory. When
the physical memory is almost used up, the ZRAM module transfers some compressed
data to secondary storage until they are needed again.

ZRAM can virtualize one or more compressed RAM disks, which can be used as
swap devices.

Figure 1. ZRAM module.

Processing flow: We depict the compression workflow to understand how ZRAM
works and where ZRAM is located in Linux memory management, as shown in Figure 2.
We divide the execution process of requests into three layers for clarity and intuition:
the request process layer, the read/write page layer, and the compression library layer.
When memory reclaims and swaps out inactive pages to ZRAM, the request process layer
first iterates through the newly swapped-out request to parse it into a collection of pages
and then transfers it to the read/write layer. Furthermore, the read/write layer calls the
compression function of the compression library layer to compress the data and finally
copies the compressed data to the zspages in Zpool [19], which is constructed of virtual
devices. For swap-in requests, ZRAM calls the decompression function to decompress the
compressed data and return them to the application layer. Note that the whole execution
flow of ZRAM is a single-threaded operation. When the compression library layer calls
algorithms implemented by software to (de)compress data, the entire execution process
would be blocked until data (de)compression is complete. In other words, the next request
can be processed only after the current request is completely processed.

Compression algorithms: Compression algorithms reduce the given storage space
of data, but this also results in significant performance degradation. Furthermore, a high
compression ratio generally means low-speed compression for compression algorithms.

We conducted an experiment to confirm the above and evaluate the algorithms to
observe the reasons for ZRAM’s bottlenecks. Our platform is equipped with Intel Xeon
E5-2699 v4 processors, 64 G of RAM at 2133 MHz, and is running Linux kernel 4.8.12.
ZRAM supports the LZO [20], LZ4 [21], and other compression algorithms [22–24]. This
experiment begins with the FIO micro-benchmark with different compression algorithm
configurations. Table 1 shows the throughputs, CPU usage, and compression ratios of the
different compression algorithms.

Observation 1: From the experimental data, we can see that (1) The LZx algorithms
have a low compression ratio, although they have a higher throughput. The purpose of
memory compression is to increase memory capacity, so only a high enough compression
ratio can make a significant difference. (2) The compression algorithms implemented in
pure software consume a lot of CPU resources, which inevitably affects the performance of
upper-layer applications.
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Figure 2. ZRAM processing flow.

Table 1. Compression algorithm performance test.

Left: Read / Right: Write

Mode MiB/s CPU Usage [%] Comp Ratio

LZO 1588 / 670 60.20 / 55.10 1.49
LZ4 1973 / 723 78.57 / 86.36 1.51
DEFLATE 588 / 65.5 90.57 / 96.99 2.25

2.4. Hardware-Assisted Data Compression

In Section 2.2, we observed that the compression tasks not only consume a lot of costly
CPU resources but are also repetitive. If ZRAM uses some dedicated hardware processors
to handle these resource-intensive tasks, the performance of ZRAM may be improved.
Fortunately, many hardware accelerators (e.g., FPGA [25], GPU [26], ASIC [27], etc.) have
emerged to assist CPUs with all kinds of computation-intensive tasks. Intel Corporation
has also launched its ASIC accelerator, QAT [8], which can help the CPU in compressing or
encrypting data. Many researchers have proposed efficient heterogeneous systems [28,29].
However, there are practical challenges in heterogeneous systems, one of which is how to
design a high-performance hardware and software collaboration scheme.

Direct offloading data compression to the QAT accelerator reduces CPU consumption
during compression. However, the native offloading mode, as shown in Figure 3, faces
some practical challenges. Although the QAT driver provides a non-blocking interface for
I/O calls, synchronous I/O calls used by the compression module to submit offloading
requests cannot be returned directly (i.e., block). Unfortunately, this frequent blocking may
result in a waste of both CPU and QAT resources. Firstly, a large number of CPU cycles are
used for waiting. After a compression request is submitted to the QAT hardware, QZRAM
needs to wait for its response. Whether QZRAM adopts busy_loop or sleep for waiting,
the I/O request processing will be paused for a period of time. Secondly, the parallel
computing unit inside the QAT hardware has a low utilization rate. For each request
process, only after the current I/O request is completed by the heterogeneous accelerator
can the next compression request be submitted. In other words, only one accelerator unit
can be used at the same time.
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Figure 3. Direct offloading mode.

