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Abstract: Dementia disease research encompasses diverse data modalities, including advanced im-

aging, deep phenotyping, and multi-omics analysis. However, integrating these disparate data 

sources has historically posed a significant challenge, obstructing the unification and comprehen-

sive analysis of collected information. In recent years, knowledge graphs have emerged as a power-

ful tool to address such integration issues by enabling the consolidation of heterogeneous data 

sources into a structured, interconnected network of knowledge. In this context, we introduce 

DemKG, an open-source framework designed to facilitate the construction of a knowledge graph 

integrating dementia research data, comprising three core components: a KG-builder that integrates 

diverse domain ontologies and data annotations, an extensions ontology providing necessary terms 

tailored for dementia research, and a versatile transformation module for incorporating study data. 

In contrast with other current solutions, our framework provides a stable foundation by leveraging 

established ontologies and community standards and simplifies study data integration while deliv-

ering solid ontology design pa�erns, broadening its usability. Furthermore, the modular approach 

of its components enhances flexibility and scalability. We showcase how DemKG might aid and 

improve multi-modal data investigations through a series of proof-of-concept scenarios focused on 

relevant Alzheimer’s disease biomarkers. 
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1. Introduction 

The dawn of “omics” technologies, accompanied by advancements in imaging, clin-

ical data collection, laboratory testing, and phenotyping, has profoundly influenced bio-

medical research [1–7]. This multi-modal se�ing has provided an unprecedented, com-

prehensive view of complex biological systems, thereby inspiring a shift towards a more 

integrated understanding of diseases. However, the introduction of data from diverse mo-

dalities also presents unique challenges. Effectively integrating and interpreting the sheer 

volume, complexity, and diversity of data generated by these sources requires sophisti-

cated computational tools. Moreover, the data, which are often distributed across various 

databases, publications, and repositories, pose considerable barriers to seamless data in-

tegration. Even more daunting is the task of transforming multi-modal data into clinically 
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actionable insights, requiring the ability to connect data from molecular to clinical scales, 

a feat complicated by the enormous diversity and complexity of individual diseases. These 

hurdles highlight the need for innovative strategies and tools to harness the potential of 

multi-modal data in propelling the field of precision medicine. 

Since biological reality is often modeled as a network or graph [8,9], one technologi-

cal approach that has gained significant traction is the use of knowledge graphs (KGs) 

[10], which allow for the integration and organization of diverse biomedical data types, 

facilitating their analysis and interpretation. 

After Google introduced the knowledge graph in 2012, highlighting the advantages 

of the approach [11], KGs have become increasingly popular, finding adoption in industry 

with subsequent launches by companies such as Microsoft, Amazon, Airbnb, and Face-

book [12], as well as in academia [13,14]. Nonetheless, the definition of KGs can vary based 

on the application context. In biomedicine, they can be characterized as data structures 

meant to gather and disseminate real-world knowledge, where nodes depict significant 

biomedical entities and the edges delineate diverse relationships that could exist between 

these entities [15]. KGs embody a methodological transition toward a more comprehen-

sive representation of reality, facilitating the integration of heterogeneous data types and 

providing an intuitive, graph-based structure for representing intricate relationships be-

tween diverse biomedical entities. 

Constructing a KG entails a series of methodological and technological decisions that 

profoundly impact the utility and effectiveness of the resulting product. A pivotal consider-

ation in this process is the selection of a graph paradigm, which provides the theoretical and 

practical foundation for the structure and function of the KG. There are two primary ap-

proaches in this regard: Resource Description Framework (RDF) and Labeled Property 

Graphs [16–18]. Both of these approaches offer robust technological solutions, but each has 

its own strengths and weaknesses. While RDF offers standardization and robustness ideal 

for semantic applications, it may suffer from verbosity and computational inefficiency. Con-

versely, LPGs excel in their flexibility and intuitive structure, which allow for the straight-

forward representation of complex relationships and properties on both nodes and edges, 

but they may struggle in scenarios demanding high interoperability and standardization. 

Thus, the choice often hinges on the specific project requirements and constraints. 

In addition to choosing a graph paradigm, selecting a data model or graph schema is 

another critical decision for building a KG. This model dictates how entities of interest 

and their relationships are represented within the KG. This aspect can be approached in 

two main ways: using an ad hoc data model tailored to the project’s specific needs or 

adopting a standard model such as ontologies. In particular, biomedical ontologies have 

emerged as essential tools in standardizing terminology, modeling biological realities 

[19], supporting data annotation [20–23], and facilitating biomedical text mining [24,25]. 

With ongoing concerted efforts from the scientific community, these ontologies have 

evolved to incorporate fine-grained knowledge across various biomedical subdomains, as 

exemplified by initiatives such as the Open Biological and Biomedical Ontologies (OBO) 

Foundry [26] and the National Center for Biomedical Ontology (NCBO) [27] and its Bi-

oPortal [28]. Moreover, using logical modeling and annotation, biomedical ontologies 

make assertions that span and connect levels of biological organization, from the molecu-

lar level to phenotype and disease definitions. This ability to traverse and link multiple 

scales of biological information makes ontologies an invaluable resource for the construc-

tion of KGs for biomedical research. 

