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Abstract: Community detection is an important task in the analysis of complex networks, which is
significant for mining and analyzing the organization and function of networks. As an unsupervised
learning algorithm based on the particle competition mechanism, stochastic competitive learning has
been applied in the field of community detection in complex networks, but still has several limitations.
In order to improve the stability and accuracy of stochastic competitive learning and solve the problem
of community detection, we propose an unsupervised community detection algorithm LNSSCL (Local
Node Similarity-Integrated Stochastic Competitive Learning). The algorithm calculates node degree
as well as Salton similarity metrics to determine the starting position of particle walk; local node
similarity is incorporated into the particle preferential walk rule; the particle is dynamically adjusted
to control capability increments according to the control range; particles select the node with the
strongest control capability within the node to be resurrected; and the LNSSCL algorithm introduces
a node affiliation selection step to adjust the node community labels. Experimental comparisons
with 12 representative community detection algorithms on real network datasets and synthetic
networks show that the LNSSCL algorithm is overall better than other compared algorithms in terms
of standardized mutual information (NMI) and modularity (Q). The improvement effect for the
stochastic competition learning algorithm is evident, and it can effectively accomplish the community
detection task in complex networks.

Keywords: unsupervised learning; community detection; local node similarity; particle competition;
stochastic competitive learning; complex networks

1. Introduction

With the advancement of information technology, many complex systems in real
life can often be described and represented in the form of complex networks, such as
social networks, citation networks, scientist collaboration networks, and protein interaction
networks. The majority of these real-life networks typically exhibit distinct community
structures, where a network consists of multiple communities, and the connections between
nodes within a community are highly dense, while connections between nodes of different
communities are relatively sparse [1]. Community detection is a fundamental task in
the analysis of complex networks, aiming to partition the entire network into several
communities. This process holds significant importance for studying and analyzing the
organizational structure and functionality of networks, as well as uncovering latent patterns
within them.

There has been a great deal of research in detecting and evaluating community struc-
tures in complex networks. In pursuit of this fundamental task of community detection,
researchers have proposed numerous community detection algorithms based on various
methods such as graph partitioning, statistical inference, clustering, modularity optimiza-
tion, dynamics, and deep learning. More detailed reviews of community detection can
be available through several more extensive review articles [2–6]. Among many methods,
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dynamics-based methods constitute a significant branch of community detection algo-
rithms, which reveal the community structure by modeling the interactions between nodes
in a network. Currently, some of the mainstream dynamic-based community detection
algorithms include label propagation, random walk, Markov clustering, dynamic distance,
and particle competition [7].

To further improve the accuracy and stability of community detection algorithms,
competitive learning is applied to the field of community detection. Competition is a natu-
ral process observed in the natural world and many social systems with limited resources.
Competitive learning, as a crucial machine learning strategy, has been widely applied in
artificial neural networks for achieving unsupervised learning. Early developments in-
clude Adaptive Resonance Theory networks [8], Self-Organizing Feature Map networks [9],
Learning Vector Quantization neural networks [10], Dual Propagation neural networks [11],
and Differential Competitive Learning [12]. The competition among particles in complex
networks can generate intricate patterns formed by predefined interactions among individ-
uals within a system. The simple interactions between particles in a network can construct
the complex behaviors of the entire network, enabling functions like community detection
and node classification. Particle competition-based community detection methods were
first proposed by Quiles and Zhao [13]. In this approach, a set of particles is initially placed
randomly in the network. These particles engage in random walks and compete with each
other based on predefined rules to occupy nodes. When each community is dominated
by only one particle, the process reaches dynamic equilibrium, thus accomplishing the
community detection task. Silva et al. [14] introduced the Stochastic Competitive Learning
(SCL) algorithm for unsupervised learning, refining the walk rules of the particle compe-
tition model. Particles move in the network based on a convex combination of random
walk and preferential walk rules. After entering a silent state due to energy depletion,
particles execute a jump resurrection step. The final attribution of nodes to communities is
determined based on the relative control abilities of particles, achieving the community
detection task. The SCL algorithm represents a nonlinear stochastic dynamical system,
characterized by adaptability, local motion reflecting the whole, and has contributed to
the advancement of complex network dynamics. Subsequently, stochastic competitive
learning has found extensive application in various fields such as label noise detection [15],
overlapping community detection [16], prediction of the number of sentiment evolution
communities [17], graph anomaly detection [18], image segmentation [19], and assisting
the visually impaired [20]. These applications have demonstrated the feasibility, rationality,
and effectiveness of applying stochastic competitive learning to the domain of complex
network community detection.

Despite the commendable effectiveness of the stochastic competitive learning algo-
rithm in various fields, it has been found that the algorithm still has some shortcomings in
the community detection task. Firstly, the random selection of initial positions for parti-
cles in stochastic competitive learning leads to unstable community detection outcomes.
This randomness might result in an overly concentrated placement of different particles,
affecting convergence speed and subsequently diminishing the quality of community de-
tection. Secondly, the stochastic nature of the preferential walk process of particles and
the uncertainty in selecting resurrection positions upon energy depletion contribute to
suboptimal final results. Lastly, the constant increment in particle control ability leads to
potential misjudgments in affiliating boundary nodes between communities of varying
scales. The above issues make stochastic competitive learning underperform on community
discovery tasks.

In order to address the aforementioned issues, this paper proposes the Local Node
Similarity-Integrated Stochastic Competitive Learning algorithm LNSSCL for unsupervised
community detection. The algorithm first integrates the node degree and Salton metrics
to determine the starting point of particle walk in the network. During the particle walk
process, the wandering direction is guided by the walk rule that incorporates the local
similarity of nodes. At the same time, the control ability of the particle is dynamically
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adjusted according to its current control range. When a particle runs out of energy, it is
assigned a unique resurrection position. After the wandering is completed, the community
label is adjusted through the node affiliation selection step to obtain the final community
discovery result. The main objectives and contributions of this study are as follows:

(1) Determining the initial positions of particles based on node degrees and the Salton
similarity index, ensuring fixed and dispersed particle placements to mitigate intense
early-stage competition and subsequently accelerate convergence speed;

(2) Incorporating the proposed node similarity measure to enhance the deterministic and
directional aspects of particle preferential walk rules; refining the rules for selecting
particle resurrection positions; introducing a node affiliation selection step to refine
the final community detection results and enhance algorithm stability;

(3) Dynamically adapting the increment of particle control ability according to the parti-
cle’s current control range, thereby improving the effectiveness of detecting communi-
ties of varying sizes within the network;

(4) The LNSSCL algorithm is experimentally compared with 12 representative algorithms
on real network datasets and synthetic networks. The results demonstrate that the
proposed algorithm enhances the community detection performance of stochastic
competitive learning and, overall, outperforms other algorithms.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 introduces some related preliminary knowledge. Section 4 describes the details
and main framework of the proposed LNSSCL algorithm. The experiments are shown and
discussed in Section 5. Section 6 gives the conclusions of this paper.