3. System Design

Above all, the ZRAM module can increase the memory capacity of computers, which
delays the trigger time of OOM errors, but computation-intensive compression tasks
inevitably degrade the performance of upper-layer workloads. Not only that, simply of-
floading the compression operator to the hardware accelerator results in some performance
bottlenecks. Therefore, we propose a high-performance memory compression system
QZRAM. The overall QZRAM architecture is illustrated in Figure 4, and the yellow parts
are the newly added or modified modules relative to ZRAM. The overall QZRAM architec-
ture includes memory-intensive applications (e.g., database, AI training, etc.), the Linux
memory management system, and QZRAM, as well as the underlying physical memory
and QAT accelerator.

Figure 4. Overall architecture of QZRAM.

If memory capacity cannot meet the requirements of the upper-layer applications,
memory reclaim will swap the inactive pages to QZRAM. First, the page-based parallel
write module preprocesses write requests and sends them to workers for the second half of
processing. Second, workers send the original data to the compression module for data
compression. Finally, the compression module calls the hardware-assisted GZIP algorithm
or software-implemented algorithms to compress the data and return them to the worker. If
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the compression module selects the hardware-assisted GZIP algorithm, the QAT offloading
module will offload the compression operator to the QAT accelerator.

3.1. Page-Based Parallel Write Module

Through careful analysis of ZRAM, we found that ZRAM cannot handle new requests
asynchronously. In other words, a request cannot be processed until the previous request is
complete. Moreover, the time-consuming part of the whole process is the data compression
and write operations, which are less sensitive to latency than read operations. Therefore,
we decouple the process flow and construct a page-based parallel write module, as shown
in Figure 5. For a new request, the QZRAM main thread preprocesses it, encapsulates it into
the data required by workers in the postprocessing, adds it to the page request queue (First
In, First Out), and allocates a worker from the thread pool to postprocess the request. Later,
the worker retrieves the request from the shared queue and continues the process. This
means that workers perform the compression operation and return asynchronously after
the completion of the entire procedure, notifying memory reclamation that the processing
of the current page has been completed.

Figure 5. Page-based parallel write module.

Preprocessing: For a new request, the main thread of QZRAM checks the flag bit
of the current request to determine whether it is a delete operation. The request is then
traversed and parsed at the virtual page granularity and sliced into the page collection
because QZRAM’s processing granularity is exactly the page size such as 4 k (1024 bytes).
For the pages in these page sets, the first QZRAM main thread calculates the virtual page’s
QZRAM in-device index, in-page offset, and data length; the second QZRAM main thread
incorporates in-device indexes, in-page offsets, data lengths, and other data structures
needed for postprocessing into one object of page_list. QZRAM main thread will then
add page_req to page_list and continue parsing the remaining physical pages until all the
physical pages for the current write request have been parsed. Finally, the QZRAM main
thread adds page_list to the FIFO (First In, First Out) queue req_list and allocates worker
threads from the thread pool to continue the postprocessing work.

Postprocessing: Once the workers begin running, they loop through the req_list
queue to obtain the requests encapsulated by the main thread and then perform write
operations for each page in the request. The worker obtains the workflow on the current
CPU and uses the compression function of the compression module through the transparent
compression entry provided by zstream (compression stream). After the zstream submits
the compression request, it goes to sleep for a short time until the compression is complete
or times out. Once the compression module returns, the worker immediately resumes
and executes the rest of the processing flow. When the process is complete, the worker
thread notifies the memory reclaim that the swap-out request processing for the current
page has been completed. If the worker accesses the request queue and finds that there are
no pending requests in the queue, the worker actively goes to sleep and releases the CPU,
waiting for the main QZRAM to wake up and reenter the execution state.
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3.2. Compression Module

The compression module provides a transparent compression function to the upper
layer. The appropriate compression algorithm is selected to (de)compress the data according
to the preset configuration of the user. The overall design of the compression module
includes three parts: concurrent compression streams, the algorithm implemented in the
software, and the GZIP library assisted by the QAT accelerator.

Concurrent compression stream. Compression streams provide a compression entry
that supports concurrent read and write operations, enabling the worker thread to concur-
rently execute the second half of the process. In addition, the compression stream maintains
a buffer to store the compressed data. During compression, there is a small probability of
data inflation. Therefore, the compressed stream buffer space is set to 8k, twice the size
of the virtual page. By default, the GZIP algorithm library based on the QAT accelerator
is used as the compression algorithm in the compression stream. If users have special
requirements, they can select a compression algorithm for the compression stream based
on the application scenario.

