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Abstract: Pacing strategy refers to the distribution of effort and speed throughout the race to achieve
optimal performance. This study aims to understand whether the choice of pacing strategy in
swimming depends on the length of competitions and how sex, age, and performance level influence
this strategy. Participants were the finalists of the 800 m and 1500 m freestyle events at the elite and
junior world championships in 2022–2023. Race outcomes and pacing parameters were compared
between the two distances and across different groups of swimmers. Swimmers in both distances did
not break world records. Pacing strategy generally followed a U-shape with significant differences
in the frequency and duration of speed changes between the two distances. The 800 m exhibited
more frequent changes in acceleration, while the 1500 m events generally followed a more consistent
time-series pattern. There were differences in pacing strategies between males and females and
between junior and elite swimmers. Swimmers closer to world records showed more consistent
pacing patterns compared to those farther from records. This study suggests that pacing strategies
are influenced by race distance, sex, age, and performance level. The research highlights the complex
interplay between physiological and psychological factors that shape a swimmer’s decision-making
during a race.

Keywords: energy cost; endurance; training; technique; tactic; fatigue; performance; time series;
mathematical modelling; sex difference

1. Introduction

The successful execution of the race strategy at the major competitions of the season
represents the final challenge after months of training and preparation. To perform to
the best of their abilities while remaining healthy, engaged, and injury-free, athletes must
be mentored and coached in proper energy management through an appropriate pacing
strategy, whether during training or competitions. Given the highly resistive properties
of water, pacing strategy in swimming is a crucial aspect of performance, and it can
significantly impact training and race outcomes [1–9].

Events of different lengths support various pacing strategies [3,10]. An “all-out” sprint
strategy may be advantageous for sprints lasting less than 60 s, whereas athletes’ longer-
duration endurance performances may be enhanced by distributing energy resources more
evenly, with minimal speed variation from lap to lap and an end spurt [5,6,11]. In open
water swimming, it has been reported that swimmers competing in the shortest event had
a minimal gap between them, and the leaders had begun the race in the head group [12].
Successful swimmers in the longer events adopted a more cautious strategy in the first
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half of the race by positioning themselves in the middle group [12]. Differences among
events makes them an invaluable source for furthering our understanding of the pacing
behaviours used by men and women, by the successful and unsuccessful, and by young and
elite athletes [10]. It is important to note that reports of ~2.1% per decade improvements
in swimming ability have been made [13]. However, the long-distance pool swimming
race splits showed improvements, but not consistently. The percentage changes in the first,
second, penultimate, and last splits did not coincide with the percentage changes in race
time, indicating that the gain in race time was primarily attained in the middle of the race.
The slight decrease in lap-to-lap variability, which indicated that swimmers had gradually
developed smoother pacing profiles, was the other notable change in pacing parameters [14].
It is therefore evident that the study of pacing strategy must be continuously updated in
light of the evolution of sports performance [10].

Evidence suggests that the overall pacing strategy is adjusted during prolonged exer-
cise to prevent early exhaustion brought on by a malfunction of one or more physiological
systems. Therefore, it is asserted that pacing strategies are indicators of the physiological
regulation that underlies them and that pacing strategies are influenced by adjustments
in muscle activation that are anticipatory in nature, based on afferent data from a vari-
ety of physiological systems [15–17]. Due to the low mechanical efficiency of swimming,
the correct administration of the available energy is also highly dependent on technical
abilities [18]. However, in competition, the athlete’s surroundings constantly and simulta-
neously present various external stimuli, requiring decision-making regarding where and
when to allocate their accessible energy resources. These calls for action can appear and
disappear over time and prompt an athlete to decide whether to maintain their current
speed, slow down, or speed up [19]. It could be assumed that swimmers would be more
or less exposed to those external stimuli depending on the length of the race. At least
90% of the energy used during the 800 and 1500 m freestyle competitions is thought to come
from aerobic metabolism [18,20]. Indeed, numerous swimmers actually compete in both
distances due to their similar energy requirements. Although few studies have compared
their race tactics, it appears plausible that they adopted similar pacing strategies, so a
parallel analysis of the two events may be instructive [7,8,21]. Studying the pace strategy in
events with similar energetic resources but different durations may aid in understanding
how much pacing decision-making is influenced by external factors [19,22,23].