The biomedical field is rich in open databases that offer scientific knowledge from 

various subdomains, including molecular biology (genomics, proteomics, and pathways), 

drugs, and disease characterization. These sources hold the potential for a more compre-

hensive understanding of biomedical phenomena; however, their value is often hindered 

by their dispersal across different platforms. KGs have emerged as instrumental tools for 

integrating and exploiting these disparate sources, fostering a multitude of projects that 

aim to unify the spread-out biomedical knowledge. 
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A prime example of such an initiative is the Monarch Initiative [29], which integrates 

genetic, phenotypic, and disease-related data to facilitate the identification of disease 

genes and variants. Similarly, the Clinical Knowledge Graph (CKG) [30] is an open-source 

platform that integrates proteomics, public databases, and literature. It effectively utilizes 

KGs to augment and enrich biomedical data, thereby facilitating informed clinical deci-

sion-making. Likewise, PrimeKG [31] is a multimodal KG that integrates a multitude of 

high-quality resources, representing various biological scales, i.e., from genotypes to clin-

ical phenotypes. The scalable precision medicine open knowledge engine (SPOKE) [32] 

also integrates multiple biological data sources to provide structured knowledge ranging 

from low-level molecular biology to pharmacology and clinical practice. Furthermore, the 

KG-COVID-19 [33] project responded to the COVID-19 crisis by building a unified KG 

from disparate biomedical information about SARS-CoV-2, illustrating how KGs can ef-

fectively drive knowledge synthesis, particularly in emergent health situations. 

As the number of available KGs increases, it has become evident that social and tech-

nical limitations exist, especially the need for standardization in entity naming and graph 

representation approaches [34,35]. Regarding modeling standardization, the Biolink 

Model [36] has emerged as a high-level data model that provides standard terms and re-

lations for describing biological entities and their relationships for organizing data in bio-

medical KGs. Biolink serves both as a map for bringing together data from different 

sources under one unified model and as a bridge between ontological domains. As a sim-

ilar initiative to OBO, centered around KGs, the KG-Hub project [37] provides a collection 

of tools and libraries for building interoperable KGs and a mechanism for sharing them 

to foster their reuse. 

In addition to their ability to model and query data, graph analytics and graph ma-

chine learning techniques have made notable advancements [38,39], supported by open-

source libraries such as GRAPE [40] and KGTK [41]. One technique particularly relevant 

in the biomedical domain is graph embedding [42–47], which allows us to capture com-

plex graph structures into lower-dimension vectors. Exploiting these features to integrate 

specific patient data with large biomedical KGs has already shown promising results in 

deriving actionable clinical outputs, as evidenced by advancements in understanding dis-

eases such as multiple sclerosis [42] and Alzheimer’s disease [48]. Recent dementia re-

search uses multi-modal data to understand the condition from various aspects, including 

genomics, transcriptomics, metabolites, imaging, and clinical features. Having a frame-

work that enables the systematic construction and instantiation of research and clinical 

data in a standardized manner offers significant benefits. 

This paper introduces DemKG, a KG framework designed specifically for dementia 

research needs. The framework leverages reference ontologies from OBO, standard KG 

technologies from KG-Hub, and an instantiation tooling to transform source data into the 

KG following sound design pa�erns within the ontological model. DemKG reuses most 

of its knowledge sources, provides specific terminological extensions to cover gaps iden-

tified in the scope of dementia, and ingests biological databases of interest, resulting in an 

integrative KG that covers the multiple data modalities involved in the research, including 

genomics, proteomics, imaging, fine-grained phenotyping, and clinical tests. Thanks to its 

design, DemKG is easily extensible, delivering means to customize and deploy in modern 

graph databases for enhanced data querying and retrieval. The expressive knowledge 

model supports advanced analytics through graph and network algorithms, which play 

an active role in the progression of research and be�er patient care through the implemen-

tation of precision medicine. 

2. Related Work 

Advancements in storage and graph technologies, coupled with the increasing avail-

ability of open scientific data, have led to the emergence of multiple biological KGs [49]. 

Projects such as the Monarch Integrated Knowledge Graph, the Clinical Knowledge 



Appl. Sci. 2023, 13, 10497 4 of 23 
 

Graph (CKG), PrimeKG, and the scalable precision medicine open knowledge engine 

(SPOKE), previously introduced in the introduction, bear similarities to our initiative. 

The Monarch Integrated Knowledge Graph [29] is a notable example of biological 

KGs, which assimilates various data types (including genotype, phenotype, and disease) 

from multiple sources into a unified semantic graph model. The Monarch KG has been 

instrumental in our project, DemKG, as it not only serves as a primary data source but 

also offers an array of tools we utilize. Our philosophy aligns closely with that of the Mon-

arch KG, emphasizing a robust semantic foundation while integrating data from a variety 

of external sources, including other ontologies and extensions. We build upon this work to 

extend it with dementia-related knowledge and provide means for integrating study data. 

CKG [30] is an open-source platform designed to harmonize a wide range of “omics” 

data types into a coherent structure, including genomics, transcriptomics, proteomics, and 

metabolomics. CKG favors a custom data model formed from a selected set of concepts 

and relationships from specific ontologies. On top of the KG, CKG integrates statistical 

and machine learning algorithms to streamline the analysis and interpretation of typical 

proteomics workflows. DemKG resonates with CKG’s mission to improve the modeling 

and integration of omics data. However, it deviates fundamentally from its approach to 

data modeling, wherein CKG employs a more circumscribed model. 

