
Citation: Shiriaev, E.; Kucherov, N.;

Babenko, M.; Lutsenko, V.; Al-Galda,

S. Algorithm for Determining the

Optimal Weights for the Akushsky

Core Function with an Approximate

Rank. Appl. Sci. 2023, 13, 10495.

https://doi.org/10.3390/

app131810495

Academic Editor: John D. Clayton

Received: 19 August 2023

Revised: 12 September 2023

Accepted: 13 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Algorithm for Determining the Optimal Weights for the
Akushsky Core Function with an Approximate Rank
Egor Shiriaev 1,* , Nikolay Kucherov 1 , Mikhail Babenko 1,2 , Vladislav Lutsenko 3 and Safwat Al-Galda 4

1 Faculty of Mathematics and Computer Sciences Named after Prof. Nikolay Chervyakov, North-Caucasus
Federal University, 355017 Stavropol, Russia; nkucherov@ncfu.ru (N.K.); mgbabenko@ncfu.ru (M.B.)

2 Control/Management and Applied Mathematics, Ivannikov Institute for System Programming,
109004 Moscow, Russia

3 North Caucasus Center for Mathematical Research, North-Caucasus Federal University,
355017 Stavropol, Russia; vvlutcenko@ncfu.ru

4 Mathematics Department, Faculty of Education, University of Misan, Amarah 62001, Maysan, Iraq;
safwat.cj@gmail.com

* Correspondence: eshiriaev@ncfu.ru

Abstract: In this paper, a study is carried out related to improving the reliability and fault tolerance
of Fog Computing systems. This work is a continuation of previous studies. In the past, we have
developed a method of fast operation for determining the sign of a number in the Residue Number
System based on the Akushsky Core Function. We managed to increase the efficiency of calculations
by using the approximate rank of a number. However, this result is not final. In this paper, we
consider in detail the methods and techniques of the Akushsky Core Function. During research, it
was found that the so-called weights can be equal to random variables. Based on the data obtained, we
have developed a method for determining the optimal weights for the Akushsky Core Function. The
result obtained allows you to obtain a performance advantage due to the preliminary identification
of optimal weights for each set of moduli.

Keywords: Residue Number System; Akushsky Core Function; Monte Carlo method; Fog Computing;
Chinese Remainder Theorem

1. Introduction

In this paper, we continue the research described in the work [1]. In the presented
work, a fast method for determining the sign of a number was developed based on the
Akushsky Core Function (ACF). The developed method was based on the calculation of the
approximate rank of a number. However, after exploring the basics of ACF, it was found
that additional techniques can be applied.

The calculation of the approximate rank really makes it possible to increase the effi-
ciency of calculating operations in the Residue Number System (RNS). This is confirmed
by several scientific papers that have explored the different applicabilities of the rank of the
RNS number. For example, in the article [2], RNS properties are used when developing
a sign detection function for homomorphic encryption. RNS is used here to speed up
the arithmetic of homomorphic encryption, which also allows the use of RNS techniques
such as the rank of a number and its positional characteristic. In another article [3], the
polynomial form of RNS (PRNS) is used to improve the reliability of cloud storage. Using
PRNS as well as the entropy paradigm, the authors present a method to increase reliability
by increasing the fault tolerance of the system due to the self-correcting properties of RNS.
The result, according to the authors, allows you to correct errors as well as hardware and
software failures. In addition, the presented method allows you to deal with integrity
violations and the consequences of attacks and intrusions into the system. In the article [4],
research is being undertaken related to the rank of the RNS number. The work presents

Appl. Sci. 2023, 13, 10495. https://doi.org/10.3390/app131810495 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810495
https://doi.org/10.3390/app131810495
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2359-1291
https://orcid.org/0000-0003-0337-0093
https://orcid.org/0000-0001-7066-0061
https://doi.org/10.3390/app131810495
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810495?type=check_update&version=1

Appl. Sci. 2023, 13, 10495 2 of 15

proof that a more efficient calculation of the rank is possible based on approximate meth-
ods. In addition, the authors demonstrate that the rank value can be obtained with the
necessary accuracy.

Thus, this study is focused on a more detailed consideration of ACF within RNS, as
well as its mathematical features and the possibility of applying them in practice.