2. Related Work

Complex networks can model various relationships and internal operating mecha-
nisms between entities and objects in the real world. Detecting the community structure
present in the network can help us further reveal aspects of the real world. Therefore,
community detection in complex networks has received attention from many fields and is
rapidly evolving. Among the many methods proposed, Dynamics-based methods utilize
the dynamic properties of complex networks. Most of these algorithms have linear time
complexity and can be better scaled to large-scale networks. Since it is impractical to review
all previously proposed algorithms for community detection, this section mentions only
some representative algorithms from recent years.

Roghani et al. [21] introduced a community detection algorithm based on local balance
label diffusion. They assigned importance scores to each node using a novel local similarity
measure, selected initial core nodes, and expanded communities by balancing the diffusion
of labels from core to boundary nodes, achieving rapid convergence in large-scale networks
with stable and accurate results. Toth et al. [22] proposed the Synwalk algorithm, which
incorporates the concept of random blocks into random walk-based community detection
algorithms, combining the strengths of representative algorithms like Walktrap [23] and
Infomap [24], yielding promising results. Yang et al. [25] introduced a method of enhancing
Markov similarity, which utilizes the steady-state Markov transition of the initial network
to derive an enhanced Markov similarity matrix. By partitioning the network into initial
community structures based on the Markov similarity index and subsequently merging
small communities, tightly connected communities are obtained. Jokar et al. [26] proposed
a community discovery algorithm based on the synergy of label propagation and simulated
annealing, which achieved good results. You et al. [27] proposed a three-stage community
discovery algorithm TS, which obtained good results through central node identification,
label propagation, and community combination. Fahimeh et al. [28] proposed a community
detection algorithm that utilizes both local and global network information. The algorithm
consists of four components: preprocessing, master community composition, community
merging, and optimal community structure selection. Zhang et al. [29] propose a graph
layout-based label propagation algorithm to reveal communities in a network, using
multiple graph layout information to detect accurate communities and improve stability.
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Chin et al. [30] proposed the semi synchronization constrained label propagation algorithm
SSCLPA, which implements various constraints to improve the stability of LPA. Fei et al. [31]
proposed a novel network core structure extraction algorithm for community detection
(CSEA) using variational autoencoders to discover community structures more accurately.
Li et al. [32] developed a new community detection method and proposed a new relaxation
formulation with a low-rank double stochastic matrix factorization and a corresponding
multiplicative optimization-minimization algorithm for efficient optimization.

3. Background

In this section, we introduce some related preliminary knowledge, including basic
definition, local node similarity, and the theory of stochastic competitive learning.

3.1. Basic Definition

Given a complex network G = (V, E), where V = {vi |1 ≤ i ≤ n} is the set of nodes
and E =

{
(vi, vj) |1 ≤ i 6= j ≤ m} is the set of edges. The number of nodes is n and the

number of edges is m. Unless otherwise specified, this paper solely focuses on the analysis
of undirected simple graphs. The neighborhood of node vi is defined as N(vi) =

{
vj ∈

V
∣∣(vi, vj

)
∈ E

}
, and the degree of node vi is defined as d(vi) = |N(vi)|. Let A be the

adjacency matrix of network G, an n-order matrix, defined as follows:

aij =

{
1,

(
vi, vj

)
∈ E

0,
(
vi, vj

)
/∈ E

(1)

3.2. Local Node Similarity

In the analysis of complex networks, node similarity metrics are commonly employed
to assess the degree of similarity between nodes. Generalizing from the classical triadic
closure principle in social network analysis, it is understood that in a given complex
network, the greater the number of common neighbors between two nodes, the more
similar these nodes are. The specific definition of the common neighbor of nodes vi and vj
is as follows:

CN
(
vi, vj

)
= N(vi) ∩ N(vj) (2)

Based on the local structure, node similarity metrics are derived from the concept of
common neighbors and encompass various indices such as the Salton index, Jaccard index,
Sorenson index, Hub Promoted Index, Hub Depressed Index, Leicht-Holme-Newman
Index, Preferential Attachment Index, Adamic-Adar Index, and Resource Allocation In-
dex [33]. The higher the local similarity between nodes, the higher the probability that
they belong to the same community, and vice versa. Node similarity metrics based on
local structure also offer the advantage of lower computational complexity and have been
introduced into the task of complex network community detection.

3.3. Stochastic Competitive Learning

Stochastic Competitive Learning, as a classical particle competition model, constitutes
a competitive dynamical system composed of multiple particles, achieving community
detection through unsupervised learning [14].

In Stochastic Competitive Learning, multiple particles are randomly placed within the
nodes of the network. Each particle serves as a community indicator, while the nodes in
the network are treated as territories to be contended. The primary objective of particles
is to expand their territories by continually traversing the network and gaining control
over new nodes, while simultaneously strengthening their control over already dominated
nodes. Due to the finite number of nodes in the network, natural competition arises
among particles. When a particle visits any node, it enhances its control over the current
node, consequently weakening the control of other competing particles over that node.
Ultimately, each particle’s control range tends to stabilize, leading to convergence. By
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analyzing the control ranges of particles after convergence, the underlying community
structure of complex networks is unveiled [13].

As a stochastic nonlinear dynamical system, Stochastic Competitive Learning describes
the state of the entire dynamic system through vectors p(t), E(t), S(t), and matrix Nu(t).
Among these, vector p(t) represents the current positions of each particle within the
network; vector E(t) signifies the energy possessed by each particle. When a particle visits
a node under its control, its energy increases by ∆, whereas visiting a node controlled by a
competing particle reduces its energy by ∆. This mechanism limits each particle’s roaming
range, thus minimizing remote and redundant network access. Vector S(t) denotes the
dynamic state of each particle: particles with energy are in an active state, continuously
traversing the network; when energy depletes, particles enter a dormant state and randomly
jump to one of the nodes under their control for revival. Matrix Nu(t) records the visitation
counts of each particle for all nodes in the network. The more a particle visits a particular
node, the greater its control over that node. The particle with the highest visitation count
for a node attains control over it.