PrimeKG [31] is a multimodal KG for precision medicine analyses. Like its counter-

parts, it integrates a plethora of resources to describe a broad spectrum of diseases with 

relationships across major biological scales. One of them is combining the entire range of 

approved drugs with their therapeutic action, distinguishing it from other systems. More-

over, unlike DemKG, PrimeKG employs a custom approach to its data model, incorporat-

ing ten types of nodes and thirty types of undirected edges extracted from reference ontolo-

gies. Furthermore, it lacks a systematic schema to integrate experimental and study data. 

SPOKE [32] is a KG that connects information from 41 biological data sources, struc-

tured as 21 different node types and 55 edge types, ranging from low-level molecular bi-

ology to pharmacology and clinical practice. It uses 11 different ontologies to organize the 

data semantically meaningfully and, in its last iteration, also integrates the Biolink model 

whenever it is found to be practical. SPOKE is implemented as a Neo4j database built from 

a collection of Python scripts and provides a graphical user interface and a REST API for 

end-user access. Our method stands distinct from SPOKE in several crucial aspects. Pri-

marily, it offers an open toolkit for KG construction and personalization, ensuring both 

platform and representational paradigm autonomy. Moreover, despite utilizing a compa-

rable modeling approach, DemKG fosters a closer connection with a vast array of domain 

ontologies by preserving links to explicitly defined terms and relationships. Finally, our 

framework provides a flexible and robust module for research data integration. 

In summary, our work distinguishes itself from similar efforts through a comprehen-

sive approach that integrates a well-established terminological foundation and commu-

nity standards, follows design pa�erns conducive to data integration, and defines termi-

nological extensions specific to the dementia domain, facilitated through a dedicated low-

code solution for seamless study data integration. 

3. Materials and Methods 

3.1. Terminological Foundation 

In the construction of the knowledge graph, the initial and pivotal decision revolves 

around selecting an appropriate graph schema to provide a solid conceptual base that 

effectively captures data entities drawn from the array of biological subdomains pertinent 

to dementia research. This choice presents a dichotomy: one option involves creating a 

flexible, ad hoc schema tailored to the identified needs, while the alternative entails adopt-

ing a more structured strategy that employs standard terminologies and ontologies. Our 

methodology aligns with the la�er approach, and a fundamental design principle in the 
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construction of our KG is the utilization of domain reference ontologies to ensure the fol-

lowing: 

1. The concept definitions are concise, accurate, and relevant; 

2. There exists an active community keeping the ontology updated; 

3. They are widely recognized, cross-referenced, and follow consistent design pa�erns. 

The criteria set forth are congruent with the guiding principles of the OBO foundry. 

OBO endorses an extensive range of domain-specific ontologies that are distinguished by 

well-demarcated scopes, the reutilization of concepts across ontologies, and alignment 

with a unified upper-level model, specifically the Basic Formal Ontology (BFO) [50], and 

relations are defined in the Relations Ontology (RO). Given these a�ributes, we gave pref-

erential consideration to OBO ontologies during our selection process. 

As the KG must cater to a variety of domains, adopting this approach enables us to 

concentrate mainly on integration and only define new terms when detecting a gap. Some 

notable examples of the employed OBO ontologies include the Gene Ontology [51,52], 

Chemical Entities of Biological Interest (CHEBI) [53], and Protein Ontology (PR) [54] for 

the genetic and molecular domain. For the phenotype and disease domain, we utilize the 

Monarch Disease Ontology (MONDO) [55], Human Phenotype Ontology (HP) [56,57], 

and Phenotype And Trait Ontology (PATO) [58]. In the area of anatomy, we incorporate 

the Uber-Anatomy Ontology (UBERON) [59,60] and the Foundational Model of Anatomy 

(FMA) [61]. For neuropsychological tests and their relations, we include the Neuropsy-

chological Testing Ontology (NPT) [62] and the Neurocognitive Integrated Ontology 

(NIO) [63]. For modeling experimental se�ings, the Ontology for Biomedical Investiga-

tions (OBI) [64,65] plays a central role. 

These ontologies provide a significant level of detail, and reusing or referencing con-

cepts between them expands the knowledge network, facilitating the exploitation of 

multi-domain and multi-level relations. For example, this interconnectedness simplifies 

navigation from HP phenotypes referenced in a disease definition in MONDO to specific 

genes in GO, proteins in PR, and molecular entities in CHEBI. Furthermore, we also in-

clude relevant Monarch data and annotation ingestions; specifically, gene and gene-phe-

notype annotations, filtered protein–protein interactions from the STRING database [66], 

and pathway knowledge from the Reactome pathway knowledgebase [67]. The complete 

list of knowledge sources and annotations is listed in Table 1. 

Table 1. List of DemKG knowledge sources. 