We are continuing research aimed at improving the reliability of Fog Computing
(FC) [5], which will allow more widespread use of FC technology. Fog computing (FC)
is a way of organizing distributed computing based on interconnected low-power (edge)
devices. Typical examples of FC are Smart City (SM) [6] and Internet of Things (IoT) [7]
networks, where several low-power devices consist of various sensors (for example, hu-
midity, temperature, light level, etc.), as well as traffic lights or, for example, mobile devices
and on-board computers of cars. Thus, these low-power devices in large numbers create a
computing network capable of processing a certain data stream, for example, creating the
computing power necessary for the self-service needs of the IoT network SM.

Given the limited computing power of a single device, certain requirements are
imposed on the network architecture.

Various methods of orchestration and load balancing allowed for increased efficiency
in the architecture of FC networks. For example, in [8–10], the authors study orchestration
methods for FC. There are also studies on load balancing in FC; for this, you can read
the following works [11–15]. This made it possible to increase the efficiency of deploying
the data transmission infrastructure. Reliability is affected by optimal load distribution
between nodes and data transmission channels. However, in this case, the reliability is
increased by manipulating the 2–7 levels of the OSI model. However, the first level, the
physical level, is not considered by such methods.

At the physical level, reliability is determined by the fault tolerance of both the equip-
ment and the information presentation system. RNS here demonstrates its effectiveness
due to the properties of self-correction, which allow neglecting errors and anomalies of
the physical layer up to a certain threshold. In addition, the case of FC-RNS demonstrates
efficiency due to its natural parallelism.

However, RNS has a certain number of disadvantages associated with the computa-
tional complexity of non-modular operations, which is quite critical in the case of FC. To
overcome this barrier, it is necessary to develop efficient and fast methods for computing
non-modular operations in RNS. In the previous work, we concentrated on one of the most
important operations of any number system, namely, determining the sign of a number.
The developed method has shown its effectiveness. In this work, we set ourselves the goal
of improving the characteristics obtained for this method and for ACF.

To do this, we conduct a detailed study of the main properties of ACF, namely, the
so-called weights of the function. The study consists of finding the optimal weights that
will reduce the computational complexity of operations with the required level of accuracy.
To find the optimal weights, we use probabilistic methods, namely the Monte Carlo method,
after which, using the developed algorithm, the optimal set is selected according to the
specified parameters. These parameters are the number of RNS moduli in the set as well as
their dimensions in bits.

The results obtained during the work make it possible to reduce computational costs
when implementing methods and algorithms using RNS. We also show the positive impact
of stochastic optimization methods on ACF; they allow you to effectively discover optimal
weights among random values for ACF. In addition, we propose a method for obtaining
optimal weights, which is implemented in the form of four moduli and presented in the
work in the form of algorithms.

Thus, this work consists of the following sections: Section 2 discusses the basic con-
cepts and characteristics of RNS and ACF; Section 3 describes the prerequisites, justification,
and study itself, as well as the resulting algorithm; Section 4 presents the research results
and their discussion; and Section 5 presents the results of the research work carried out as
well as plans for further research.

Appl. Sci. 2023, 13, 10495 3 of 15

2. About the Residue Number System and Akushsky Core Function

The Residue Number System (RNS) is a non-positional number system used to repre-
sent and process integers [16]. The main properties of RNS were presented in the Chinese
Remainder Theorem as a solution to the system of linear comparisons modulo [17]. RNS
received its modern representation in the works of Akushsky [18] and Garner [16]. RNS
can also be thought of as performing modular arithmetic on a residue ring. To represent the
number X in RNS, it is necessary to obtain a set of relatively prime numbers {p1, p2, . . . , pn},
which are called RNS moduli. Then, you need to obtain the remainder by dividing X by
each modulo from the set, resulting in a set of remainders {x1, x2, . . . , xn}. Thus, RNS is a
system of comparisons.

x1 ≡ X(mod p1),
x2 ≡ X(mod p2),
xn ≡ X(mod pn),

whose solution is the original number.
This representation of the number has certain advantages. Since a sufficient condition

for a correct mapping of a number in RNS is that X ∈ [0, P), where P = ∏n
i=1 pi—is the RNS

basis. To return a number to the positional system, you must use the following formula:

X =

∣∣∣∣∣ n

∑
i=1

xi · Bi

∣∣∣∣∣
P

(1)

where Bi—orthogonal basis and Bi =
∣∣∣P−1

i

∣∣∣
pi
· Pi where Pi =

P
pi

,
∣∣∣P−1

i

∣∣∣
pi

—inverse multi-

plicative element of Pi modulo pi.
We can represent a number up to 128 bits in four 32 bits, or eight 16 bits, etc. This

allows you to control the limit on the size of numbers on 32/64 bit systems. In addition,
each pair of remainders xi and modulus pi is independent of the others. This allows
information to be processed in parallel. In addition, it allows you to use the self-correcting
properties of the system.

In the 1970s, after describing the basic principles of RNS, Akushsky proposed a special
function for a given number system based on the positional characteristic of a number,
calling it the core function, or the Akushsky Core Function (ACF) [19]. During their
research, Akushsky and Yuditsky, in parallel with the study of the rank of a number,
proposed another positional characteristic of a number, the so-called core of a number. In
articles [19,20], the considered core was presented.

Investigations of the core function originate from the so-called Lagrange branch [21]
of the low positional system [22], based on the following comparison:

λ1x1 + λ2x2 + · · · λnxn ≡W(mod D) = rD + W,

where D—low position system modulo, r—number rank, λ—system coefficients, and W or
wi—weights.

Studies have shown that these weights can take on various values, both negative and
greater than the modulus D itself—which, by analogy with P, is a constraint. Further
research by Akushsky showed that certain restrictions can be set for the values of W. The
main characteristic of this function is the so-called range core C(P). This value is dynamic
and, like the number X, must be in the range X ∈ 1, P. In [20], Akushsky and Yuditsky
established that, to simplify the practical implementation of the core function, C(P) is equal
to the largest modulo from the set, or their product.

Then, if 0 < wi < C(P), then the core function is monotonically increasing, which
expands the range of applicability of the core function. To determine the positional char-

Appl. Sci. 2023, 13, 10495 4 of 15

acteristic of a number represented in RNS using ACF, it is necessary to introduce such a
concept as the core of an orthogonal basis—C(Bi). Which is located as follows:

C(Bi) = Bi ·
C(P)

P
− wi

pi
, (2)

Then you can obtain the positional characteristic using the following formula:

C(X) =
∣∣∣∑n

i=1 xi · C(Bi)
∣∣∣
C(P)

. (3)

Formula (3) has similarities with Formula (1). However, due to modulo division by
the number C(P), this method of calculating the core function of a number is not effective.
In the same work, Akushsky proposed a different calculation option:

C(X) =

(
n

∑
i=1

xi · C(Bi)

)
− rxC(P) (4)

In this case, we replace the rather computationally complex operation of modulo
division with multiplication with subtraction. If we consider Formula (4) critically, then
we can note that determining the rank of a number is also a computationally complex and
non-modular operation. However, in [1], our research group obtained a result from the
calculation of the approximate rank of the required accuracy. The ACF itself is remarkable
in that it allows you to determine the positional characteristics of the number represented
in the RNS. This positional characteristic shows where on the number line the number
being studied is located. If with a positional system we can explicitly evaluate a number,
for example, is it greater than 0 or less, then in the case of RNS, this can be undertaken
by returning the number to the positional system. This is where ACF comes to the rescue.
Thus, ACF allows you to reduce the computational complexity of non-modular operations
(for which you need to know where a number is on a line).

Additionally, it is worth noting that, in this case, we get only the positional characteris-
tic of the number and not its real value. This allows you to determine the sign of a number,
compare numbers, and perform various other operations.

ACF is considered an inefficient algorithm since the calculations still involve P, which
makes it less efficient than, for example, the approximate method. However, this method
has several positive properties that can be exploited, which will be presented in the
next section.