In Stochastic Competitive Learning, particles in an active state navigate through the
network following a convex combination of random and preferential walk rules [34]. The
particle walking rule, denoted as P(k)

transition(i, j, t), is defined as follows:

P(k)
transition(i, j, t) , λP(k)

pre f (i, j, t) + (1− λ)P(k)
rand(i, j) (3)

where i denotes node vi. j denotes node vj. t represents the moment. k indicates the particle.

P(k)
pre f (i, j, t) denotes the particle preferential walk rule. P(k)

rand(i, j) represents the particle
random rule. λ ∈ [0, 1] represents the probability of a particle performing preferential
walk, regulating the balance between random and preferential walking. When λ = 1, the
particle exclusively follows preferential walking; when λ ∈ (0, 1), the particle performs a
combination of both random and preferential walking; and when λ = 0, the particle solely
engages in random walking. The random walking mode guides the particle’s exploratory
behavior, where the particle randomly visits neighboring nodes without considering their
control capacity. This mode reflects the particle’s randomness, and the equation for random
walking is defined as follows:

P(k)
rand(i, j) ,

aij

∑
u∈N(vi)

aiu
(4)

The preferential walking mode guides the particle’s defensive behavior, where the
particle prioritizes visiting nodes it already controls, rather than nodes that are not yet
under its control. This mode reflects the particle’s determinism, and the equation for
preferential walking is defined as follows:

P(k)
pre f (i, j, t) ,

aijNu(k)
j (t)

∑
u∈N(vi)

aiuNu(k)
u (t)

(5)

where Nu(k)
j (t) represents the current control capacity of particle k over node vj, determined

by the proportion of visits that the particle makes to the node. The equation is defined
as follows:

Nu(k)
j (t) ,

Nu(k)
j (t)

∑
u∈K

Nu(u)
j (t)

(6)
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When the entire system reaches the convergence criterion, particles cease their wan-
dering. The convergence criterion for the system is defined as follows:

‖Nu(t)−Nu(t-1)‖∞ < ε (7)

where the convergence factor ε typically takes a value of 0.05. Finally, the community
structure is revealed based on the control ranges of individual particles after convergence.

To address the issue of determining the number of particles, stochastic competitive
learning employs the particle average maximum control capability metric to establish a
reasonable particle placement count within the network, thereby determining a suitable
community quantity [35]. The definition of the particle average maximum control capability
metric is as follows:

〈R(t)〉 = 1
|V|

V

∑
u=1

max
s∈K

(
Nu(s)

u (t)
)

(8)

where max
s∈K

(
Nu(s)

u (t)
)

represents the maximum control capability exerted by particle s on

node u. For a network with a community count of K, if the number of particles placed is
exactly K, each particle will dominate a community without excessively interfering with
the control regions of other particles. Therefore, 〈R(t)〉 will take its maximum value. When
the particle count is less than the actual number of communities, each particle competes
with others to control larger communities, resulting in the attenuation of their control
over nodes and causing a decrease in 〈R(t)〉. When the particle count exceeds the actual
community count, particles unavoidably fiercely compete for control over the same group
of nodes, leading to a decrease in 〈R(t)〉. In conclusion, when 〈R(t)〉 is maximized, the
corresponding optimal number of particles placed is the best quantity. The specific method
is as follows: gradually increase the placed particle count from 2 to K + 1 and record the R
value when the system converges under different particle counts. The optimal number of
particles placed corresponds to the particle count that yields the maximum 〈R(t)〉 value.

4. LNSSCL Algorithm

To enhance the stability and accuracy of community detection results, improvements
have been made in various aspects such as particle initialization positions, particle pref-
erential walking rules, particle control ability increments, particle resurrection position
selection, and the introduction of node affiliation selection. In light of these enhancements,
we propose the Unsupervised Community Detection Algorithm with Stochastic Competi-
tive Learning Incorporating Local Node Similarity, which integrates local node similarity
into the stochastic competitive learning framework.

4.1. Determining Particle Initialization Positions

The Stochastic Competitive Learning algorithm stipulates that each particle randomly
selects a different node in the network as its starting position for walking. The random
uncertainty in particle initialization can lead to unstable community detection outcomes.
Additionally, this initialization approach might result in particles’ starting positions cluster-
ing within a single community, intensifying the competitive relationships among particles
during their walks. This situation requires a considerable amount of time for convergence.
Addressing these concerns, the random placement for initialization is abandoned. Instead,
each particle’s initial position is determined based on the node’s degree and the Salton
similarity index between nodes. This approach aims to distribute particles across different
communities as much as possible, accelerating the convergence rate of particle walks and
enhancing the stability of community detection outcomes.
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Node degree is commonly used to measure the importance of a node within the
entire network, while the Salton similarity index is often employed to gauge the similarity
between a node and its neighboring nodes. It is defined as follows:

Salton(i, j) =

∣∣N(vi) ∩ N(vj)
∣∣√

d(vi)× d(vj)
(9)

Combining the two aforementioned metrics, the rules for determining particle initial-
ization positions are as follows. Firstly, arrange all nodes in the network in descending
order based on their degree values. Select the node with the highest degree value as the
starting position for the first particle’s walk. Next, calculate the average Salton similarity
index between the node where the already determined starting-position particle is located
and all other nodes in the network. Choose the node with the smallest average Salton
similarity index as the starting position for the next particle. This process is then repeated
iteratively to progressively determine the starting positions for the remaining particles.
Finally, when the starting position for each particle is determined, the particle initialization
process is completed. Figure 1 depicts the particle initialization position under the condi-
tion of three particles. As can be seen from the figure, particles 1, 2, and 3 are dispersed
and placed in the network after the position initialization step. p(k)(0) denotes the starting
position of particle k. The rules for determining particle initialization positions can be
expressed as follows:

p(k)(0) =


argmax(d(vi)), k = 1

argmin

 k−1
∑

u=1
Salton(j,p(u)(0))

k

, 2 ≤ k
(10)Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 23 
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Figure 1. Schematic of particle initialization position.

4.2. Incorporating Node Local Similarity into Particle Preferential Movement Rule

The stochastic competitive learning algorithm stipulates that particles navigate through
the network based on a convex combination of random walk and preferential walk rules.
The preferential walk rule ensures that particles preferentially access nodes under their con-
trol, reflecting the deterministic nature of particle traversal, and numerically equivalent to
the particle’s control ability ratio. However, this rule solely focuses on the particle’s control
ability over nodes, without considering the influence of node local similarity indicators.
This may lead to a relatively high degree of randomness and weak inclination in the initial
direction of preferential walk, thereby affecting the stability and accuracy of community
detection results. To address these issues, an enhancement to the particle preferential walk
rule is introduced by incorporating node similarity, enabling nodes with greater similarity
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to be more likely visited by particles. This modification enhances the directionality and
determinism of particle traversal during the walk.