3.3. QAT Offloading Module

To address the practical challenges of direct offloading, this section proposes an
asynchronous offloading design, as shown in Figure 6. After the request is preprocessed by
the QZRAM main thread, the worker thread continues with the time-consuming part of the
process. Multiple worker threads simultaneously invoke unified compression algorithms
of the compression module. Then, the compression module selects the submitted GZIP
compression request to the QAT driver and sleeps until it receives the interrupt signal from
the QAT driver. This approach not only avoids the CPU’s idle wait time after submitting
the compression request but also enables QZRAM to process multiple requests concurrently
and multiple computing units of QAT hardware to work simultaneously. Finally, after
processing the compression request, the QAT accelerator sends an interrupt signal to the
CPU indicating that the compression is complete. Then, the QAT driver uses the callback
function to wake up the worker, and it resumes the compression task and continues the
remaining write process.

Figure 6. QAT asynchronous offloading design.
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4. Implementation and Optimization

In this section, we elaborate on which modules QZRAM implements and optimizes
based on ZRAM.

4.1. Compression Module

High reliability and high compatibility: To ensure the high reliability of QZRAM,
the compression module introduces many reliable mechanisms and strategies for data
compression. In the compression ratio detector, to prevent the memory overflow from
directly causing runtime errors, which can crash the system, the compression module
conducts a detailed boundary check for each physical page I/O operation and ensures its
atomicity during data operation. In the management of the compression algorithm, if the
hardware-assisted compression algorithm does not work, the compression module uses
the corresponding algorithm implemented in pure software as a replacement to ensure that
compression can be successfully completed. This mechanism makes QZRAM independent
of the underlying hardware platform. Even if the QAT accelerator is damaged or there is
no device, it can still complete the compression work, which is a highly reliable solution to
meet the data compression scenario. In addition, the compression module is transparent to
the upper-level module and has high compatibility with different compression algorithms.

4.2. QAT Offloading Module
4.2.1. Handling Buffer Overflow

When QZRAM is inserted into the kernel, the QAT offloading module initializes the
compression buffer, compression instance, and compression session and binds them to the
underlying QAT accelerator. The QAT offloading module offloads compression requests
to the request ring through a compression instance and obtains results from the response
ring after the data are compressed. However, in the process of compression, the data may
swell because the effect of compression is not obvious, and the header and tail are added to
the compressed data for the sake of compatibility with software and hardware memory
algorithms. The data inflation generated in the process of data compression may still have
a serious impact. The compression buffer is a continuous physical memory area, if overflow
occurs in it, QZRAM may have serious errors, resulting in an entire system crash or even
physical damage to the QAT hardware. Therefore, to prevent buffer overflow, the QAT
offloading module sets the buffer size to twice the original data. Such a design may result in
a certain amount of memory wastage, but it is worth it compared to the potentially serious
consequences of a buffer overflow.

4.2.2. Load Balance and Availability

Load balance: In scenarios of high-performance computing, upper-layer applications
have large-scale data, resulting in extremely high compression bandwidth. If the computing
resources of the QAT accelerator are exhausted, the QAT instances cannot be obtained by
the QAT offloading module. To ensure the full utilization of computing resources in the
system, the load balancing between QAT hardware-assisted compression and traditional
compression performed by CPUs is required in the QAT offloading module. Therefore,
if the QAT instances in the QAT offloading module are insufficient, the QAT offloading
module transfers all compression operations to the software compression algorithms pro-
cessed by the CPU. When the computing resources of the QAT accelerator are replenished,
compression resumes using the QAT accelerator, achieving a seamless transition between
the two schemes.

High availability: The QAT session is a service abstraction that describes the con-
figuration information and parameters of the compression service in the QAT instances.
In the requests and responses of the QAT instances, specific data manipulation is respon-
sible for the QAT session, and each session represents a (de)compression service. After
the QAT offloading module completes instance initialization and data reconstruction, the
QAT session is responsible for the information transfer to the QAT accelerator. Thus, if a
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software-level error occurs during compression, such as passing the wrong DMA (Direct
Memory Access) address or the wrong number of parameters, it is handled and recovered
in the QAT session. If a hardware-level error occurs, the QAT offloading module clears all
instances and sessions, reclaims the memory of all the corresponding data structures, sets
the available identifier location of this module to false, and then restarts the QAT driver and
the QAT offloading module. Finally, all relevant buffer data structures, logical instances,
and compression sessions are re-initialized for use in the next phase of continued work. As
a mature commercial ASIC device, the QAT accelerator device rarely experiences errors at
the hardware level. However, the implementation of a perfect error-handling mechanism
in the QAT offload module can help avoid potential risks and improve system availability
and robustness.

