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Featured Application: The research results can quickly and accurately detect defects in the fabric
production process.

Abstract: The generation of defects during fabric production impacts fabric quality, and fabric
production factories can greatly benefit from the automatic detection of fabric defects. Although
object detection algorithms based on convolutional neural networks can be quickly developed,
fabric defect detection encounters several problems. Accordingly, a fabric defect detection model
based on Cascade R-CNN was proposed in this study. We also proposed block recognition and
detection box merging algorithms to achieve complete defect detection in high-resolution images.
We implemented a Switchable Atrous Convolution layer to enhance the feature extraction ability of
ResNet-50 and upgraded the Feature Pyramid Network to improve the detection accuracy of small
defects. Experimental results demonstrated that the proposed model can efficiently perform defect
detection in fabric.

Keywords: fabric defect detection; Cascade R-CNN; Feature Pyramid Network; Switchable Atrous
Convolution

1. Introduction

The evolution of digital technologies is placing companies in front of a potential
paradigm shift, characterized by greater interconnection and cooperation between systems,
people, and information. This technological mix of automation, information, connection,
and programming is leading to the birth of the fourth industrial revolution, also known
as Industry 4.0. In the field of smart manufacturing, one of the most important sectors is
manufacturing inspection, which consists of detecting product defects. Current inspec-
tion systems cannot guarantee good performances while keeping processing efficiency
and reducing inter-subject variability. Therefore, quality control procedures with both
performance and efficiency are essential [1].

Factories produce a large amount of fabric with defects every year, which warrants
the development of fabric defect detection methods to ensure its quality. Currently, most
factories employ workers to inspect fabric defects, but they are restricted by limitations
such as low accuracy and easy fatigue [2]. Hence, a high-precision automatic fabric defect
detection system is urgently required. With the development of computer technologies,
many scholars have attempted to use image processing algorithms, such as traditional
image processing technology and object detection algorithms based on deep learning to
automatically identify fabric defects [3]. Traditional image processing technology is used
to detect defects with simple fabric pattern backgrounds; it cannot extract features with
complex backgrounds. In the context of Industry 4.0, the increasing availability of data, the
advancements in computing power, and breakthroughs in algorithm development have
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led machine learning (ML) and deep learning (DL) methodologies to develop appealing
solutions in different industrial areas such as predictive maintenance, decision support
system (DSS), and quality control (QC) [4]. The object detection algorithm based on
deep learning has many advantages, such as high robustness and detection accuracy.
Consequently, deep learning algorithms have become the preferred choice for fabric defect
detection [5,6].

Object detection algorithms based on deep learning can be developed quickly [7];
therefore, several researchers have attempted to use them to automatically detect fabric
defects to increase production profit. For example, Hao Zhou et al. proposed a fabric
defect detection algorithm based on Faster R-CNN [8]; they mainly used the deformable
convolution network and distance IoU loss function to enhance the detection results, but
this method is strict in the selection of threshold value and has poor robustness. Based on
convolutional neural networks, Peiran Peng et al. proposed a new network for detecting
fabric defects [9]; furthermore, they proposed a method to generate priori anchors to locate
objects more precisely, this method has achieved good results in fabric images with simple
backgrounds, but poor results in fabric images with complex backgrounds. Based on
YOLOv3, Junfeng Jing et al. proposed a method to select the number and size of prior
frames, followed by adjusting the YOLO detection layer to decrease the error detection
rate [10]. The detection speed of this method is fast, but there is still a lot of room for
improvement in detection precision. It should be noted that research on the detection of
fabric defects has progressed significantly, and the detection of fabric images with small
sizes and simple backgrounds has basically reached the industrial demand. Nevertheless, it
is difficult to obtain high detection precision on fabric images with a large size and complex
background, which is the main focus of this study.

In our work [11], classical object detection models such as SSD [12], YOLO [13–15],
Faster CNN [16–18], and Cascade R-CNN [19] were trained and tested. The Cascade R-
CNN model was eventually selected as the base network; accordingly, some optimizing
strategies were introduced to improve its detection accuracy. Furthermore, we proposed a
block recognition algorithm as well as a detection box merging algorithm to detect small
defects in high-resolution images. Subsequently, we employed a multi-morphology data
augmentation method to improve the detection precision in the case of a small number
of defects. Moreover, Switchable Atrous Convolution (SAC) layers were used to replace
3 × 3 convolutional layers in Stage 2 of ResNet-50 to enhance the feature extraction ability
of the backbone network for multiscale targets. In addition, considering the importance of
the Feature Pyramid Network (FPN) module in the detection results of multiscale targets,
we optimized its up-sampling algorithm and network structure to improve the detection
precision for small targets.