The improved node similarity for the enhanced particle preferential walk rule not only
considers cases where nodes share common neighbors, but also accounts for situations
where nodes lack common neighbors. When there are shared neighbors between nodes, a
similarity index considering both common neighbors and degree difference is employed to
measure the degree of similarity between two nodes, as defined below:

Sim(i, j) =

∣∣N(vi) ∩ N(vj)
∣∣∣∣N(vi) ∩ N(vj)

∣∣+ ∣∣N(vi) ∪ N(vj)
∣∣ ×

∣∣N(vi) ∩ N(vj)
∣∣

1 + |Ns − Nh|
(11)

For nodes vi and vj, if |N(vi)| ≥
∣∣N(vj)

∣∣, then Ns is set to N(vj), and Nh is set to N(vi);
if |N(vi)| <

∣∣N(vj)
∣∣, then Ns is set to N(vi), and Nh is set to N(vj). When there are no

shared neighbors between nodes, further consideration is needed for nodes with a degree
value of 1. For nodes without shared neighbors and with a degree value of 1, since their
behavior is solely related to their unique first-order neighbor, their similarity value is set to 1.
For nodes without shared neighbors and with a degree value greater than 1, their similarity
is associated with the node’s degree value. Based on the negative correlation between node
degree and the unfavorable Hub Depressed Index, the degree value is inversely related to
its similarity. The equation for calculating the similarity between nodes without shared
neighbors is defined as follows:

Sim(i, j) =

{
1, (d(vi) = 1) ∨

(
d
(
vj
)
= 1

)
aij

max{d(vi),d(vj)} , d(vi) 6= 1, d
(
vj
)
6= 1 (12)

Building upon this, the equation for the particle’s preferential walk rule incorporating
node similarity is provided:

P(k)
pre f (i, j, t) ,

aijNu(k)
j (t)(1 + Sim(i, j))

∑
u∈N(vi)

aiuNu(k)
u (t)(1 + Sim(i, u))

(13)

where Sim(i, j) represents the similarity index between nodes vi and vj, and Nu(k)
j (t) repre-

sents the control capacity of particle k over node vj. The improved preferential walk rule
takes into account both the particle’s control capacity over nodes and the similarity index
between nodes as equally significant factors. This approach avoids the issue of randomness
in the preferential walk direction that arises after particle initialization, thereby enhanc-
ing the inclination and certainty of particle movement throughout the entire preferential
walk process.

4.3. Dynamically Adjusting Particle Control Capacity Increment

In the Stochastic Competitive Learning algorithm, the control capacity of particles is
quantified as the proportion of node visits, thereby the number of times a particle visits
a node determines its control capacity over that node. When particle k visits node vi, the
equation for the change in the particle’s visit count to that node is given by:

Nu(k)
i (t + 1) = Nu(k)

i (t) + 1 (14)

According to Equation (14), it can be observed that the increment of particle control
capacity remains constant at 1. This would lead to particles having the same level of
competitive increment during the walking process. This uniform competitive increment
among different particles could potentially result in similar community sizes controlled
by different particles. Consequently, this might lead to instances where representative
particles of smaller communities erroneously compete for nodes at the boundaries of
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larger communities. However, many real-life complex systems, represented as complex
networks, often encompass communities of varying sizes. The constant increment in
particle control capacity could potentially yield suboptimal results in the final community
detection outcome. Figure 2 depicts the possible encroachment of a small community into
a large community node when the particle control capacity increment is constant. The size
of community 1 in the figure is actually larger than that of community 2. However, because
of the constant particle control capacity increment, it makes it possible for the range of
communities controlled by each particle to converge to the same size. This then causes
nodes that should belong to community 2 to be misclassified to community 2.
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Addressing the aforementioned issues, an improvement is made to the particle control
capacity increment in order to enhance the effectiveness of discovering communities of
varying sizes within the network. The enhanced particle control capacity increment is
dynamically adjusted based on the current control range of the particle, and the specific
equation is provided below:

Nu(k)
i (t + 1) = Nu(k)

i (t) + 1 +

∣∣∣C(k)(t)
∣∣∣

|V| (15)

where
∣∣∣C(k)(t)

∣∣∣ represents the current control range of particle k, which indicates the
number of nodes currently under the control of particle k. From Equation (15), it can be
observed that the particle’s control capacity increment is positively correlated with its
current control range. This relationship can unveil community structures of different sizes
within the network and prevent particles from erroneously encroaching upon nodes located
at the boundaries of communities.

4.4. Determining Particle Resurrection Locations and Node Affiliation Selection

In stochastic competitive learning, when a particle visits a node under its control,
its energy increases. On the other hand, when it visits a node controlled by a competing
particle, its energy decreases. This energy manipulation serves to constrain the particle’s
walking range, thus reducing long-range and redundant accesses in the network. If a parti-
cle frequently visits nodes controlled by competing particles, its energy will continuously
decrease until it is exhausted and enters a dormant state. Subsequently, the particle will
randomly jump to a node within its control range to revive and recharge.

Clearly, the choice of the particle’s revival location has a high degree of randomness,
which can lead to unstable community detection results. To address this issue, based on the
particle’s control over nodes, we select the node with the highest control capability as the
unique revival location among the nodes it already controls, eliminating the uncertainty in
location selection. If a particle currently doesn’t control any nodes, it will randomly choose
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any node in the network for revival. The improved particle revival location selection is
shown in Figure 3, where the energy of particle 1 is depleted due to its traversal into the
control region of particle 3. After the improvement, particle 1 will no longer randomly
jump to any controlled node within the dashed box, but will instead jump to the node
indicated by the dashed arrow (assuming that node has the highest control capability value
for particle 1).
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Once the algorithm reaches the convergence criterion, particles will cease their walks.
Based on the control capabilities of each particle over nodes, all nodes in the network
are assigned to the corresponding communities represented by particles. However, due
to the potential randomness and potential misclassifications in the steps executed by
particles before stopping their walks, a node membership selection step is introduced. By
considering the frequency of community labels among neighboring nodes, this step ensures
that each node is correctly assigned to its appropriate community, further optimizing
the community detection outcomes. Specifically, for each node, the occurrence frequency
of community labels among its neighboring nodes is observed. If the most frequent
neighboring community label is unique, it is selected as the community label for that node.
If the most frequent neighboring community label is not unique, an influence score is
computed for each community, and the community label with the highest influence score
is selected. The influence score E f f ectCk for a community is calculated as shown in the
equation below:

E f f ectCk = ∑
j∈N(vi)

Sim(i, j), j ∈ Ck (16)

where Ck is one of the most frequent communities, and N(vi) represents the set of neigh-
boring nodes of node vi.