World records are an excellent paradigm of study because they led to the most optimal
and outstanding performances in history. The study of world-class athletes’ performance
can provide a near-absolute standard of what athletes can achieve at their peak [24]. Simulat-
ing their competition strategy in training and minor races could provide useful indications
to develop the swimmer’s individual best pacing strategy for future events [25–31]. It has
been highlighted that most studies on swimming pacing strategy have been conducted
on 200 and 400 m events, while there is limited research on long-distance swimming [6].
Among long-distance pool swimming studies, some have analysed males and females
800 and 1500 m freestyle competitions, but none of them discussed the differences in pacing
strategy between sexes nor between distances [7,21].

There is therefore a very strong rationale for updating the study of pacing strategy
to provide the most actual individualised spectrum of the best pacing strategy. To this
purpose, the analysis of real-world top-level competitions needs to be differentiated by sex,
age, and competition level. The direct comparison of the pacing strategy adopted in the
longest world championship swimming events could help understanding the mechanism
underpinning swimmers’ tactical choices.

The aim of this study was to determine whether choosing a swimming pacing strategy
depends on the length of the competition and to conduct an updated parallel analysis of
two endurance swimming events supported by similar energy resources but of different
durations. To this purpose, the pacing strategies of all the elite and junior 2022–2023 world
championships finalists in the 800 and 1500 m freestyle competitions have been compared.
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To gain deeper insight into the specificity of a swimmer’s tactics, the analysis was also
differentiated by sex, age, and performance level.

2. Materials and Methods

All procedures were conducted according to the Helsinki Declaration. This study
has received approval and authorization from the Foro Italico Ethics Committee of the
University of Rome, with the designation CAR 155/2023. As only information that was
readily accessible to the public was used, informed consent from athletes was judged
unnecessary. The competition information for the long-course 800 and 1500 metre freestyle
swimming world championships for men and women was collected from the website
https://www.worldaquatics.com/swimming, which was accessed from 1 August to
20 August 2023. All data were collected, then anonymously analysed in the past. Athletes’
topic identification numbers, the competition’s name, distance, overall finishing position
(ranking), split times (split) every 50 m, and the completion time were all included in each
competition report.

Procedures and methods of the present work have been previously described [9].
A total of 96 results relative to 48 male and 48 female finalists of the 800 and 1500 m

freestyle at long-course elite and junior world championships held in 2022 and 2023 were
studied. The results of the 19th FINA World Championships Budapest (Budapest, Hun-
gary), 8th FINA World Junior Swimming Championships Lima (Lima, Peru), and World
Aquatics Championships Fukuoka (Fukuoka, Japan) were analysed. Elite swimmers’ age
was 23.2 ± 3.4 years; juniors’ age was 16.4 ± 1.4 years.

2.1. Data Analysis

To examine the ascending and descending trends of the time series as well as to assess
the randomness of split fluctuations over the median period, a mathematical analysis was
used. The goal of the time series analysis is to determine whether the split times should be
viewed as a true time series or as random samples. If a statistical test conducted on the data
does not result in the rejection of randomness, then the analysis of data indexed by time
is mathematically useless. The null hypothesis that a sequence is a random sample was
tested using a typical statistical test of randomness based on the number and the maximal
length of monotonous phases by keeping track of turning points, phase lengths, difference-
signs, rank correlation, records, and rank serial correlation [32]. A statistic, denoted by
(ν and τ), serves as the foundation for the test, with critical values given by and defined
as follows. A series is considered a maximal sequence of consecutive measurements that
is monotonous; then, n is the number of such series and t is the length of the longest one.
If one of the inequalities

υ(n) >

[
1
3
(2n− 1)− 1.96

√
16n− 29

9
0

]
, τ(n) < [3.3(log10n + 1) ]

where [x] denotes the integer part of x, we reject randomness; in other words, we conclude
that the sequence x1, . . ., xn can be considered as a true time series, not as a random sample.
In our case, n = 16 and n = 30, so that the critical region is given by

n > 4.204 or τ < 5 for 800-m and n > 9.723 or τ < 6 for 1500-m
The number of consecutive splits held faster (shown with a “minus” sign) or slower

(marked with a “plus” sign) than the median velocity was used to compute the length of
split sequences for each finalist. The count of the number of or + sequences was used to
determine how many split sequences there were. The longest sequence that had the same
or + sign was determined to be the maximum length of split sequences.