Source Source Identifier Reference 

Basic Formal Ontology BFO [50] 

Biolink model biolink [36] 

Chemical Entities of Biological Interest CHEBI [53] 

Cell Ontology CL [68] 

Evidence and Conclusion Ontology ECO [69] 

Environmental Factor Ontology EFO [70] 

Gene Ontology GO [52] 

Gene Ontology Annotations GOA - 

Human Phenotype Ontology HP [57] 

Human Phenotype Ontology Annotations HPOA - 

Information Artifact Ontology IAO - 

Mass Spectrometry Ontology MS [71] 

Mondo Disease Ontology MONDO [55] 

Monarch KG Monarch [29] 

Neurocognitive Integrated Ontology NIO [63] 

Neuropsychological Testing Ontology NPT [62] 

Ontology of Biological A�ributes OBA [72] 
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Ontology for Biomedical Investigations OBI [65] 

Ontology for General Medical Science OGMS [73] 

Ontology of Medically Related Social Entities OMRSE [74] 

Phenotype And Trait Ontology PATO [58] 

Phenomics Integrated Ontology PHENIO - 

Protein Ontology PR [54] 

Relations Ontology RO - 

Reactome Reactome [67] 

Scientific Evidence and Provenance Information Ontology SEPIO - 

STRING database ingestion STRING [66] 

Uber Anatomy Ontology UBERON [59] 

While the standardization offered by domain ontologies is undoubtedly a strength, 

it can also impose limitations due to the inherent trade-off with flexibility. This high level 

of detail can complicate the integration of non-OBO ontologies and external datasets. Ad-

ditionally, querying the graph requires a comprehensive understanding of the underlying 

model. We employ the Biolink model as our high-level data model to mitigate these issues. 

Biolink offers a means to utilize higher-level concepts from its “category” hierarchy while 

still allowing references to more specific ontology terms. The same versatility is available 

for relationships through the use of the “related_to” hierarchy, thus providing a balance 

between standardization and flexibility in our knowledge graph. 

3.2. Terminological Extensions 

OBO covers most of the conceptualization needs, but gaps remain relevant to the im-

plementation. To overcome this issue, we implement an application ontology that is also 

one of the inputs of the merging process. The primary interventions relate to phenotypic 

normality, as well as to the necessary assay and platform definitions missing from OBI. 

HP and MONDO thoroughly model disease states, conditions, and abnormal pheno-

types, leaving out any reference to normal counterparts. To allow the categorization of 

instances of normal/healthy cases, we introduced a “Phenotypic normality” hierarchy. 

This new hierarchy is modeled as a sibling branch of the HP “Phenotypic abnormality”, 

mirroring its hierarchy to allocate the “normality” concepts of interests. 

In dementia research, the utilization of neuropsychological assessments such as the 

Mini-Mental State Examination (MMSE) [75], the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) wordlist memory test (WLT) [76], Visual Object and Space 

Perception (VOSP) ba�ery [77], Trail Making Test (TMT) [78], Clock Drawing Test [79], 

and Controlled Oral Word Association Test (COWAT-FAS) [80] is instrumental in quanti-

fying cognitive function domains and tracking disease progression. We have implemented 

the necessary concepts to cover CERAD, VOSP, and COWAT-FAS tests, with the primary 

classes allocated under the “cognitive function assay” branch of NPT, while also relating 

to the mental and cognitive functions they assess. 

The AT(N) classification system [81] is another tool of great importance for assessing 

the subject’s biological state and understanding the intricate relationships between key 

biomarkers and their impact on disease evolution. AT(N) categorizes biomarkers accord-

ing to their role in the disease progression, namely, Beta-amyloid deposition (A), patho-

logic tau (T), and neurodegeneration (N). Within each biomarker category, values can be 

positive or negative (+/−), derived from defined normal or abnormal cut points, resulting 

in the creation of eight distinct AT(N) “biomarker profiles” (Table 2). To provide proper 

terminological coverage, we have defined new classes for each biomarker profile and phe-

notype terms related to abnormal CSF protein concentration phenotypes related to phos-

phorylated tau (P-tau) and total tau (T-tau) missing from HP. Each biomarker profile is 

defined under the “value specification” class from OBI, with asserted logical axioms to 

associate them with the specific phenotype. 
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Table 2. AT(N) biomarker profiles and categories as defined by the NIA-AA Research Framework. 

Each biomarker profile is modeled as a descendant of the “value specification” class defined in OBI. 

AT(N) Profiles Biomarker Category  

A-T-(N)- Normal AD biomarkers  

A-+T-(N)- Alzheimer’s pathologic change 

Alzheimer’s continuum 

A+T+(N)- Alzheimer’s disease 

A+T+(N)+ Alzheimer’s disease 

A+T-(N)+ 
Alzheimer’s and concomitant suspected 

non-Alzheimer’s pathologic change 

A-T+(N)- Non-AD pathologic change  

A-T-(N)+ Non-AD pathologic change  

A-T+(N)+ Non-AD pathologic change  

3.3. Technical Implementation 

The implementation consists of three main software pieces covering different parts 

of the KG generation, integrated into a building pipeline: the extensions ontology builder, 

the KG-builder, and the data transformer module. To maximize effectiveness and repro-

ducibility, in all three sub-projects, we employ state-of-the-art ontology and graph tooling 

maintained by the community and relevant projects such as Monarch and the “universal 

biomedical data translator” from the National Center for Advancing Translational Sci-

ences (NCATS) [82]. 