4.5. Algorithm Description

Algorithm 1 describes the method of the LNSSCL algorithm; the pseudocode is
shown below.
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Algorithm 1 LNSSCL algorithm

Input: Graph G = (V, E)
The probability of preferential walk for particles λ,
Particle energy increment ∆, Convergence factor ε

Output: The number of communities K, The set of communities C
1: t = 1
2: K = 2
3: repeat
1: for each particle k do:
5: calculate the initial positions of particles p(k)(0) using Equation (10)
6: end for
7: repeat
8: for k = 1 to K do:

9: calculate the particle’s random walk probability P(k)
rand(i, j) using Equation (4)

10: calculate the particle’s preferential walk probability

P(k)
pre f (i, j, t) using Equation (11), (12), and (13)

11: calculate the particle’s walk probability P(k)
transition(i, j, t) using Equation (3)

12: particles walk based on the walk probability and dynamically
adjust the particle’s control increment using Equation (15)

13: if E(k)(0) ≤ 0:
14: particle performs the revival step by jumping to the

within their control range that possesses the
control capability for revival and re-energization.

15: end if
16: end for
17: update Nu(t), Nu(t), E(t), S(t)
18: t = t + 1
19: until Equation (7) is satisfied
20: calculating and record the average maximum control capability

indicator for particles 〈R(t)〉 using Equation (8).
21: K = K + 1
22: until 〈R(t)〉 reaches its maximum value
23: assign the number of particles corresponding to step 22 to K
24: for each node vi ∈ Vdo:
25: Assign the corresponding community label to node vi based on the mag-

nitude relationship of Nui(t)
26: end for
27: for each node vi ∈ Vdo:
28: get the set of neighboring nodes N(vi) for node vi and count the frequen-

cy of appearance of community labels for each neighboring node
29: if the most frequently occurring neighboring community label is unique:
30: the label of node vi is updated to the most frequently occurring

community label.
31: else:
32: calculate the power score of each most frequent community E f f ectCk

using Equation (16)
33: the label of node vi is updated to the community label with the

highest community effectiveness score
34: end if
35: end for
36: return K− 1, C

4.6. Time Complexity Analysis

For a complex network G = (V, E), assuming the average degree of nodes is d, the
number of nodes is n, the number of edges is m, and the common neighbors between
two nodes is c. The determination of particle starting positions involves calculating node
degrees and the Salton similarity index between nodes, with a time complexity of O(m).
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Active particles wandering in the network require calculating the probability for each
particle to move from the current node to neighboring nodes. The random walk probability
for each particle only requires computing node degrees, while the preferential walk proba-
bility needs to calculate the similarity index between the current node and its neighbors,
with a time complexity of O

(
Kcd

)
. When a particle’s energy is exhausted, the revival

step involves maintaining a hash table to store each particle’s control nodes and their
corresponding control capability values. Finding the node with the maximum control
capability for jumping has a time complexity of O(1). Updating the particle control matrix
has a time complexity of O

(
K2). Since each node in the network is visited at least once by a

particle, the total time complexity of particle wandering is O
(

Kcdn + K2n
)

. To determine
the optimal number of particles, the algorithm needs to gradually change the particle count
from 2 to K′, where K′ is a constant slightly larger than the actual number of communities
in the network. Therefore, the entire particle wandering process of the LNSSCL algorithm
has a time complexity of O

(
K2cdn + K3n

)
. After the particle wandering process concludes,

assigning community labels to all nodes based on their control capability values requires a
time complexity of O(n). The node membership selection step involves each node selecting
its community label based on the frequency of community labels among its neighboring

nodes, with a time complexity of O
((

d + cd
2
)

n
)

. Since complex networks are usually

sparse networks, d � n. In summary, the time complexity of the LNSSCL algorithm is

O
(

m + K2cdn + K3n +
(

d + cd
2
)

n
)
≈ O(M(m + n)), where M is a constant. The time

complexity of the LNSSCL algorithm is linearly related to the sum of the number of nodes
and edges in the network, making the algorithm highly scalable on large-scale networks.

5. Experiments and Discussions

To test the effectiveness of the LNSSCL algorithm, experiments were conducted on
real network datasets and synthetic networks, comparing the proposed algorithm with
12 representative community detection algorithms. The selected benchmark algorithms
for experimentation include community detection algorithms based on random walk such
as Walktrap [23] and Infomap [24]; modularity-based algorithms CNM [36], Louvain [37],
and Leiden [38]; label propagation-based algorithms LPA [39], TS [27], GLLPA [29], and
SSCLPA [30]; hierarchical clustering algorithm Paris [40], Markov chain-based community
detection algorithm MSC [25], and the stochastic competitive learning algorithm based on
the particle competition mechanism SCL [14].

5.1. Experimental Environment and Initial Parameters

The algorithm was implemented using NetworkX and scikit-learn. The specific experi-
mental environment is shown in Table 1.

Table 1. Experimental environment parameters.

Hardware/Software Configuration

OS Windows 11 Home
CPU Intel(R) Core(TM) i5-11400H @ 2.70GHz
RAM 16 GB
GPU NVIDIA GeForce RTX 3050 Ti Laptop

Anaconda 3.9.12
Python 3.7.12

NetworkX 2.6.3
scikit-learn 1.0.2

For the setting of the initial parameters, we refer to the value range of the literature [35].
The value range of the particle preferential wandering probability parameter λ is [0.2, 0.8],
and we set its initial value to 0.6; the value range of the particle energy update value
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∆ is [0.1, 0.4], and we set its initial value to 0.3; the convergence factor ε is set to 0.05; and
the minimum value of the particle energy Emin is set to 0, and the maximum value of the
particle energy Emax is set to 1.

5.2. Datasets

The experiment utilized 11 real network datasets, including four labeled real network
datasets and seven unlabeled real network datasets. The labeled real network datasets consist
of the Karate network [41], Dolphins network [42], Polbooks network [43], and Football
network [1]. The unlabeled real network datasets include the Lesmis network [44], Jazz
network [45], Email network [46], Netscience network [47], Power Grid network [48], Facebook
network [49], and PGP network [50]. The basic information is presented in Table 2.

Table 2. Basic information of real network datasets.