The remainder of this paper is organized as follows. In Section 2, we introduce the
proposed method. In Section 3, the experimental results are discussed. Finally, Section 4
summarizes this study and provides suggestions for further improvement.

2. Proposed Model Based on Cascade R-CNN

In this section, we introduce the proposed model based on Cascade R-CNN. In the
baseline model, ResNet-50 [20] and the FPN model [21] were selected as the backbone and
neck network, respectively, along with RoIAlign [22] and cross-entropy loss. To improve
the detection accuracy of the defect detection model, we propose a block recognition
algorithm and multi-morphology data augmentation method, along with the SAC layer
and Content-Aware ReAssembly of Features (CARAFE) model.

2.1. Cascade R-CNN

Faster Region-based Convolutional Neural Network (Faster R-CNN) is a commonly
used two-stage detection network [17]; however, this network has limitations. During
model training, the Region Proposal Network (RPN) generates many candidate boxes,
which are identified as positive samples based on the Intersection over Union (IoU) between
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the candidate and true boxes. However, it is difficult to select an appropriate threshold
for IoU; when the threshold is significantly small, some candidate boxes that are not the
detection targets may get misidentified as positive samples, whereas when the threshold is
large, many small target candidate boxes may be omitted, resulting in positive and negative
samples imbalance owing to a small number of positive samples. Therefore, it is necessary
to design a more robust candidate box screening method.

The overall architecture of Cascade R-CNN is shown in Figure 1. INPUT indicates
the input image, Conv indicates the backbone, NECK indicates the neck network, Pool
indicates region-wise feature extraction, H(1,2,3) indicates the region of interest heads,
B(1,2,3) indicates bounding box regression, C(1,2,3) indicates classification, and B0 indicates
proposals in RPN. Cascade R-CNN can solve the problem of threshold selection in a region
of interest (ROI) by applying a multistage Region-CNN structure. The network model sets
multiple detection heads, as shown in Figure 1, and the output boxes of each stage can be
used as input candidate boxes for the next stage. In this study, different thresholds were set
for each detection heading simultaneously, and they were gradually increased so that the
proposals from the previous stage could adjust to the next step with a higher threshold,
thus enhancing the detection accuracy. The thresholds here are hyperparameters that need
to be adjusted for different types of data sets.
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Figure 1. Overall structure of Cascade R-CNN.

2.2. Block Recognition Algorithm

The statistics of fabric defect datasets state that the difference in defect sizes is usually
large, and numerous small defects exist. The detection of small targets in high-resolution
images is a difficult task in deep learning. If the high-resolution image is resized directly
for training, the pixels with small- and medium-size defects in the image will be seriously
lost, resulting in the inability of the model to learn its features. Thus, we proposed a defect
recognition method called the block recognition algorithm.

In the training process, large images were divided into smaller images, which were
then used to train the model. In the inference process, large picture inputs were divided
into small images and fed into the network, as shown in Figure 2. Then, the detection
results of small images were merged to obtain the final detection results of the large picture
input. This novel block recognition method can effectively improve the detection precision
of small and medium size defects in high-resolution images.
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The algorithm for merging the detection results can be divided into three parts. First,
after determining the detection results for each small image, each defect position in the
large image was obtained according to the relative position of the large picture and small
pictures. We used the Non-Maximum Suppression (NMS) [23] algorithm to remove re-
peated detection results in the intersection region of small images. Finally, if the IoU [24] of
two detection boxes was found to be higher than a threshold, they were merged into a big
box. Meanwhile, the largest enclosing rectangle of two small detection boxes was set as the
new detection box and the maximum of two scores was set as the new score.