2.2. Variables Analysed

Race Time% Record Time—To assess the performance level of each athlete, we con-
sidered their competition finish time as a percentage of their respective record time (Race

https://www.worldaquatics.com/swimming
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Time% Record Time) and divided in the performer’s closest (100–105% of WR) and farthest
from the record time (105–112% of WR).

Coefficient of variation—The coefficient of variation in velocity along the race was
calculated as a percentage of the standard deviation of the split times divided by the mean
of the split times (CV%).

Sequences Number% Splits Number—The count of the number of negative or positive
(− or +) acceleration sequence as a percentage of the number of splits of each race.

Maximal length of sequences% Splits Number—The longest sequence holding the
same − or + sign as a percentage of the number of splits of each race.

Time series—When the sequence represented a true time series, it was given the
value 1; when half of the sequence was a true time series, it was given the value 2; and if it
was a random series, the value 3 (Time series 1—Half 2—Random 3).

Normalised velocity—Each split time was expressed as percentage of the mean indi-
vidual split times. To compare the split times between the two distances, the splits 2–29 of
the 1500 m race were considered every 100 m, thus obtaining the same number of splits as
the 800 m race (n = 16).

All variables were compared between 800 and 1500 m races in all swimmers, and
then separating males and females, elite and junior, medallists (placed from 1st to 3rd) and
non-medallists (placed from 4th to last), 100–105% and 105–112% of world records.

2.3. Statistical Analysis

For each category, descriptive data (mean and SD) and effect size (ES) are presented.
The Shapiro–Wilk test was used to determine whether the data were normal. Depending
on the distribution of the data, ANOVA, Mann–Whitney U, or Kruskal–Wallis for repeated
measurements with post-hoc Bonferroni correction tests were used. IBM SPSS Statistics for
Windows, version 26.0, was used to conduct statistical analyses (IBM Corp, Armonk, NY,
USA). The threshold for significance was fixed at 0.05.

3. Results

As described in Table 1, none of the swimmers of the world championships analysed
reached or improved the respective world record. All final times resulted within 101% and
112% of world records. Race times in percentage of respective word records presented
no differences between the 800 and 1500 m competitions, except for males (p = 0.00),
elite (p = 0.02), and 100-105% (p = 0.02) swimmers that reached times closer to the respective
world records in the 1500 m race.

Table 1. Competitions times.

Race Time% Record Time

1500 m 800 m

Subjects n Mean ± SD Mean ± SD SE p

All Athletes 96 105.2 ± 2.8 105.5 ± 2.1 0.1 0.07

Males 48 104.2 ± 0.0 106.0 ± 1.4 0.9 0.00 *

Females 48 106.2 ± 3.0 104.9 ± 2.5 0.5 0.43

Elite 64 103.7 ± 1.6 104.5 ± 1.7 0.4 0.02 *

Junior 32 108.2 ± 2.3 107.5 ± 1.3 0.4 0.90

Medallists 32 103.9 ± 2.1 104.5 ± 1.8 0.3 0.34

Non-medallists 64 105.9 ± 2.9 106.0 ± 2.1 0.0 0.15

100–105% of WR 48 103.1 ± 1.1 103.6 ± 1.1 0.4 0.02 *

105–112% of WR 48 107.7 ± 2.1 107.1 ± 1.2 0.4 0.76
p: differences between 1500 and 800 m freestyle results; *: p < 0.05.
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As shown in Table 2, sequence numbers were significantly higher in the 800 m com-
petitions for all the swimmer groups. The maximal length of sequences of the same sign
(− or +) were longer in the 800 m competitions, but the difference reached a significant level
only when all swimmers were analysed as a whole (p = 0.01) and for the junior (p = 0.00),
medallists (p = 0.04), and 105–112% (p = 0.04) groups.