Dataset Nodes Edges Community

Karate 34 78 2
Dolphins 62 159 2
Polbooks 105 441 3
Football 115 613 12
Lesmis 77 254 -

Jazz 198 5484 -
Email 1133 5451 -

Netscience 1589 2742 -
Power Grid 4941 6594 -
Facebook 4039 88,234 -

PGP 10,680 24,316 -

Likewise, to expand experiments, the LFR benchmark is used as synthetic networks [51].
We generate different scale networks on the LFR test network model for experiments.
The specific parameter settings of the LFR network are shown in Table 3, where d is
average degree, dmax denotes maximum degree, minc represents minimum community
size, maxc is maximum community size, and tau1 and tau2 are the parameters for power
law distribution. µ is the mixed parameter. The larger the mixed parameter, the more
difficult the community division.

Table 3. The parameters for LFR network construction.

Network n d dmax minc maxc tau1 tau2 µ

LFR1 1000 15 50 20 100 2 1.1 0.1–0.8
LFR2 4000 15 50 20 100 2 1.1 0.1–0.8

5.3. Evaluation Index

In this paper, we use two widely adopted evaluation metrics for community detection
algorithms to assess the quality of the algorithm’s community detection results. For
labeled real network datasets, we utilize Normalized Mutual Information (NMI) [52]
and modularity [36] to evaluate the community detection results of each algorithm. For
unlabeled real-world network datasets, since the ground-truth community structures of
these network datasets are still unknown, we assess the quality of the detected results in
terms of the modularity only. For LFR networks, we use NMI to evaluate the community
detection results of each algorithm.

The NMI score is defined as shown in Equation (17):

NMI(X, Y) =

−2
CX
∑

i=1

CY
∑

j=1
Cijlb

(Cij N
CiCj

)
CX
∑

i=1
Cilb

(
Ci
N

)
+

CY
∑

j=1
Cjlb

(Cj
N

) (17)



Appl. Sci. 2023, 13, 10496 14 of 22

where X represents the ground truth community structure and Y represents the community
detection results of the algorithm. CX denotes the number of true communities in the
ground truth, and CY represents the number of communities detected by the algorithm.
C represents the confusion matrix, where rows represent the ground truth community
structure and columns represent the algorithm’s community detection results. Cij represents
the number of common nodes between the true community i in X and the community j
detected in Y. Ci represents the sum of row i in matrix C, and Cj represents the sum of
row j in matrix C. N stands for the total number of nodes in the network. NMI ∈ [0, 1].
A higher NMI value indicates a better agreement between the algorithm’s community
detection results and the true community structure, thus implying a better performance of
community detection.

The modularity(Q) is defined as shown in Equation (18):

Q =
1

2m∑
i,j

(
aij −

d(vi)× d
(
vj
)

2m

)
× δ
(
ci, cj

)
(18)

where m denotes the number of edges in the network, aij denotes the connection status
between node vi and node vj; ci denotes the community label of node vi, cj denotes the
community label of node vj; δ

(
ci, cj

)
denotes the Kronecker function, which takes the value

1 if cj and cj are the same; otherwise, it takes the value 0. Generally, a larger modularity
value implies a more distinct community structure.

5.4. Experimental Results and Analysis
5.4.1. Experimental Results and Analysis on Labeled Real Network Datasets

On the four labeled real network datasets, namely Karate, Dolphins, Polbooks, and
Football, we conducted comparative experiments between the proposed LNSSCL algorithm
and 12 other representative community detection algorithms. We evaluated the community
detection results of each algorithm using NMI score and modularity Q. The experimental
results are shown in Tables 4 and 5.

Table 4. Comparison of the NMI of each algorithm on labeled real network datasets. The largest NMI
are in bold.

Algorithm Karate Dolphins Polbooks Football

Walktrap 0.504 0.582 0.543 0.887
Infomap 0.699 0.417 0.529 0.911

CNM 0.692 0.557 0.531 0.698
Louvain 0.587 0.484 0.569 0.885
Leiden 0.687 0.581 0.574 0.890

LPA 0.445 0.595 0.534 0.870
TS 0.710 0.888 0.550 0.900

GLLPA 0.753 0.790 0.580 0.909
SSCLPA 0.826 0.616 0.493 0.919

Paris 0.835 0.780 0.565 0.831

MSC 0.836 0.777 0.539 0.921

SCL 0.821 0.816 0.552 0.861

LNSSCL 0.848 0.899 0.610 0.937
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Table 5. Comparison of modularity Q of each algorithm on labeled real network datasets. The largest
Q are in bold.

Algorithm Karate Dolphins Polbooks Football

Walktrap 0.353 0.489 0.507 0.603
Infomap 0.401 0.532 0.521 0.600

CNM 0.381 0.495 0.502 0.550
Louvain 0.415 0.516 0.526 0.602
Leiden 0.420 0.527 0.527 0.602

LPA 0.375 0.499 0.481 0.583
TS 0.420 0.381 0.520 0.600

GLLPA 0.438 0.496 0.507 0.608
SSCLPA 0.415 0.525 0.518 0.601

Paris 0.372 0.380 0.426 0.510

MSC 0.418 0.495 0.519 0.600

SCL 0.371 0.463 0.508 0.581

LNSSCL 0.424 0.532 0.524 0.613

As can be seen in Tables 4 and 5, the LNSSCL algorithm achieves the highest NMI
values on all labeled real network datasets and has some degree of improvement over the
other algorithms. Whereas, for the comparison of modularity Q, the LNSSCL algorithm
does not take the optimal value on all the datasets. Though the proposed algorithm took
the highest value only on Dolphins and Football datasets, the modularity scores on Karate
and Polbooks datasets were close to the highest level.

The NMI measures the similarity between the algorithm’s output community segmen-
tation results and the real online community structure. The larger the NMI, the higher
the similarity between the algorithm’s output community segmentation results and the
real online community structure. It can be seen that the community detection results
of the LNSSCL algorithm on the four labeled real network datasets of Karate, Dolphins,
Polbooks, and Football are closest to the real community structure of the above networks.
In addition, the LNSSCL algorithm improves its NMI values by 3.3%, 10.2%, 10.5%, and
8.8% on the Karate, Dolphins, Polbooks, and Football datasets, respectively, compared to
the SCL algorithm. This demonstrates the effectiveness of a series of improvements to the
SCL algorithm by the LNSSCL algorithm, which improves the stability and accuracy of the
SCL algorithm.