The extensions ontology builder produces an OWL ontology using the Ontology De-

velopment Kit (ODK) v1.4.1 [83] as the building framework. The ODK provides a pre-

configured, standardized environment with a set of tools that support all stages of the 

ontology lifecycle (creation and editing, building, and testing, and releasing with version 

control) and ensures a systematic approach to ontology maintenance. When possible, we 

define new classes that follow a pa�ern using the Dead Simple OWL Design Pa�erns 

(DOS-DP) v0.1.10 [84], reducing manual editing and consequently reducing errors and 

improving reproducibility. All the axioms are kept under OWL2 [85] DL profile. 

The KG-builder is responsible for obtaining the different sources of knowledge and 

merging them into the terminological KG. Built upon the KG-Hub tooling ecosystem, the 

main configuration inputs are the merge and download YAML descriptor files, guiding 

the download and merge steps. When available, the ontologies are downloaded from the 

KG-Hub repository [86]. OBO ontologies are already maintained as Biolink-compliant 

graphs in the Knowledge eXchange Format (KGX) [87] in the KG-OBO project [88] and 

are directly merged from each specific release artifact. The merging step includes all 

downloaded sources and the extensions ontology to obtain a final KGX graph. 

One challenge when converting OWL ontologies into a graph structure lies in the 

difficulty of accessing class relationships established through subclass and class equiva-

lence axioms. These assertions hold significant value in capturing the biomedical 

knowledge outlined in the comprehensive OBO ontologies. To address this situation, both 

the ontology and builder modules materialize class equivalence axioms. In the context of 

the extensions ontology, we utilize the relation-graph [89] library during the later stages 

of the construction process. In the case of OBO ontologies, the KG-builder retrieves a sub-

set of links from the materialization output within Ubergraph [90], which also employs 

relation-graph. 

The transformer module is a Python solution that provides an accessible approach to 

generating graph data in KGX format from tabular source input. This module adopts a 

YAML-based transform definition schema, mirroring the approach of other tools in the 

pipeline. This schema adheres to a standardized structure wherein users can define map-

pings from columns to specific classes paired with various instantiation design pa�erns. 

The schema effectively models common research entities, including medical history, 
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physical examination, and measurement assays, all aligned with dedicated instantiation 

pa�erns that are further elaborated upon in the subsequent subsection. 

The builder pipeline integrates all steps and can be configured to generate two arti-

facts: solely the terminological graph or the terminological graph with data instantiation. 

3.4. Data Transformation Design Pa�erns 

One of the aims of the KG is to integrate raw research data to enable explicit connec-

tions with knowledge concepts. We propose a set of design pa�erns to support the data 

instantiation of patient/subject study visits, phenotype observations arising from these 

visits, measurements/analyses derived from samples collected from different specimens, 

and neuropsychological test results. In all these pa�erns, OBI is the central ontology em-

ployed to enable the relating of clinical and research concepts with specific entities of the 

biomedical domain. Figures 1–3 illustrate the main pa�erns through simplified concept 

map figures, depicting the main ontology classes and properties involved, identified with 

a pseudo-CURIE of the format PREFIX, namely, “class label”, where prefix is the OBO 

ontology prefix. 

 

Figure 1. Concept map of the visits (light blue) and clinical (orange) design pa�erns, depicting the 

main ontology classes employed to model data entities. 

 

Figure 2. Concept map of the experimental measurements design pa�ern. 
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Figure 3. Exemplification of the neuropsychological test design pattern, through a CERAD recall test. 

The first pa�ern models the relations between study protocol/visit encounters, the 

agents involved, and the resulting outputs. The pa�ern mainly utilizes concepts defined 

in the Neurodegenerative Disease Data Ontology (NDDO) [91] (integrated in NIO) and 

the Ontology for General Medical Science (OGMS). The pa�ern supports a proper logical 

definition of longitudinal protocols, common in dementia research studies. 

Clinical history phenotypes are characterized through observations at a study visit 

or from existing records. The framework leverages a pa�ern that relates visits with specific 

clinical administration, the finding, and the observed phenotype, usually a phenotype or 

disease concept from MONDO or HP. Relevant metadata can also be linked to the OGMS 

clinical entities, such as dates, agents involved, and locations. This pa�ern is shared across 

medical history, physical examination, and diagnosis processes. Figure 1 illustrates both 

the visits and clinical pa�erns. 

A critical component of research data encompasses various assay measurements and 

proteomic datasets. We employ OBI’s assay design pa�erns [92] to capture the multiple 

aspects involved in this process. These pa�erns enable the comprehensive integration of 

data pertaining to the assay, the specimen, and the molecule or material under examina-

tion, such as a protein or leukocyte count. Several relevant ontologies, including GO, PR, 

and Cell Ontology (CL), supply the necessary terminologies. We leverage entities from 

UBERON to denote the anatomical origin of the sample. This pa�ern facilitates the preser-

vation of crucial metadata about processes, encompassing information about the type of 

assay, the specimen or sample employed, experimental conditions such as freeze–thaw 

cycles, and the date and time of collection. Such metadata is of considerable value for re-

source management and can significantly aid research analyses. For instance, the type of 

tube in which a sample was collected could influence assay results and should be ac-

counted for in linear models. Overall, it provides a more comprehensive context of the 

conditions under which experiments are conducted, enhancing the reproducibility and 

reliability of experimental outcomes. 