Table 2. Splits sequences.

Sequences Number (%) Maximal Length of Sequences (%)

1500-m 800-m 1500-m 800-m

Subjects n Mean ± SD Mean ± SD SE p Mean ± SD Mean ± SD SE p

All Athletes 96 31.3 ± 11.0 34.6 ± 12.8 0.3 0.00 * 32.6 ± 9.5 37.6 ± 9.9 0.5 0.01 *

Males 48 33.1 ± 0.2 37.2 ± 13.4 0.3 0.00 * 28.5 ± 11.5 35.7 ± 10.0 0.7 0.09

Females 48 29.4 ± 10.5 32.0 ± 12.0 0.2 0.00 * 36.7 ± 7.3 39.6 ± 9.7 0.3 0.07

Elite 64 31.7 ± 10.8 34.0 ± 13.1 0.2 0.00 * 32.3 ± 9.4 37.3 ± 10.8 0.5 0.32

Junior 32 30.4 ± 11.7 35.9 ± 12.6 0.4 0.00 * 33.1 ± 10.1 38.3 ± 8.2 0.5 0.00 *

Medallists 32 31.7 ± 8.9 37.9 ± 13.6 0.5 0.00 * 31.3 ± 8.7 35.2 ± 10.2 0.4 0.04 *

Non-medal. 64 31.0 ± 33.0 33.0 ± 12.3 0.2 0.00 * 33.2 ± 10.0 38.9 ± 9.8 0.6 0.12

100–105% 48 32.4 ± 33.2 33.2 ± 13.0 0.1 0.00 * 30.6 ± 9.0 38.1 ± 9.8 0.7 0.20

105–112% 48 29.8 ± 12.8 35.8 ± 12.8 0.5 0.00 * 34.8 ± 9.8 37.3 ± 10.2 0.2 0.04 *

p: differences between 1500 and 800 m freestyle results; *: p < 0.05.

As displayed in Table 3, the time-series analysis revealed that the 1500 m competitions
presented a significantly higher occurrence of “true” time series with respect to the 800 m
competitions when all swimmers’ results were taken as a whole (p = 0.01) and for the male
(p = 0.04) and the elite (p = 0.02) groups. The coefficient of variation in velocity along the
race (CV%) was not significantly greater in the 800 m competitions for all groups.

Table 3. Variability of splits times along races.

Time Series 1—Half 2—Random 3 CV%

1500-m 800-m 1500-m 800-m

Subjects n Mean ± SD Mean ± SD SE p Mean ± SD Mean ± SD SE p

All Athletes 96 1.0 ± 0.1 1.3 ± 0.7 0.5 0.01 * 2.9 ± 0.5 2.9 ± 0.6 0.1 0.60

Males 48 1.0 ± 2.2 1.4 ± 0.8 0.6 0.04 * 2.9 ± 0.5 2.9 ± 0.6 0.0 0.94

Females 48 1.0 ± 0.0 1.2 ± 0.6 0.4 0.15 2.8 ± 0.5 2.9 ± 0.6 0.3 0.56

Elite 64 1.0 ± 0.2 1.4 ± 0.8 0.6 0.02* 2.8 ± 0.5 2.8 ± 0.5 0.0 0.98

Junior 32 1.0 ± 0.0 1.1 ± 0.5 0.4 0.78 2.9 ± 0.6 3.1 ± 0.6 0.3 0.40

Medallists 32 1.0 ± 0.0 1.5 ± 0.9 0.7 0.24 2.8 ± 0.4 2.8 ± 0.5 0.0 0.96

Non-medallists 64 1.0 ± 0.2 1.2 ± 0.5 0.4 0.16 2.9 ± 0.6 3.0 ± 0.6 0.2 0.55

100–105% of WR 48 1.0 ± 0.2 1.3 ± 0.7 0.5 0.20 2.9 ± 0.4 2.9 ± 0.4 0.1 0.91

105–112% of WR 48 1.0 ± 0.0 1.3 ± 0.7 0.6 0.77 2.8 ± 0.6 3.0 ± 0.7 0.2 0.47

p: differences between 1500 and 800 m freestyle results; *: p < 0.05.