As shown in Figure 3, the two images on the left had overlapping areas, which led
to repeated detection. To determine the number of defects and evaluate the quality of the
cloth, we located the positions of detected defects in the large image on the right and used
the NMS algorithm on the results.
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As shown in Figure 4, the two images on the left had overlapping areas, and the
defects detected on them were incomplete; however, to accurately evaluate the fabric
quality, complete defects must be obtained. The yellow rectangle on the right side of
Figure 4 shows the detection result after merging.
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2.3. Multi-Morphology Data Augmentation Method

There are nine kinds of defects in fabric images: stains, sewing_head, holes, shade_yern,
broken_figure, mosquito, wrinkles, stop_marks, and thread_ends. The number of defects
in nine categories in fabric images significantly varies during fabric defect data collection.
Some defects are identified in large numbers, such as stains, shade-yern, and sewing-head,
while some are identified in significantly fewer quantities, such as thread-ends, holes, and
mosquitos. The model cannot easily learn the features of a smaller number of defects [25];
therefore, we focused on enhancing the small number of defects to improve the quality of
the fabric dataset.

Commonly used data augmentation methods such as rotation, mirroring, and shearing
have many disadvantages. The generated defects exhibit similar morphology and the
number of defects that can be generated is restricted; hence, these methods are not suitable
for data argumentation in the case of an extremely small number of defects.

Therefore, we proposed a new data augmentation method to enrich the dataset.
Initially, we used a method combining mean filtering and dynamic threshold to extract
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fabric defects, with the image background set to white or black. The extracted defects are
shown in Figure 5; these images were used in the new data augmentation method.
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Figure 5. Extracted defects.

Then, scaling, mirroring, cropping, rotation, morphological processing, and other
common data augmentation methods were used to randomly change the morphology
of object defects. Finally, we randomly merged the obtained defects into fabric images
in batches, as shown in Figure 6. It should be noted that this multi-morphology data
augmentation method is not limited by the image background, and can be used to generate
defects with different morphologies in batches [26].
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2.4. Backbone Improvement
2.4.1. ResNet-50 Model

Comparing the commonly used feature extraction networks, we selected Residual
Neural Network (ResNet) [20] as the backbone network, considering its detection accuracy
and speed. As shown in Figure 7, ResNet-50 mainly comprises five parts, i.e., input layers
and four feature extraction stages. The input layer consists of a 7 × 7 convolutional layer
(stride = 2) and a max pooling layer (stride = 2). This layer was used to process the input
image; accordingly, the size of the output feature map decreased by four times and its
channel size increased to 64. In the four feature extraction stages, each stage except Stage
1 included a down-sampling block. Each residual block consisted of the main path and
shortcut connection. The residual structure enabled the construction of deeper networks;
moreover, the four feature extraction stages were used to reduce the size of the feature map
and obtain deeper semantic information about defects.

In ResNet-50, the number of channels in the output feature map was controlled by the
1 × 1 convolutional layer, while the feature map size was controlled by the stride of the 3 × 3
convolutional layer [27]. Figure 7 illustrates the detailed parameters of each convolutional
layer and the size of feature maps.
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2.4.2. SAC Layer

Although ResNet-50 achieved good results on the VOC [28] and COCO [29] datasets,
the fabric defect dataset can be further improved. Owing to the large difference in fabric
defect size, the introduction of a multiscale module can help in improving the detection
accuracy. Consequently, we replaced the 3 × 3 convolutional layer with SAC (Switchable
Atrous Convolution) [30] in Stage 2.

As shown in Figure 8, the SAC module can be divided into three parts, i.e., two
global context modules and the main SAC module. The global context modules obtained
global information from the global average pooling layer and added it to the feature map.
The main SAC module contained three paths, namely the Switch path and two feature
extraction paths. The Switch path comprised an average pooling layer with a 5 × 5 kernel
and 1 × 1 convolutional layer. The two other paths consisted of two convolutional layers
with different atrous rates [31].
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We use y = Conv(x, w, r) to denote the convolutional operation with weight w and
atrous rate r, which takes x as its input and outputs y. Then, we can convert a convolutional
layer to SAC as follows:

Conv(x, w, 1) → S(x) ·Conv(x, w, 1) + (1− S(x)) ·Conv(x, w+4w, r) (1)

The convolution results were obtained by fusing the defect information acquired at
different atrous rates according to Equation (1). In Equation (1), S(·), Conv(x; w; r), x,
w, and r denote the switch operation, convolution operation, input, weight, and atrous
rate, respectively.

The input feature maps were convolved at two different atrous rates to obtain the
feature information in different receptive fields. The improved backbone model could
adapt to the features of different scales; accordingly, this model was used to improve the
detection accuracy of multiscale defect targets.