For other algorithms, CNM, Louvain, and Leiden algorithms seek to maximize the
modularity of the whole network, which obtains good modularity scores but fails to
discover the real community structure well. LPA, TS, GLLPA, and SSCLPA algorithms
tend to have a certain degree of randomness in the node order of label updating and the
label propagation process, making the final community. The computational complexity
of Walktrap and Infomap, two randomized wandering algorithms, is relatively high and
sensitive to the parameters set by themselves. Due to the small size of the dataset used
in the experiments and the existence of small communities, although they have higher
modularity scores, they failed to achieve higher NMI scores, and the consistency with the
real community structure is insufficient.

Overall, the LNSSCL algorithm works best for community detection on the Karate,
Dolphins, Polbooks, and Football datasets.

5.4.2. Experimental Results and Analysis on Unlabeled Real Network Datasets

On the seven unlabeled real network datasets, namely Lesmis, Jazz, Email, Netscience,
Power Grid, Facebook, and PGP, the proposed LNSSCL algorithm was compared against
12 representative learning algorithms through experimental evaluation. The assessment of
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various algorithm’s community detection outcomes was conducted using modularity Q,
and the experimental results are shown in Table 6.

Table 6. Comparison of modularity Q of each algorithm on unlabeled real network datasets. The
largest Q are in bold.

Algorithm Lesmis Jazz Email Netscience Power Grid Facebook PGP

Walktrap 0.521 0.438 0.531 0.956 0.831 0.812 0.832
Infomap 0.546 0.442 0.538 0.930 0.759 0.706 0.821

CNM 0.501 0.439 0.503 0.955 0.935 0.777 0.853
Louvain 0.527 0.282 0.463 0.907 0.627 0.835 0.885
Leiden 0.558 0.443 0.563 0.959 0.935 0.836 0.887

LPA 0.560 0.445 0.574 0.960 0.939 0.737 0.745
TS 0.535 0.440 0.550 0.924 0.930 0.796 0.767

GLLPA 0.556 0.440 0.292 0.920 0.784 0.785 0.786
SSCLPA 0.557 0.406 0.513 0.906 0.838 0.779 0.801

Paris 0.504 0.276 0.451 0.876 0.405 0.586 0.679

MSC 0.544 0.447 0.565 0.948 0.890 0.812 0.872

SCL 0.539 0.411 0.550 0.932 0.863 0.804 0.815

LNSSCL 0.575 0.463 0.585 0.971 0.952 0.847 0.896

Since the unlabeled network dataset is without real community structure, we can
accomplish community delineation by identifying structural features with strong inter-
nal connections and sparse external connections. Modularity measures the strength of
community structure in the network and evaluates the results of algorithmic community
delineation when the dataset has no real community structure. The larger the modularity
degree is, the better the quality of community detection and the stronger the connection
within the community.

As can be seen in Table 6, the LNSSCL algorithm achieves the maximum modularity
on all seven unlabeled network datasets used in the experiments, outperforming other
comparison algorithms. In addition, these network datasets are of different types, sizes,
and sparsities, and the high modularity performance of the LNSCCL algorithm reflects the
algorithm’s good generalization and universality. In particular, the performance on two
larger datasets, Facebook and PGP, shows that the algorithm has some scalability. For other
algorithms, CNM, Louvain, and other algorithms oriented to maximize the modularity
achieved high modularity on the Netscience, Power Grid, Facebook, and PGP datasets,
with Leiden in particular being the most prominent, but did not show the best performance
on the smaller datasets. LPA, TS, GLLPA, and SSCLPA algorithms are not as effective as
the stable LNSSCL algorithm in the experiments, because some randomness in the node
order of the label update and label propagation process cannot show stable and accurate
performance. The MSC algorithm constructs a steady-state Markov similarity augmented
matrix, which is capable of stable and efficient community delineation, and achieves high
modularity in the experiments. Further, the NSSCL algorithm improves its modularity
values by 6.7%, 12.7%, 6.4%, 4.2%, 10.3%, 5.3%, and 9.9% on Lesmis, Jazz, Email, Netscience,
Power Grid, Facebook, and PGP datasets, respectively, as compared to the SCL algorithm.
This shows that the LNSSCL algorithm improves the stability and accuracy of the original
SCL algorithm for community detection to some extent.

5.4.3. Experimental Results and Analysis on synthetic networks

In order to better measure the performance of the algorithm, we generate networks of
different sizes for experiments on the LFR test network model. In this case, the number
of nodes in the LFR1 network is 1000 and the number of nodes in the LFR2 network is
4000. Since the real community structure of the LFR network is known, the performance
of the algorithm is measured using NMI. Among the important parameters used to create
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the LFR network, the mixing parameter µ is used to represent the complexity of the
community structure and determines the clarity of the community structure. As the mixing
parameter µ increases, the community structure becomes more complex and the difficulty
of recognizing the community increases. The experimental results of the LFR network
with different mixing parameter µ are shown in Figure 4, where the horizontal coordinates
represent the individual values of the mixing parameter µ and the vertical coordinates
represent the NMI.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 23 
 

spectively, as compared to the SCL algorithm. This shows that the LNSSCL algorithm 

improves the stability and accuracy of the original SCL algorithm for community detec-

tion to some extent. 

5.4.3. Experimental Results and Analysis on synthetic networks 

In order to better measure the performance of the algorithm, we generate networks 

of different sizes for experiments on the LFR test network model. In this case, the num-

ber of nodes in the LFR1 network is 1000 and the number of nodes in the LFR2 network 

is 4000. Since the real community structure of the LFR network is known, the perfor-

mance of the algorithm is measured using NMI. Among the important parameters used 

to create the LFR network, the mixing parameter   is used to represent the complexity 

of the community structure and determines the clarity of the community structure. As 

the mixing parameter   increases, the community structure becomes more complex 

and the difficulty of recognizing the community increases. The experimental results of 

the LFR network with different mixing parameter   are shown in Figure 4, where the 

horizontal coordinates represent the individual values of the mixing parameter μ and 

the vertical coordinates represent the NMI. 

As can be seen in Figure 4, the performance of each algorithm decreases to varying 

degrees in both sets of networks as the mixing parameter μ increases, but the communi-

ty detection performance of the LNSSCL algorithm still outperforms most of the com-

pared algorithms. 

When the mixing parameter μ is less than 0.4, the algorithms have higher NMI val-

ues, except for the CNM and Paris algorithms. When μ is greater than 0.4, the NMIs all 

show a decrease. Among them, label propagation-based algorithms such as LPA have 

very obvious changes in decline, especially the LPA algorithm, which has an NMI value 

of 0 in both networks when μ is not less than 0.6. The reason for the analysis is that label 

propagation-based algorithms have a certain degree of randomness, which is prone to 

cause low performance and instability in community detection when the community 

structure is not clear enough. Comparing the synthetic networks LFR1 and LFR2, the 

NMI of most of the algorithms increased with the increase in the number of nodes. 