Figure 1 illustrates how the normalised velocity of the whole group of swimmers in
the 1500 m with respect to the 800 m competitions resulted significantly faster from the
5th to the 12th split (p = 0.00). The 1500 m velocity remained close to the mean velocity
(100%) from the 3rd to the 7th split and declined afterwards until the spurt of the two last
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splits. The 800 m were competed at a velocity notably below the mean from the 5th to
the 14th split.
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Figure 2a,b represent how the male swimmers’ normalised velocity was significantly
lower in the 2nd and 3rd (p = 0.00 and p = 0.04, respectively) and higher from the 6th to
the 12th spilt (p = 0.00) in the 1500 m than in the 800 m competitions. Females’ normalised
velocity resulted significantly higher in the 1500 m than in the 800 m competitions from the
4th to the 11th split (p = 0.00).

Female swimmers presented significantly lower normalised velocity with respect to
men in the 10th (p = 0.035) and 15th (p = 0.004) split of the 1500 m competition and in the
8th (p = 0.018), 9th (p = 0.004), 12th (p = 0.037), 15th (p = 0.014), and last (p = 0.000) splits of
the 800 m competition. Their 1st splits velocity of the 800 m competition was significantly
higher than male swimmers (p = 0.023).

As depicted in Figure 3a,b, elite swimmers’ normalised velocity was significantly
higher in the 1500 m than in the 800 m competitions from the 5th to the 12th spilt (p = 0.00).
Juniors’ normalised velocity resulted significantly higher in the 1500 m than in the 800 m
competitions from the 5th to the 11th split (p = 0.01), except for split 9 that presented no
significant differences (p = 0.09).

In the 1500 m competitions, junior swimmers performed the 2nd and 3rd split at a
significantly slower normalised velocity (p = 0.010 and 0.005, respectively) than the elites.
In the 800 m competitions, junior swimmers’ normalised velocity was significantly slower
in the 2nd split (p = 0.002) and significantly faster in the 8th (p = 0.023) than the elites.

Figure 4a,b show that both medallists’ and non-medallists’ normalised velocity was
significantly higher in the 1500 m than in the 800 m competitions from the 5th to the
12th spilt (p = 0.02 and p = 0.01, respectively).

No significant differences were found between the normalised velocity of the medal-
lists and non-medallists in the 1500 m freestyle. In the 800 m, the normalised velocity of the
non-medallists was significantly faster than the medallists in the 7th split (p = 0.008) and
significantly slower in the 11th split (p = 0.022).

As represented in Figure 5a,b, better performers’ (100–105%) normalised velocity
was significantly higher in the 1500 m than in the 800 m competitions from the 5th to the
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12th spilt (p = 0.01). The 105–112% swimmers’ normalised velocity resulted significantly
higher in the 1500 m than in the 800 m competitions from the 5th to the 11th split (p = 0.01).
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In the 1500 m competitions, the normalised velocity of the non-medallist swimmers
resulted significantly faster in the 6th split (p = 0.025) and significantly slower in the
14th split (p = 0.003) than that of the medallists. In the 800 m competitions, the normalised
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velocity of the non-medallist swimmers resulted significantly slower than the medallists in
the 11th split (p = 0.004).
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4. Discussion

The aim of this study was to conduct an updated parallel analysis of endurance
freestyle swimming events of different durations to inquire whether decision-making on
pacing strategy in swimming is dependent on the length of the competition despite their
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comparable energy properties. To this purpose, all the elite and junior 2022–2023 world
championships finalists in the 1500 and 800 m freestyle competitions were analysed as a
whole and differed by sex, age, and performance level. To assess the performance level, the
final time of each athlete was calculated as a percentage of the respective record time so
that swimmers were divided as lower level, those closest to their record time (100–105% of
WR), and higher level, those farther from their record time (105–112% of WR).