2.5. Improvement of FPN Model
2.5.1. Reconstructing FPN

By analyzing fabric image training data, we found that the span of defect size was
considerably large, and some were extremely small or large. Moreover, the feature informa-
tion of small defects could be easily covered in the top feature map, which complicated the
detection of small defects. Therefore, the FPN module was added to improve the detection
accuracy of small and multiscale defects.

As shown in the red box in Figure 9, the FPN model contained two main pathways,
i.e., the top-down and lateral pathways. The lateral pathway included 3 × 3 and 1 × 1
convolution layers. It should be noted that 1× 1 convolutional layers in a network are used
to unify input channels from different stages to the same size, while 3 × 3 convolutional
layers on each merged map are used to reduce the aliasing effect of up-sampling and
down-sampling. The top-down pathway and lateral connections are designed to fuse
high-level semantic information to low-level maps.
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It is well known that low-level feature maps contain more accurate location informa-
tion, while high-level feature maps contain more semantic information. To enhance the
localization of information at higher levels, a bottom-up path was created in this study to
shorten the information path between lower and higher levels, as shown in Figure 10.



Appl. Sci. 2023, 13, 10500 8 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 
Figure 9. Path augmentation FPN. 

It is well known that low-level feature maps contain more accurate location infor-
mation, while high-level feature maps contain more semantic information. To enhance the 
localization of information at higher levels, a bottom-up path was created in this study to 
shorten the information path between lower and higher levels, as shown in Figure 10. 

 
Figure 10. Improved FPN model. 

The feature map in level 3 was used repeatedly. It should be noted that this method 
does not fuse the features of different levels, which is an invalid fusion process. Therefore, 
we simplified the Path Augmentation FPN [32] module. We removed the feature fusion 
layer between layers 3 and 4 and deleted the corresponding up-sampling and 3 × 3 con-
volution modules. The improved FPN network structure is shown in Figure 10. 

  

Figure 10. Improved FPN model.

The feature map in level 3 was used repeatedly. It should be noted that this method
does not fuse the features of different levels, which is an invalid fusion process. Therefore,
we simplified the Path Augmentation FPN [32] module. We removed the feature fusion
layer between layers 3 and 4 and deleted the corresponding up-sampling and 3 × 3
convolution modules. The improved FPN network structure is shown in Figure 10.

2.5.2. CARAFE

Nearest neighbor interpolation and bilinear interpolation are the most frequently used
up-sampling operators in the FPN. However, they only consider sub-pixel neighborhoods
and cannot utilize the semantic information of feature maps. Therefore, we introduced the
CARAFE method [33] to accomplish feature up-sampling.

As shown in Figure 11, CARAFE can be mainly divided into two modules, namely
kernel prediction and content-aware reassembly. CARAFE uses the kernel prediction
module to predict the up-sampling kernel, which is then used in the content-aware re-
assembly module to complete the up-sampling operation. In the kernel prediction module,
to reduce the amount of calculation, the 1 × 1 convolutional layer is used to compress
channels from C to Cm. Then, the Kencoder × Kencoder convolutional layer is used to
generate reassembly kernels based on input features, and the output channels are changed
to σ2Kup2. Finally, each reassembly kernel is normalized in the channel direction using a
softmax function. In the content-aware reassembly module, the corresponding position of
each output pixel in the input feature map is identified and the input position is selected as
the center of the Kencoder x(×) Kencoder region; accordingly, the output pixel value from
the product between the region and up-sampling kernel is obtained.

In comparison to nearest neighbor and bilinear interpolations, CARAFE exhibits many
advantages. The up-sampling kernel used to generate output feature maps is related to
input semantic information, and CARAFE introduces minimal computation. This up-
sampling method can restore the defect information of small defects more accurately, which
is beneficial to the recognition of small defects.
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3. Experiments

All models in this study were trained in an environment containing an RTX 3080Ti
graphics card with 12 GB memory and a 2.9 GHZ CPU with 16 GB RAM. During model
training, the batch size, learning rate, and epoch were set to 1, 0.00125, and 36, respectively.
In this section, we first discuss the dataset and evaluated indicators, followed by details of
the experiments.

We performed fabric defect detection based on deep learning by introducing a series of
improvements to the baseline model. Table 1 summarizes the detection results of different
experiments; the mAP value was observed to be 75.33% eventually.