Analyses derived from neuroimaging techniques, including segmentation measure-

ments from tools such as Freesurfer [93] and Automatic Sub Hippocampal Segmentations 

(ASHS) [94], along with white ma�er evaluations from Diffusion Tensor Imaging (DTI) 

[95] and peak width of skeletonized mean diffusivity (PSMD) [96], play an indispensable 

role in dementia research. The pa�ern supporting this data modality follows a similar 

approach to the previous one, illustrated in Figure 2. To associate the measured anatomi-

cal entities, we utilize the FMA, which offers precise terms to align with the parcellation 

regions delineated by the widely used brain atlases in segmentation software, particularly 
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for hemisphere-specific terms. More general terms from UBERON can be obtained using 

the “xref” property, employed for mapping concepts between different ontologies. 

The last design pa�ern focuses on effectively relating the information content of a 

given test with the cognitive domain, providing means by which to stratify subjects via 

cognitive staging and the specific domain or phenotypic abnormality from HP at query time. 

This pattern exploits the axioms that connect cognitive tests with the evaluated domains. 

4. Results 

We have developed a KG framework that harmonizes biomedical knowledge and 

evidence from various sources, coupled with a transformation module designed to 

streamline the integration of multi-modal and omics data in dementia research. The core 

components of the framework encompass the extensions ontology builder, which provide 

ontological definitions to fill identified gaps from the domain ontologies; the KG-builder, 

in charge of obtaining, merging, and producing the KG; and the data transformer module, 

a low-code interface to transform source study data. All components are publicly accessi-

ble on GitHub (h�ps://github.com/demkg-framework/, accessed on 30 August 2023). This 

trio of tools forms an intuitive building pipeline and also offers flexibility for customiza-

tion, enabling users to construct the graph from scratch, adapt it to specific requirements, 

and deploy it on their preferred platform and graph database. 

The backbone of our implementation is rooted in established community standards, 

technologies, and methodologies. The initial step involved the selection of a comprehen-

sive array of domain reference biomedical ontologies, primarily from OBO, to form an 

expressive knowledge model for our primary KG. These ontologies offer a variety of well-

defined concepts across varying levels of granularity, encapsulating intricate details of 

biological reality in the form of hierarchical relationships and concept networks. 

To facilitate a consistent term mapping across various ontologies and mitigate com-

putational demands, we utilized pre-built KGs from the KG-Hub initiative and the KG-

OBO subset as our foundation, employing the KGX tool for the merging phase of the KG-

builder pipeline. The KG-Hub initiative utilizes the Biolink model as its high-level data 

model, which we adopted to introduce greater flexibility and provide a comprehensive 

yet adaptable terminology overlay on the ontological model. The Biolink model facilitated 

the creation of both relaxed and detailed modeling and query capabilities, thereby en-

hancing the standardization and flexibility of our model. The default KG consists of 1.5 M 

nodes and 11.5 M edges. 

To fill the identified gaps in the foundational model, we developed specific termino-

logical extensions through the extensions ontology. We employed ODK to systematically 

introduce new terms, leveraging the OBO ecosystem to import and extend relevant exter-

nal terms using DOS-DP whenever feasible. 

Finally, the transformation module provides a low-code solution to transform tabu-

lar source data and generate necessary instance nodes and edges by following specific 

design pa�erns that effectively depict study visits, phenotype observations, measure-

ments/analyses derived from samples, and neuropsychological test results. These design 

pa�erns promote efficient data instantiation under the ontological model of the source 

research data, interconnecting various aspects of the study design outputs and providing 

a robust platform for data querying and network-oriented analyses. Figure 4 shows an 

overview of the framework components. 
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Figure 4. Overview of the DemKG framework components. 

4.1. Use Case: Graph-Enabled Phenotype, Flow, and Protein Exploration from AT(N)  

Biomarker Profiles 

To validate the DemKG framework, we applied it to the Dementia Disease Initiation 

(DDI) study data, a multi-site longitudinal observational study aimed at identifying early 

biomarkers for patients at risk of developing dementia [97]. The DDI dataset encompasses 

a range of clinical items, including medical history, standardized physical, neurological, 

and cognitive examinations, as well as laboratory and proteomic assays derived from 

blood and cerebrospinal fluid (CSF) samples, MRI, FDG-PET, and amyloid PET imaging, 

along with genomic analyses. We integrated these diverse data modalities and explored 

various aspects of the key biomarkers of the AD continuum, as categorized by the AT(N) 

classification. 

4.1.1. Experimental Setup 

The central DDI data platform is the XNAT archiving system [98], which is comple-

mented by tailored customizations and data export functionalities, including automatic 

biomarker-based AT(N) classification, and population-adjusted norming for pertinent 

screening tests such as CERAD [99,100], VOSP [77], and TMT [78,101]. We implemented 

the transformation descriptor for the DDI data, involving direct mappings from clinical 

codes and rules to translate assay and experiment results into specific phenotype and dis-

ease entities. We then fed the descriptor along with the aggregated Comma-separated val-

ues (CSV) dump from XNAT to the transformation module to obtain the graph represen-

tation. 

The DDI cohort graph comprises 96,939 nodes and 362,824 edges, whereas an average 

subject subgraph with four visits has 3469 nodes and 8284 edges. This transformed graph 

was merged into the final DDI-KG, which we ingested using the KGX module into a Neo4j 

Community instance deployed in a Podman container configured with eight cores and 16 

GB of RAM, running on the secured servers of the TSD (Tjeneste for Sensitive Data) facil-

ities managed by the University of Oslo. We opted for Neo4j due to its widespread adop-

tion, the capabilities of its Cypher query language, and its reliable performance. Further-

more, KGX automatically creates node indices and constraints to improve loading and 

query performance for this platform. 
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Taking advantage of these features, the setup proves efficient with the resultant graph 

model, particularly for queries with clearly defined traversals and designated node labels. 