The key findings of the study highlighted that the swimmers taken into consideration
in the study did not match or break the corresponding world record in either the 800 or
1500 m races of any of the world championships. In both the 800 or 1500 m competitions,
swimmers followed the parabolic U-shaped pace but presented significant differences
between the two distances in terms of the frequency and duration of speed changes. The
number of sequences maintaining an acceleration of the same sign occurred significantly
more frequently, and the maximal length of sequences resulted significantly longer in the
800 than in the 1500 m for all groups of swimmers. All the 1500 m competitions were
characterised by “true” time series, while the 800 m competitions presented at least one
swimmer that did not uphold a time series for the whole competition. The difference
between sexes showed that females significantly lowered their normalised velocity in
the central part of the competition in both distances with respect to males. In the 800 m
competition, females presented a significantly faster start and males a faster end spurt.
Swimmers who reached better performances tended to maintain more constant speeds
with smoother pacing patterns.

Performance Level and Records—No significant differences were found in the perfor-
mance level with respect to world records between the two distances except for males, elite,
and 100–105% swimmers that reached times significantly closer to the respective records in
the 1500 m than in the 800 m competition. The swimmers did not equate or overtake the
respective world records in the 800 m and 1500 m competitions of all world championships
considered in the study. All final times resulted within 101% and 112% of world records. It
appears that the level of swimmers’ performances notably decreased.

Pacing Strategy—Swimmers included in the present study followed the well-established
parabolic U-shaped pace for the 800 and 1500 m freestyle competitions. Their coefficient of
variation in velocity (CV%) along the race presented no significant differences between the
two distances. However, there were significant differences between the two distances in
terms of the frequency and duration of speed changes.

Sequence Analysis—The number of sequences holding an acceleration of the same
negative or positive sign (Sequences Number%) occurred significantly more frequently in
the 800 than in the 1500 m competitions for swimmers of all sex, age, and performance level.
Also, the maximal length of sequences representing a positive or a negative variation of
speed (Maximal length of sequences%) were significantly longer in the 800 m competitions
for the whole group of swimmers and for the junior, medallists, and 105–112% groups. This
suggests that shorter races involve more frequent adjustments in speed.

Time Series Analysis—All the 1500 m competitions represented “true” time series
as given by the value 1. On the contrary, all groups of the 800 m competitions presented
values higher than 1, meaning that at least one swimmer maintained a true time series only
along half of the sequences (value 2) or that at least one swimmer completed the whole
competition as a random series (value 3). The differences in time series between the two
distances were statistically significant for the whole group and for the male and the elite
groups. It could thus be claimed that in the shortest distance, swimmers are induced to
accelerate and decelerate from split to split more frequently and for a longer time, while in
the longest distance, swimmers need to avoid abrupt changes of speed.

Sex and Age Differences—In the present study, differences between sexes were found
in the central part of both distances; females had a significantly slower normalised velocity
than males. In the 800 m competition, significant differences were also found in the first
and last splits; females had a faster start and males had a faster end spurt.
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Impact of Performance Level—Swimmers who were closer to world records (100–105%
of WR) tended to have more consistent pacing patterns compared to those farther from
records (105–112% of WR). The latter presented accelerations between the 5th and the 7th
split, followed by a strong deceleration afterwards.

Our results are consistent with previous analysis of the world records trend. The
progression of world records exhibits an exponential decaying pattern, according to an
epidemiological analysis of sporting events published in 2008. For the following 20 years,
half of all world records will not be improved by more than 0.05% [33,34]. More recently,
the impact of the COVID-19 pandemic on performance has been studied, revealing that the
level of performances has decreased significantly in long-distance swimming rather than
in the short distances [35–37]. However, a study inspecting ways to enhance front-crawl
performance concluded that even at the very elite level, a fine-tuning of each aspect of
performance in the different phases of the race could elevate an elite swimmer to podium-
level performance. The swimming phase of the freestyle event, which lasts the longest, is
the one with the greatest potential for improvement (60%), followed by the start (26%) and
turn (14%) phases. The potential for improvement was estimated to be between 0.013 s for
the start phase reaction time and 1.0 s by maximising mid-pool kicking [38].