5. Evaluation

In this section, we introduce the experimental platform and evaluation of QZRAM.
Additionally, we use the traditional file read/write micro-benchmark tool FIO (Flexible
I/O) and the distributed memory database Redis [30]. The former is used to test various
performance improvements of QZRAM compared to ZRAM. The latter shows whether
QZRAM can result in performance improvements in memory-intensive applications in real
big-data application scenarios.

5.1. Evaluation Methodology

Experimental testbed: We establish an experimental testbed with three physical
servers, each of which is equipped with two 88-core Intel Xeon E5-2699 v4 processors,
64 G RAM, and one Intel C62x PCIe QAT card. Each server runs on CentOS 7 (Linux
kernel 4.8.12) and is equipped with a QAT 1.7 hardware driver for Linux. Finally, we
connect these servers via an Intel 40 GbE NIC.

Experimental dataset: The Calgary dataset [31] was created at the University of
Calgary. Since then, the Calgary dataset has gradually become most widely used in the
field of compression, especially text compression. To evaluate the compression system
practically, it consists of nine different types of text data, including typical English writing
(e.g., bibliography and news), computer programs, transcripts of terminal sessions, and
so on.

Performance metrics: We mainly compared four configurations: no-swap, ZRAM
(LZO), ZRAM-QAT (QAT direct offloading mode), and QZRAM. No-swap disables the
swap partition, which is the foundation of this evaluation. ZRAM means that the OS uses
ZRAM as the swap device, which configures the LZO algorithm to compress data. ZRAM-
QAT means that the operating system selects ZRAM as the switch device and changes the
compression algorithm to the QAT hardware-assisted GZIP algorithm. QZRAM represents
the modification of the single-threaded write process to a multi-threaded write process in
the asynchronous offloading mode.

5.2. Evaluation Benchmark

Micro-benchmark workloads: FIO (flexible I/O tester) is a micro-benchmark tool
that tests device storage performance by simulating practical read/write behavior. The
principle of FIO is that it generates a buffer of text data and then uses multiple threads to
concurrently write the data to the specified device to test the performance of the device.
Note that all packets received by ZRAM are virtual pages with a fixed size of 4 k. So, the
packet block size is specified as 4 k by default in the experiments unless otherwise specified.

Database workloads: Redis (remote dictionary server) [30] is an in-memory database
widely used in the industry. It is mainly used as a high-performance cache server and can
also be used as a MOM (Message-Oriented Middleware) or in session sharing. In addition,
using Redis, it is easy to simulate the production of large amounts of data. Therefore,
Redis is used to simulate real memory-intensive scenarios to test the improvement in the
performance of upper-layer applications. The Redis experiments are performed as follows:
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1. The Redis server starts up as many server instances as there are CPUs and then runs
each server instance exclusively on a dedicated CPU.

2. All server instances are initialized. Redis is configured not to use persistent storage,
and instances are initially set to “empty”.

3. Once all server instances are started, all Redis clients use the Calgary dataset to
generate values and send SET requests concurrently to instances on the server.

4. Until all SET operations have been processed by the server, the client starts to GET
previous values from the server concurrently.

5. The above 3–4 steps are repeated three times, and the master client records the detailed
experimental data.

5.3. FIO Micro-Benchmark

Compression ratio and CPU usage. The compression ratio represents the size that
a specific storage space can store the original data, which reflects the memory space
improvement, and the CPU usage displays the CPU resource consumption during data
compression. The compression ratio is mainly counted and recorded in the log file by
the statistics module of the ZRAM (Linux kernel). The experimental results are shown
in Table 2. We can see that the compression ratio of QZRAM with the GZIP algorithm
configuration is 1.51 times that of the default ZRAM, and the CPU usage of QZRAM is
36.60% lower than that of ZRAM. Thanks to the powerful parallel computing capability of
the QAT accelerator, QZRAM not only has a higher compression ratio compared to ZRAM
but also greatly reduces the consumption of CPU resources.

Table 2. Compression ratio and CPU usage test.