Figure 5 offers a preliminary analysis for estimating query performance, tracing the time 

consumed in navigating paths that extend from one to ten hops from subject nodes to 

various relevant node types in the graph. As anticipated, the number of target nodes con-

siderably affects query performance, primarily driven by the increased number of edges 

to evaluate and traverse, coupled with the augmented data volume to handle. This sce-

nario is especially pronounced in the most populated and interconnected node types, 

namely, proteins, genes, and diseases. Therefore, queries involving numerous or unre-

stricted quantities of such nodes require thoughtful design. 

 

Figure 5. Mean execution times over ten runs for variable-length traversal queries between 1 and 10 

connections, navigating from subject nodes to key Biolink categories. 

4.1.2. Experimental Results 

A key objective of the DDI study is to comprehend the evolution of subjects across 

different disease states within the biological reality, and the AT(N) classification system is 

a pivotal reference point. The developed design pa�erns facilitate connections at various 

levels, enabling the exploration of individual and group trajectories across visits and ex-

pediting the retrieval of relevant phenotypes using graph queries (Figure 6). 

 
(a) 
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(b) 

Figure 6. A DDI subject subgraph that illustrates study visits and associated phenotypes, visualized 

with Neo4j Bloom and further edited for readability. (a) An overview of longitudinal visits. Subjects 

are connected to each visit via the “biolink:participates_in” predicate. The logical sequencing of vis-

its is established through the “biolink:precedes” predicate, facilitating query traversal. Clinical en-

tity nodes represent associated medical processes (medical history, cognitive screenings, lab assays, 

and more), serving as the source of observations and conclusions while also supplying context and 

metadata for encounters and experimental setups. These nodes link to phenotype and disease enti-

ties to depict the outcomes of the clinical/research processes. (b) A specific visit branch tracing the 

path from the individual subject to the evaluated phenotypes and diseases noted during a medical 

history recording. Additional data from clinical entities are omi�ed to maintain clarity and uphold 

subject privacy. 

Using the AT(N) entities defined in the extensions ontology, we queried the graph 

database to investigate the flow between the different biomarker profiles. This exploration 

helped unravel the transitions between them at the cohort level, aiding in data filtering 

for parallel research endeavors. Moreover, presented visually (Figure 7), the outcomes of 

these queries proved instrumental in quality control efforts by highlighting unlikely tran-

sitions from pathological to normal states. Such interventions are vital since AT(N) profiles 

derive from biomarker measurements, where unexpected transitions may result from is-

sues or errors in the respective assays. 
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(b) 

Figure 7. Graph-based analysis illustrating the transitional flow among AT(N) biomarker profiles 

within the DDI cohort over successive protocol visits. (a) A Sankey diagram depicting the transitions 

in biomarker profiles. (b) The Cypher query utilized to calculate transition counts based on the pre-

defined AT(N) biomarker profiles in the ontology. 

As shown in Figure 7b, one of the valuable a�ributes of KGs that incorporate domain 

ontologies is richer semantic querying. Leveraging the hierarchical structure within phe-

notype and disease ontologies, we exploited semantic querying to gather phenotypes 

spanning different domains and visualized their prevalence across the AT(N) profiles. As 

depicted in Figure 8, we focused on phenotypes extracted from the “Abnormality of higher 

mental function” class within the HP ontology. Phenotypes related to memory, language, 

and executive function were referenced based on the rules established for the norming 

items in the cognitive screening section of the dataset descriptor. 

 

Figure 8. Dot plot from the collected phenotypes from subjects and their prevalence among the dif-

ferent AT(N) biomarker profiles. 
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To capture complex graph structures into low-dimensional vector space, we utilized 

the GRAPE library to create node embeddings using the node2Vec algorithm [102] with 

Skip Gram [103] and applied them to evaluate various aspects of the AT(N) biomarkers. 

We conducted an interesting experiment to investigate if the embeddings of subject 

visits showed any pa�erns in the low-dimensional space or were influenced by specific 

AT(N) profiles. Using t-SNE [104] to reduce the embeddings to two dimensions, we ob-

served a clear tendency for Tau pathology to group together in the embedding space, sug-

gesting shared characteristics among the phenotypes assessed in those visits. The visit 

node embeddings are visualized in Figure 9, accompanied by a decision boundary com-

puted through a logistic regression model. 

  

(a) (b) 

Figure 9. t-SNE visualizations of node embeddings. (a) Sca�er plot output from GRAPE for all node 

embeddings from the KG representing the topological connectivity, colored by node type. It dis-

plays similarity and some possible clusters (Balanced accuracy: 60.32% ± 1.25%); separability con-

sideration derives from evaluating a Decision Tree trained on five Monte Carlo holdouts, with a 

70/30 split between training and test sets. (b) Visit node embeddings with nodes labeled by their 

associated T biomarker from AT(N) (pathologic tau). The dashed line marks the decision boundary 

between node types computed from a logistic regression model, with an accuracy of 0.831. 