In agreement with earlier studies, long-course pool endurance swimmers adopt a pace
with the highest velocity at the beginning and on the last laps of the race, with a stable
velocity in the middle of the race [7–9,14,20,21,39–42]. Indeed, swimmers with parabolic
pacing profiles performed significantly better than the swimmers who displayed other
pacing profiles [3]. The tele-anticipation model, whose goal is to conserve energy so that a
final sprint can be performed afterward, is a likely explanation for athletes engaging in a
slower rhythm in the second half of the 1500 m and in the middle of the 800 m race [43].
Consistent results have been reported for 3000-metre poll swimming with a first half of the
race faster than the second half [44]. Changes in stroke frequency and length that reflect
the onset of local fatigue may be the cause of a decreased velocity in the second part of the
race [45]. While shorter races could involve more frequent adjustments in speed, success in
long-distance pool swimming seems to be associated with a more conservative pace that
allows for increases in speed in the final laps [8,46,47]. The increase in speed at the last
splits of the races has typically been observed in head-to-head competitions, where winning
depends on outperforming rivals by a small margin [3,48]. Winners of such competitions
appear to have the energy reserves necessary for an end-spurt to possibly outsprint a rival
in the final few metres [8,9]. The ability of the swimmer to generate propulsion in the most
efficient way possible has been shown to be a crucial factor in determining swimming
performance [18,49–53]. The ability to effectively allocate energy develops in relation to an
individual’s cognitive and physical characteristics and is dependent on the amount of prior
specific experience [54–57]. The ideal pacing technique can thus be acquired by a wealth of
training and competition experience [16,18,58,59]. Since an ideal ratio between stroke rate
and stroke length is necessary to maintain the pace throughout the race, key variables like
stroke rate, stroke count, split times, and rating of perceived exertion are probably crucial
training tools to optimise the development of pacing skills [50,60–67].

The different mental and physical abilities required to implement these strategies could
explain the different approaches taken by male and female competitors [17]. Additionally,
women exhibit an energy cost that is 80% than the one reported for men when swimming
the crawl at any given speed and with equivalent technical ability. The anthropometric
differences between the male and female body types account for this disparity between
the sexes [51]. Therefore, males and females may benefit from slightly different pacing
behaviours [4]. Junior swimmers showed a faster central part of the race in the 1500 m
than in the 800 m competitions. Their first part of the race resulted slower than the elites in
both distances. It is likely that pacing skill development needs to begin at a young age as a
crucial step towards elite performance [1,4,50,68–70].

Given that most swimmers compete in multiple events of varying distances and
sometimes strokes, it can be difficult to balance the training programme to ensure that
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each swimmer’s needs are met. Swimmers may race alternate events early in the season to
gain race experience and become more specific in event selection as the season progresses.
This approach may be beneficial in increasing the frequency of practise in each event and
developing the ability to switch paces with ease [58]. Trainers can provide feedback on
split times during training sessions on a regular basis and, if possible, during races to assist
athletes in developing their performance template. It is hypothesised that by doing so,
athletes can learn to link bodily sensations (such as perceived exertion, heart rate frequency,
breath frequency, fatigue, and pain) to their performance [58].

The main limitation of this study was that it was purely observational and exam-
ined the pacing strategy retrospectively without knowing the race tactics expected before
the competition. Information regarding the underpinning mechanisms that explain the
behaviours could not be provided. It is therefore only possible to speculate on the physi-
ological, biomechanical, and psychological mechanisms at play. Limitation of the study
may also include the small number of subjects in each group, since only eight swimmers
take part in the finals of the world championships. Future study could be implemented by
analysing the health and semi-finals of the events to include more subjects in each group.
Different strategies could emerge among the different stages of the championships due to
strategical issues that need to be considered when planning a meet.

5. Conclusions

In conclusion, both the 1500 and 800 m competitions follow the parabolic U-shaped
pacing strategy. However, the split-by-split analysis of the time series revealed significant
difference between the two distances. The pacing strategy results were also differentiated
by sex, age, and performance level of swimmers. The research highlights the complex
interplay between physiological and psychological factors that shape a swimmer’s decision-
making during a race. It could thus be suggested that training programmes should be
differentiated for each distance and for different swimmers’ groups to meet the needs of
each swimmer for each event.
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