3. A Probabilistic Approach to Determining the Optimal Weight of the Akushsky
Core Function

Akushsky, in his writings on the weak positional system, RNS, and ACF, pointed out
several different properties of RNS. Based on the fact that any number can be represented
as a polynomial [23], Akushsky conducted a study of a weakly positional system based on
the Lagrange formula, obtaining an interpolation polynomial, the components of which,
expanded in a Taylor series, can perform their arithmetic. Adding to this the provisions
of CRT, Akushsky obtained ACF, in fact, by discretizing the function of the so-called
Lagrangian branch of the weakly positional system, that is, the interpolation polynomial.

Moreover, Akushsky pointed out [19] that the weights wi are specially chosen integers
that can be obtained as follows:

wi =

∣∣∣∣∣∣∣P−1
i

∣∣∣
pi
· C(P)

∣∣∣∣
pi

(5)

moreover, without noting the obligation of this calculation, only the limit of permissible
values indicated above can be used.

Appl. Sci. 2023, 13, 10495 5 of 15

Thus, given the fact that ACF is essentially a discretized function of the interpolation
polynomial, wi can be given randomly.

Let us look at this with an example:
Take RNS with the following parameters: x = (0.1, 6, 2), p = (3, 5, 7, 11).
Let us calculate its parameters:
P = 1155, P1 = 385, P2 = 231, P4 = 105,

∣∣∣P−1
1

∣∣∣
p1

= 1,
∣∣∣P−1

2

∣∣∣
p2

= 1,∣∣∣P−1
3

∣∣∣
p3

= 2,
∣∣∣P−1

4

∣∣∣
p4

= 2, the weights obtained by Formula (5) have the form w1 = 2,

w2 = 1, w3 = 1, w4 = 0.
We also take randomly generated weights w’

1 = 3, w’
2 = 0, w’

3 = 6, w’
4 = 2.

Calculate C(Bi) and C’(Bi) by Formula (2) and obtain C(B1) = 3, C(B2) = 2, C(B3) = 3,
C(B4) = 2. C’(B1) = 2.6, C’(B2) = 2.2, C’(B3) = 2.28, C’(B4) = 1.8.

Then, calculating X using the formula [24]:

X =

∣∣∣∣ P
C(P)

·
(∣∣∣∑n

i=1 xi · C(Bi)
∣∣∣
C(P)

+ ∑n
i=1

wi
pi
· xi

)∣∣∣∣
P

,

We obtain values X = 321 and X’ = 321 + 0.001 · 10−216
.

It is worth noting that the method of returning a number to a positional system based
on ACF is extremely inefficient. In our study, we use it exclusively to identify errors.

The main disadvantage of most RNS algorithms is their high computational complexity.
In a previous study, we were able to reduce the computational complexity of calculating
the rank of a number by obtaining an approximation. In this case, we can consider the
core function as an approximate positional characteristic of a number. Because the weights
can be given randomly, we can find the optimal value of the weights wi at which the
computational complexity of the operations will be reduced.

The weights wi participate in Formula (3) calculations. Then, we can reduce the
computational complexity of the operations by finding the minimum value of the largest
C(Bi) or minmax(C(B1), C(B2), . . . , C(Bn)).

To solve the problem, we can use the Monte Carlo methods [25]. Monte Carlo methods
are a group of numerical methods aimed at studying random processes. This method was
originally developed to solve physics problems related to neutrons in the 1940s. Now, these
methods have gained popularity in various fields, including economics and mathematics.
Our choice fell on this method due to the fact that it has a simple implementation and has
proven itself to be a reliable and effective stochastic optimization method in the case of
one random variable. In the future, we plan to conduct separate studies of the application
of optimization methods for ACF, both stochastic and others.

We are interested in this method from the point of view of processing random weights.
Having received a large sample of random weights, we can obtain data on the dependence
of C(Bi) from random ratios of weights, then process the obtained data and choose the
optimal ratio.

We also chose the Monte Carlo method in terms of the positive qualities of ACF. A
random spread of weights in the range 0 < wi < C(P) imposes a small error on the result.
As a method for determining the accuracy, we used the obtained values of the weights
for the translation (x1, x2, . . . , xn) into the positional system and calculated |X− X’|. Our
studies have shown that the maximum error was 4 · 10−216

, which is a fairly accurate result.
The study proceeded as follows. The number of moduli and their size in bits were

chosen. After that, the set (p1, p2, . . . , pn) was generated as the first relatively prime
numbers of a given length.