Lastly, we combined the graph query capabilities, node embeddings, and topological 

metrics to obtain a broader overview of the relationships between assay proteins and the 

AT(N) protein biomarkers to assist in decision-making processes that could steer future 

analyses. Since the graph provides explicit links between available assays and the analytes 

being evaluated, we gathered CSF-derived ELISA and proteomics target proteins for com-

parison, focusing on the shared network encompassing GO biological processes (BPs). 

For assessing protein relationships, we employed a simple pair-wise cosine similarity 

measure. This allowed us to quickly gauge how closely protein nodes were related and 

then rank the proteins that were most closely associated with the AT(N) panel (Figure 10). 
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(a) (b) 

Figure 10. Cosine similarity of target proteins to AT(N) proteins. (a) CSF ELISA protein panel. (b) 

Synaptic protein panel from proteomics assays. 

To examine shared BPs between AT(N) and the assessed proteins, we employed a 

graph query to obtain the extensive network of protein activities. Given that proteins par-

ticipate in thousands of such processes, to enhance navigability, we used GRAPE to cal-

culate node betweenness and closeness centrality metrics, utilizing them as indicators of 

node relevance for prioritizing and narrowing down the pool of BPs to be investigated. A 

snapshot of this process is depicted in Figure 11. 

 

(a) 
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(b) 

Figure 11. A snapshot of BP prioritization from node centrality. (a) Full subnetwork of shared BPs 

between AT(N) and synaptic panel proteins. (b) Sankey diagram with the top 10 BPs obtained from 

closeness centrality. 

5. Discussion 

In our work, we introduce DemKG, a KG framework designed to integrate various 

ontologies and knowledge sources to focus on dementia research data. This framework 

aims to cover terminological and design needs for multi-modal and omics data, with ad-

ditional terminological extensions developed when necessary. We also followed specific 

pa�erns to cater to typical dementia research data outputs. 

A key advantage of DemKG is its flexibility and ease of extension or customization 

to adapt to particular needs, made possible by the generalizable and pa�ern-based tech-

nologies employed in different components of the framework. Another relevant feature of 

DemKG is the friendly interface of the transformation module, which lowers the technical 

barrier to effectively integrating study research data in the KG. 

However, there exists an important limitation in its implementation: once built, the 

KG does not support modifications without risking underlying integrity, forcing a com-

plete build and possibly ingestion when new versions become available. This limitation, 

a consequence of using KGX as the backbone for merging and building operations, may 

ultimately limit projects with streamed or on-demand data ingestion needs. 

Nevertheless, our implementations remain open-source, primarily based on open 

knowledge sources, and the building pipelines employ systematic approaches with tem-

plating engines that are easily customizable. While our focus is dementia research, the 

broad biomedical ontologies forming the foundation of our terminological model make 

our KG applicable to other biomedical research datasets as well. 
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microtubule-associated protein tau phosphorylated 1

protein phosphorylation

positive regulation of gene expression

positive regulation of transcription by RNA polymerase II
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endocytosis
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Thus, the broader implications of our work extend beyond the application of the KG. 

Large biomedical KGs are proving to be an excellent tool for biomedical research, espe-

cially in domains requiring knowledge across different fields. The capacity to integrate 

disparate data and knowledge opens up opportunities for insights that were previously 

challenging to achieve. Approaches such as Precision Medicine greatly benefit from the 

implementation of KGs in their workflow. 

This benefit is especially pronounced in dementia research, where the number of 

newly discovered biomarkers, phenotypes, and life conditions rapidly increases. These 

elements become part of the knowledge base that can be applied to the patient’s biological 

signature. In this context, a KG like ours can play a crucial role in advancing our under-

standing of dementia and potentially informing patient care strategies. 

6. Conclusions 

In conclusion, DemKG presents a flexible and integrative approach to handle the 

ever-increasing complexity and multi-modality of dementia research data by leveraging 

a KG representation and relation capabilities. 

The DemKG framework offers several distinct advantages over other solutions cur-

rently available. First, it is constructed based on well-established ontologies and adheres 

to recognized community standards, guaranteeing a solid and interoperable foundation. 

This is further enhanced by ontological extensions specifically crafted to facilitate detailed 

dementia research data analysis, filling a critical gap in the existing frameworks. 

In addition to the above, DemKG integrates a low-code transformer module, simpli-

fying the integration of study data and making the framework accessible to researchers 

with various levels of expertise. This module significantly reduces the time and technical 

know-how needed to merge study data, streamlining the data integration process consid-

erably when compared to other solutions. 

Furthermore, DemKG employs tooling to generate knowledge graphs in the plat-

form-agnostic KGX format. This approach allows for easy deployment in a platform of the 

user’s choice, offering flexibility in how and where the data can be used, and ensuring that 

the framework is adaptable to existing systems and future technological advancements. 

Enhancing its flexibility, the framework offers an open-source and customizable design, 

facilitating easy adoption and adaptation not only for dementia research but also poten-

tially extending its utility to research into other diseases. 

While there are limitations to the support for post-build modifications in its current 

iteration, addressing these in future work could broaden its applicability further. Despite 

these challenges, DemKG and similar KGs hold significant potential for propelling bio-

medical research and patient care advancements, extending from dementia to other med-

ical conditions. 
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