Table 1. Experimental results.

Experiments Casade
RCNN

IOU
Threshold

Boxes
Shape

Data
Augmentation

Resnet-50
SAC Carafe Network

Reconstruct Map

Experiments 1-1
√ √

49.44
Experiments 1-2

√ √ √
50.33

Experiments 2
√ √ √ √

70.33
Experiments 3

√ √ √ √ √
71.78

Experiments 4-1
√ √ √ √ √ √

74.67
Experiments 4-2

√ √ √ √ √ √ √
75.33

3.1. Dataset of Fabric Defect Images

To verify the proposed model, a dataset was constructed [34] with 1604 images; there
were 19 different backgrounds and two different sizes (4096 × 1696 and 4096 × 1800)
of images in the dataset. Based on the different defect shapes and influences on fabric
quality, fabric defects were divided into nine categories, namely, stains, sewing_head, holes,
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shade_yern, broken_figure, mosquito, wrinkles, stop_marks, and thread_ends, as shown in
Figure 12.
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To evaluate the proposed model, we adopted stratified sampling, randomly selected
340 images as test data, and ensured that the number of labels for each type of defect in
the test data accounted for 20% of the corresponding type of labels, while the remaining
1304 images were used to train and verify the model. As shown in Figure 13, although
ResNet-50, the blue, yellow, and gray parts represent the number of defects in the entire
dataset, validation and training sets, and the test set, respectively. The training and
verification sets were randomly divided during model training in the ratio of approximately
8:2. The main function of the validation set is to test the accuracy rate, recall rate, and mAP
that the model can achieve after each round of training, so as to record various indicators
of the model after each training.
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3.2. Evaluated Indicators

In this study, the Mean Average Precision (mAP) was used to evaluate the accuracy
of the proposed model; it should be noted that the higher the mAP value, the better the
detection performance of the model. In this section, we discuss the calculation of mAP.

In Figure 14, “Precision” and “Recall” represent the ratio of the number of correctly
detected defects to all detection results and the total number of defects, respectively.

AP =
∫

1
0p(r)dr (2)

MAP =
∑ cAP

m
(3)
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We set different values to verify the detection results and obtained different precision
and recall values. As shown in Figure 14, the PR curve was drawn in the coordinates
according to the aforementioned different values; the area enclosed by the PR curve
represents the AP value. Then, the mAP was calculated according to Equations (2) and (3),
where m denotes the number of defect types.

3.3. Experiment I: Block Recognition Algorithm

After obtaining the fabric dataset, we attempted to use high-resolution images to train
the proposed model; however, the detection results were extremely poor and the model
could not complete the detection task. Thus, we proposed a multiscale defect recognition
algorithm. In this study, Cascade R-CNN with the proposed block recognition algorithm
was used as the baseline model.

In the experiment, large fabric images were cropped into small images to train the
model, and the detection results of small images were merged to obtain those of the large
images in the inference stage. Considering the inference time and detection accuracy, a
large image was divided into six small images of resolution 1460 × 960 to train the model.

The IoU threshold and shape similarity of two detection boxes were the two criteria
used to determine whether two detection results should be merged. As shown in Figure 15,
we only used the IoU threshold as the merge criterion in Experiment 1-1 and included
shape similarity as the merge criterion in Experiment 1-2. The mAP value increased from
49.44% to 50.33%, while the AP value of stop_marks defects increased from 37% to 51%
after implementing the proposed block recognition algorithm.
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3.4. Experiment II: Multi-Morphology Data Augmentation Method

By analyzing the number of defects in Figure 13 and the detection results in Figure 15,
we discovered that despite using online data augmentation during model training, the
detection results for a small number of defects were poor. Therefore, we proposed a
multi-morphology data augmentation method to improve the quality of the fabric dataset.