Then random weights were generated along the given boundary. Calculation of
the set (C(B1), C(B2), . . . , C(Bn)) and determination of the largest value from it. Re-
turning a number to the positional system and calculating the absolute error. For each
set of moduli, 10,000 sets of wi weights were generated. Further, for the convenience
of processing, sorting in ascending order was carried out. From the bare minimum

Appl. Sci. 2023, 13, 10495 6 of 15

max(C(B1), C(B2), . . . , C(Bn)), meanwhile, the values (w1, w2, . . . , wn) and |X− X’| sorted
according to max(C(B1), C(B2), . . . , C(Bn)).

The process of determining the optimal set of weights consisted of two conditions: the
value max(C(B1), C(B2), . . . , C(Bn)) should be minimal with the smallest error |X− X’|.
Thus, this approach can be applied based on the requirements for the accuracy of the
obtained values. For our study, we determined the maximum value of the error 0.1 · 10−216

.
At the output, we obtained a set of weights that is optimal for a given set of moduli.

Based on the study, an algorithm for finding the optimal ACF weights was developed.

4. Method for Determining Optimal Weights

Based on the obtained data, a method was developed for selecting the optimal weights
for ACF. The application of the method is effective in terms of speed. Since the RNS moduli
are constant, it is possible to obtain a weight table at the stage of precomputation for a set
of sets. The disadvantage is memory consumption, as the resulting weights must be stored.

Consider the algorithm of the obtained method. The method can be divided into
several moduli:

1. The main modulo includes connections to all moduli. RNS initialization (Algorithm 1);
2. Constant calculation modulo calculates the constants of the selected RNS. For example,

the basis of a set of moduli, multiplicative inversions, etc. (Algorithm 2);
3. Core function processing modulo calculates core function variables such as basis cores,

orthogonal basis cores, etc. (Algorithm 3);
4. Monte Carlo modulo—searches for the optimal weight (Algorithm 4).

Consider modulo two.

Algorithm 1

Input: p = {p1, p2, . . . , pn}, X

Output: w

Main

1. Calculation of P, {P1, P2, . . . , Pn},
{∣∣∣P−1

1

∣∣∣
p1

,
∣∣∣P−1

2

∣∣∣
p2

, . . . ,
∣∣P−1

n
∣∣

pn

}
, {B1, B2, . . . , Bn} from

Constant_ f unction
2. Calculation of Error, w, minmax C(B) from Monte_Carlo
3. print w
end

Algorithm 2

Input: p = {p1, p2, . . . , pn},

Output: P, {P1, P2, . . . , Pn},
{∣∣∣P−1

1

∣∣∣
p1

,
∣∣∣P−1

2

∣∣∣
p2

, . . . ,
∣∣P−1

n
∣∣

pn

}
, {B1, B2, . . . , Bn},

Constant_function
1. for i in n do:
1.1. P = P · pi
2. for i in n do:
2.1. Pi =

P
pi

2.2.
∣∣∣P−1

i

∣∣∣
pi
= mult_inver(Pi, pi)

2.3. Bi =
∣∣∣P−1

i

∣∣∣
pi
· Pi

end

mult_inver(Pi, pi)—performed according to the extended Euclid algorithm

Thus, the constants necessary for the operation of moduli three and four are calculated.
Let us look at modulo three.

Appl. Sci. 2023, 13, 10495 7 of 15

Algorithm 3

Input: p = {p1, p2, . . . , pn}, x = {x1, x2, . . . , xn}, Constant_ f unction, w = {w1, w2, . . . , wn}

Output: C(B) = {C(B1), C(B2), . . . , C(Bn)}, C(P), X’

Core_func
1. C(P) = pn
2. for i in n do:
2.1. C(Bi) = Bi ·

C(P)
P − wi

pi
3. for i in n do:
3.1 C(X) + = xi · C(Bi)
4. C(X) = C(X)mod C(P)
5. for i in n do:
5.1 X’+ = wi

pi
· xi

6. X’ =
∣∣∣ P

C(P) · (C(X) + X’)
∣∣∣
P

end

Now, after obtaining the necessary constants as well as a description of the calculation
of the necessary core as well as the core function itself, we can describe modulo 4.