CPU Usage (%) Compression Ratio

Linux kernel (ZRAM) 55.10 1.49
QZRAM 18.50 2.25

Write throughput and latency. Since the processing granularity of the QZRAM mem-
ory block device is a page size (4 k), the block size in this experiment was set to gradually
increase from 4 k to 4 m. Figure 7 shows the write throughput of ZRAM, ZRAM-QAT,
and QZRAM under different block-size configurations. Although the previous experiment
demonstrated that replacing the LZO algorithm implemented only in software with the
GZIP algorithm assisted by the QAT hardware accelerator can indeed improve the data
compression ratio and reduce the consumption of CPU computing resources during the
compression process, this experiment shows that directly unloading the compression oper-
ator onto the QAT hardware accelerator does not improve the processing performance of
the ZRAM memory compression system. The write throughput of ZRAM-QAT (QAT direct
unloading mode) is even less than 1/10 of that of ZRAM, and the I/O processing latency is
still 10 times that of ZRAM. The main reason for these results is the low utilization rate of a
large number of CPU cycles used for waiting and QAT parallel computing units. Therefore,
this article adds page-based parallel read and write modules and a compression operator
asynchronous unloading scheme to QZRAM. In the graph, it can be seen that the write
throughput of QZRAM with the new parallel read and write modules and asynchronous
offloading is higher than that of ZRAM under different block sizes, especially when the
block size is 32 k, and QZRAM’s throughput is 1.71 times that of ZRAM. The experiment
has proven that the asynchronous unloading compression operator designed in this article
addresses the technical challenge of the direct unloading mode. It also proves that QZRAM
has a stronger write operation I/O processing ability compared to ZRAM in both large and
small packet conditions.
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Figure 7. Write throughput and latency with different block sizes.

I/O pattern. Swap partitions send both sequential-swap (i.e., sequential I/O) and
single-swap (i.e., random I/O) requests to swap devices. Figure 8 shows the throughput
and CPU usage of the experimental subjects in four I/O modes. In sequential read, the
ZRAM throughput is 1588 MiB/s and CPU usage is 60.10%. Relatively speaking, the CPU
usage of ZRAM-QAT (i.e., direct offloading mode) is reduced to 16.79%, but the throughput
also drops to 105MiB/s due to the large number of idle CPUs in direct offloading and the
low usage of the QAT acceleration unit. As a result, QZRAM introduced asynchronous
offloading, increasing throughput to 611MiB/s and maintaining CPU usage at the low level
of 21.60%. In sequential write, QZRAM has roughly the same throughput as ZRAM, and
QZRAM has a 36.7% reduction in CPU consumption compared to ZRAM. On the whole,
this experiment proves that QZRAM effectively tackles the challenges existing in the direct
offloading design and greatly releases CPU resources while maintaining performance.

Figure 8. Performance of different IO patterns.

Scalability. Swap devices may receive requests from multiple processes. Therefore,
QZRAM needs a strong ability to handle requests in parallel. Figure 9 shows the per-
formance of QZRAM and ZRAM under different workloads. When the workload is 1,
although the throughput of both ZRAM and QZRAM is around 670MiB/s, the CPU us-
age of QZRAM is 36.6% lower than that of ZRAM. Both the throughput and CPU usage
of ZRAM and QZRAM increase as the workload increases. With a workload of 16, the
QZRAM CPU usage is reduced by up to 49.2% compared to ZRAM. This means that
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QZRAM saves a lot of CPU resources without decreasing the throughput. At the same
time, we can see that the throughput of either ZRAM or QZRAM does not increase with
the increase in the workload because it increases the competition for resources within the
system. In addition to resource competition, we suspect that the QZRAM throughput
did not increase due to the limited number of compression instances per QAT accelerator
card (18 compression instances), which is obviously not enough to be used by 88 workers
at the same time. One solution is to insert more QAT accelerator cards into the machine
because if the physical machine has a large number of cores, using a few more QAT cards
can maximize the potential of QZRAM. In other words, QZRAM has a stronger parallel
processing ability compared to ZRAM. Figure 10 shows the read and write request latency
of ZRAM and QZRAM under different workloads. In the graph, it can be seen that the
average read delay of QZRAM increases by 54 microseconds compared to ZRAM, which
is consistent with the throughput difference between the two in the second experiment.
At the same time, the write delay of QZRAM is essentially the same as that of ZRAM.
This result is partly due to the additional delay introduced by the PCIE data transmission
between the QAT and CPU in the compression process. On the other hand, it is because
the GZIP algorithm implemented by the software in the QAT hardware uninstallation
module adds a header and footer to the compressed data packets to be compatible with the
compressed data.