In Experiment 1-2, we used data augmentation algorithms such as rotation, mirroring,
and flipping for all types of defects in the training dataset. In Experiment 2, instead of
the previous data augmentation method, we used a multi-morphology data augmentation
method for defects such as holes, stains, shade-yern, and mosquitoes to effectively increase
the number of defects. The number of added defects is shown in Figure 16.
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As shown in Figure 17, this data augmentation method effectively increased the
detection accuracy of a small number of defects. Moreover, the mAP of defects increased
by 20.0% and the AP of holes, stains, shade-yern, and mosquitoes with the new data
augmentation method rapidly increased.
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3.5. Experiment III: ResNet Improvement

To verify whether the SAC module could improve the multiscale feature extraction
ability of ResNet-50, we set up a contrast experiment. Compared with Experiment 2,
we replaced the 3 × 3 convolutional layer with a SAC layer in Stage 2 of ResNet-50 and
compared the detection results of the two experiments. As shown in Figure 18, the AP of
stains, broken_figure, and thread_ends evidently improved.
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Experimental results demonstrated that the AP value of some defects decreased, but
the detection results of most defects improved. In summary, SAC improved the detection
performance of the model, increasing the mAP of defects by 1.45%.

3.6. Experiment IV: Improvement of the FPN Model

To evaluate the performance of the proposed model, we compared the commonly
used FPN model with the improved FPN model proposed in the study. We introduced two
main improvements in the FPN module, i.e., CARAFE and network path optimization.

The CARAFE module was employed in Experiment 4-1 and the two aforementioned
improvements were employed in Experiment 4-2. In Figure 19, the blue, orange, and gray
rectangles represent the detection results of Experiments 3, 4-1, and 4-2, respectively.
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Comparing the detection results of Experiments 3 and 4-1, it was evident that the AP
of each defect almost increased and the mAP increased from 71.78% to 74.67%. Then, in
comparison to Experiment 4-1, the mAP of defects in Experiment 4-2 increased by 0.66%.

Images in the top part of Figure 20 illustrate the detection results of the original FPN
module in Experiment 3, while those in the bottom part show the detection results of
Experiment 4-2. The analysis of detection results indicated that the improved FPN module
exhibited higher detection and positioning accuracy for small defects. Moreover, the two
improvements in the FPN module improved the detection accuracy of defects in fabric.
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3.7. Comparison Experiment with Classical Algorithm

To validate the effectiveness of the proposed fabric defect detection model in com-
parison to other classical target detection algorithms, two groups of contrast experiments
were established in this study. All models in these comparison experiments used block
recognition and multi-morphology data augmentation algorithms to verify the effectiveness
of the proposed model optimization strategy.

Figure 21 illustrates the experimental results; the blue, orange, and gray rectangles
represent the detection results of the proposed model, Faster R-CNN, and YOLO V3, re-
spectively. The analysis of the experimental results indicated that the mAP of the proposed
model was higher than that of Faster R-CNN and YOLO V3, and our model exhibited
higher detection accuracy for small defects such as stains and shade-yern.
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4. Conclusions

In this study, we proposed a defect detection model for high-resolution fabric images
with complex backgrounds based on Cascade R-CNN. The main findings of our work are
discussed below.

The high resolution of fabric images and the large span of defect size lead to extremely
poor detection results. Thus, a block recognition algorithm was proposed in this study
that yielded a mAP of 50.33%. To solve the problem of a small number of defects re-
sulting in poor detection results, we proposed a multi-morphology data augmentation
method to effectively generate defects. This data augmentation method achieved excellent
improvement and increased the mAP by 20%. To enhance the feature extraction ability
of the backbone network, we replaced the 3 × 3 convolutional layer in Stage 2 with the
SAC module, thus increasing the mAP by 1.45%. Finally, we optimized the up-sampling
algorithm and network structure of the FPN module to solve the problem of missing some
small defects. The experimental results demonstrated that the detection results for small
defects improved, and the mAP increased by 3.55%.

In the actual production process of the fabric, the detection time of a single image is
required to be within 0.5 s. The improved model could detect defects in a high-resolution
image in 0.37 s, the time for Faster-RCNN to detect a single image is 0.25 s, and the time for
YOLO V3 to detect a single image is 0.12 s. Although the detection speed of the improved
model is slower than that of the other two mainstream models, it has met the requirements
of detection speed. Furthermore, we introduced a series of improvements on the baseline
model to perform deep learning-based fabric defect detection. Table 1 summarizes the
detection results of different experiments, and the final test image is shown in Figure 22;
The mAP value has increased from 49.44% to 75.33%, which is an increase of 52.37%.
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In future work, we plan to focus on constructing a fabric defect dataset while attempt-
ing to decrease model parameters to increase the detection speed. Moreover, we plan to
detect fabric images with a pattern not included in the training dataset.
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