However, the performance of the CNM algorithm shows a decrease, which is attributed 

to the fact that the algorithm may have the problem of resolution limitation when deal-

ing with networks with larger communities, and is unable to decompose large commu-

nities into smaller sub-communities. From Figure 4, it can be found that the NMI value 

of LNSSCL tends to 1 when � = 0.1, and the NMI value of LNSSCL is maximum when � 

= 0.8. It indicates that the performance of LNSSCL decays the slowest, i.e., the perfor-

mance of LNSSCL is more stable. 

  
(a)LFR 1 (b)LFR 2 

Figure 4. Experimental results of NMI under synthetic networks: (a) experimental results of LFR1 

network where n  = 1000; (b) experimental results of LFR2 network where n  = 4000. 
Figure 4. Experimental results of NMI under synthetic networks: (a) experimental results of LFR1
network where n = 1000; (b) experimental results of LFR2 network where n = 4000.

As can be seen in Figure 4, the performance of each algorithm decreases to vary-
ing degrees in both sets of networks as the mixing parameter µ increases, but the com-
munity detection performance of the LNSSCL algorithm still outperforms most of the
compared algorithms.

When the mixing parameter µ is less than 0.4, the algorithms have higher NMI values,
except for the CNM and Paris algorithms. When µ is greater than 0.4, the NMIs all show
a decrease. Among them, label propagation-based algorithms such as LPA have very
obvious changes in decline, especially the LPA algorithm, which has an NMI value of
0 in both networks when µ is not less than 0.6. The reason for the analysis is that label
propagation-based algorithms have a certain degree of randomness, which is prone to cause
low performance and instability in community detection when the community structure
is not clear enough. Comparing the synthetic networks LFR1 and LFR2, the NMI of
most of the algorithms increased with the increase in the number of nodes. However, the
performance of the CNM algorithm shows a decrease, which is attributed to the fact that
the algorithm may have the problem of resolution limitation when dealing with networks
with larger communities, and is unable to decompose large communities into smaller
sub-communities. From Figure 4, it can be found that the NMI value of LNSSCL tends
to 1 when µ = 0.1, and the NMI value of LNSSCL is maximum when µ = 0.8. It indicates
that the performance of LNSSCL decays the slowest, i.e., the performance of LNSSCL is
more stable.

In summary, the community detection results of the LNSSCL algorithm are better on
synthetic network datasets generated with different parameters.

5.4.4. Parameter Sensitivity Analysis

In this section, we focus on the effects of the parameters λ and ∆ on the LNSSCL
algorithm. λ represents the probability of a particle performing preferential walk, regulating
the balance between random and preferential walking. When the parameter λ takes
a relatively low value, the particles are more inclined to wander randomly, visit new
nodes, and expand the community range, but are prone to the problem of too much
randomness. When the parameter λ takes a relatively high value, the particle is more
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inclined to preferentially wander, frequently visit the nodes that have been controlled,
and consolidate the community scope, but it is easy to fall into the localized area and it
cannot visit new nodes. From Figure 5, it can be seen that the parameter λ can achieve
the best community detection performance by appropriately increasing the value of the
parameter when balancing random wandering and preferential wandering (λ = 0.5). For
the Polbooks, Football, and Jazz datasets, the best performance is achieved when the value
of λ is 0.6, while the Email dataset takes the value of λ as 0.5.
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The parameter ∆ is responsible for updating the particle’s energy value. When
∆ is very small, the particle is not penalized enough by the energy it receives for vis-
iting nodes that are not under its control, so the particle’s energy will not be depleted
during its wanderings. The particle will frequently visit nodes that should belong to the
nodes to which the competing particles belong and enter the core of other communities.
As a result, all nodes in the network will be in constant competition, unable to establish
and consolidate community boundaries, and the final community detection will be less
effective. When ∆ is very large, the particle will simply run out of energy once it visits a
node controlled by a competing particle. The particle will frequently enter the resurrection
phase and is not expected to move away from its initial position to take control of other
nodes. As can be seen in Figure 6, a parameter ∆ of 0.3 achieves the best performance on
all four datasets of the experiment. The different values of the parameter ∆ have roughly
the same trend in affecting the performance on different datasets in the experiment.
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According to Figures 5 and 6, the algorithm is somewhat sensitive to the values of
λ and ∆. Numerically, there is little fluctuation within a small interval of relative range.
Based on the results of the parameter sensitivity analysis experiments, we set λ to 0.6 and
∆ to 0.3 for experiments on other datasets.

6. Conclusions and Future Work

This paper introduces a novel unsupervised community detection algorithm named
LNSSCL, which incorporates node local similarity into the process of stochastic competitive
learning. Firstly, the algorithm determines the starting position of particles’ walks by
calculating the degree value of nodes as well as the Salton similarity index. At the same
time, the fusion of node similarity optimizes the particle preferential walk rule. During
the particle wandering process, the particle control capacity increment is dynamically
adjusted according to the control range of each particle. When a particle runs out of energy,
the particle selects the node with the largest control power within its control range for
resurrection. After the particle stops wandering, the nodes in the network are selected for
affiliation based on the frequency of occurrence of community labels of neighboring nodes
and the effectiveness score of neighboring communities, and the community detection re-
sults are finally obtained. Comparative experiments on real network datasets and synthetic
networks show that the LNSSCL algorithm is effective in improving the SCL algorithm.
Compared with other representative algorithms, the LNSSCL algorithm has better quality
of community detection and is able to reveal a more reasonable community structure.

Nevertheless, the LNSSCL algorithm also has some defects. Compared with the SCL
algorithm, the algorithm performs multiple node local similarity calculations during the
community detection process, which requires more computational cost and complexity,
and may have a larger time overhead on ultra-large networks. In the selection of some
hyperparameters of the algorithm, no special parameter tuning method is used; the param-
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eters are tuned manually. Further, the networks studied in this paper are simple undirected
networks and not complex networks that are closer to the real world, such as directed,
weighted, or attribute. In the next step of this study, we can consider optimizing the
similarity calculation to further reduce the time overhead, adopting a dynamic adaptive
hyper-parameter tuning strategy instead of traditional parameter tuning. GNN is intro-
duced to fuse attribute information and structural features to obtain node representations
and calculate node representation similarity to study the community detection strategy for
attribute networks.
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