Figure 9. Performance of different workloads.

Figure 10. Performance of different workloads.
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5.4. Redis Evaluation

Memory compression is mainly used in memory-intensive applications (e.g., databases).
Therefore, we use the Redis benchmark to determine the extent to which QZRAM improves
the performance of memory-intensive applications.

SET operation: Figure 11a shows the throughput of the three subjects. We can see that
the curves of the three configurations are almost even (around 1.8 million keys/s) before
60 G because they have enough memory capacity and do not need to swap out inactive
pages. When the data size reaches 80 G, the remaining memory space of the no-swap
devices (i.e., non-swap-equipped devices) is insufficient for the Redis servers to run, so the
OOM program selects and kills the Redis servers that occupy a large amount of memory
space. On the contrary, the others retain a certain amount of memory space by swapping
out inactive data to the swap partition. Although the life cycles of the other subjects are
extended, their performance drops, particularly ZRAM. In detail, the throughput of ZRAM
is only 68% of that of the no-swap configuration. The relative QZRAM throughput is
83% of the throughput of the no-swap configuration. This is because the pure software
compression algorithm used in ZRAM consumes a large amount of CPU resources, and the
single-threaded process of ZRAM is overwhelmed when dealing with large-scale data. In
contrast, QZRAM maintains good performance when the OS performs memory recycling,
and the throughput of QZRAM only decreases by 17% compared to that of the no-swap
devices. As the data size continues to increase, the performance of ZRAM decreases more
and more due to the high concurrency pressure and the low compression ratio of LZO. In
the test where the data size is 90 G, the memory space is completely exhausted, and the
Redis server is forcibly killed by the OOM program. In contrast, the throughput of QZRAM
decreases slowly with the increase in the working set, and the OOM phenomenon does
not appear until 150 G due to the fact that QZRAM further increases the memory capacity.
In conclusion, QZRAM has better I/O performance and 1.66 times more memory space
than ZRAM.

(a) SET operation

(b) GET operation

Figure 11. Performance in Redis benchmark testing.
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GET operation: After the SET requests are all processed, the Redis clients concurrently
send GET requests to the servers to obtain the values of the SET requests. Figure 11b
shows the throughput of the Redis clients with the increase in the working set in the three
configurations. We can see that the three throughput curves are almost even (1.91 million
keys/s) before 60 G. This is because at this time, the Redis data of the three are stored in
the physical memory (i.e., not swapped out to swap devices). When the data size exceeds
70 G, the throughput of both ZRAM and QZRAM degrades. Compared to the no-swap
configuration, the throughput of ZRAM decreases by more than 60%, and that of QZRAM
only decreases by around 10%. These experimental results are generated because the
software-implemented compression algorithm used in ZRAM consumes a large amount of
CPU resources, and the single-threaded blocking read process of ZRAM is overwhelmed
when dealing with the huge amount of data in the highly concurrent scenario, which
affects the processing performance of the upper layer of the Redis server. In addition, the
reason the GET operations suffer more significant performance degradation compared to
the SET operations is that the GET requests are issued after all the SET requests have been
completed. If the Redis clients SET more than 60 G data to the server, the GET operation
will occur after the swap partition is used. In this case, when the Redis server accesses the
data, it is likely to trigger a page fault, reminding the OS to decompress the data from the
swap partition and return it to memory. And because the memory is insufficient, the OS
might swap out and swap in pages at the same time. In general, QZRAM has better read
performance compared to ZRAM under high-load memory compression scenarios.

6. Conclusions

We analyzed two problems of ZRAM and discussed the practical challenge of hardware-
assisted data compression for memory-intensive applications. QZRAM offloads GZIP com-
pression to the QAT accelerator to reduce CPU resources and increase memory space
based on ZRAM. In addition, we proposed an asynchronous offloading scheme to not
only avoid CPUs’ idle wait time after submitting the compression request but also enable
QZRAM to submit multiple compression requests concurrently. QZRAM is designed
at the kernel level, making it transparent to upper-level memory-intensive applications.
The evaluation showed that QZRAM can reduce CPU resources by up to 49.2% in the
FIO micro-benchmark, increase memory space (1.66×) based on ZRAM, and alleviate the
memory overflow phenomenon of the Redis benchmark.
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