Algorithm 4

Input: p = {p1, p2, . . . , pn}, x = {x1, x2, . . . , xn}, Constant_ f unction, Core_ f unc, X, Border

Output: Error, w, minmax C(B)

Monte_Carlo
1. for j in Border do:
1.1. for i in n do:
1.1.1. wj

i = random(0, pi)
1.2. Calculation of C(Bi) from Core_ f unc
1.3. maxj C(B) = C(B1)
1.3. for i in n do:
1.3.1 if maxj C(B) < C(Bi)
1.3.1.1 maxj C(B) = C(Bi)
1.4. Calculation of Xj from Core_ f unc
2. Sorting * max C(B) with w, X
3. Cleaning * max C(B) with w, X
4. Border = length o f max C(B)
5. for j in Border do:
5.1. Error = X− X’
5.1 i f Error < 0.1 · 10−216

them:
5.1.1 minmax C(B) = maxj C(B)
5.1.2 w = wj

5.1.3 break
end

sorting—ascending sort process maxC(B) with w, X
cleaning—destruction of duplicate values maxC(B) with w, X.

After describing additional moduli, we can move on to describing the main modulo.
Thus, these algorithms can be implemented as one program or used separately for

other tasks not related to the topic of research.
Based on the described four moduli, a program was developed, based on which the

results of Tables 1–3 were obtained.

Appl. Sci. 2023, 13, 10495 8 of 15

Table 1. The results of the study on the size of the numbers.

Length of Modulo With Calculation Weight Without Calculation Weight With Optimal Weight

8 3.03882 · 10−5 2.95754 · 10−5 2.94675 · 10−5

16 4.54483 · 10−5 4.51912 · 10−5 4.45878 · 10−5

32 7.62158 · 10−5 7.56659 · 10−5 7.49536 · 10−5

64 1.45906 · 10−4 1.45405 · 10−4 1.44623 · 10−4

128 3.0976 · 10−4 3.08956 · 10−4 3.08282 · 10−4

256 7.5987 · 10−4 7.58389 · 10−4 7.57831 · 10−4

512 2.140723 · 10−3 2.136606 · 10−3 2.135205 · 10−3

1024 6.857154 · 10−3 6.844715 · 10−3 6.84191 · 10−3

Table 2. Results of the study by the number of moduli in the set.

Numbers in Set With Calculation Weight Without Calculation Weight With Optimal Weight

3 5.89298 · 10−5 5.86213 · 10−5 5.7904 · 10−5

4 7.60817 · 10−5 7.56052 · 10−5 7.49824 · 10−5

5 9.52133 · 10−5 9.46818 · 10−5 9.36631 · 10−5

6 1.16094 · 10−4 1.15005 · 10−4 1.1437 · 10−4

7 1.38983 · 10−4 1.3774 · 10−4 1.37104 · 10−4

8 1.65344 · 10−4 1.63639 · 10−4 1.62737 · 10−4

9 1.94102 · 10−4 1.92349 · 10−4 1.92099 · 10−4

10 2.25351 · 10−4 2.23501 · 10−4 2.23485 · 10−4

11 2.61388 · 10−4 2.59014 · 10−4 2.59359 · 10−4

12 2.99725 · 10−4 2.97459 · 10−4 2.96376 · 10−4

13 3.44273 · 10−4 3.41763 · 10−4 3.41997 · 10−4

14 3.90702 · 10−4 3.87631 · 10−4 3.87106 · 10−4

15 4.44745 · 10−4 4.42496 · 10−4 4.41398 · 10−4

16 5.0257 · 10−4 4.99252 · 10−4 4.98557 · 10−4

17 5.6871 · 10−4 5.65295 · 10−4 5.64622 · 10−4

18 6.39716 · 10−4 6.36057 · 10−4 6.35331 · 10−4

19 7.20255 · 10−4 7.18 · 10−4 7.16739 · 10−4

20 8.08093 · 10−4 8.01978 · 10−4 8.01124 · 10−4

Table 3. Research results.

Number of
Moduli Modulo Size, Bit Optimal Value minmax(C(Bi)) Set of Optimal Weights Absolute Error

4 8 175.097276 (257, 70, 171, 222) 0.01 · 10−216

4 16 45992.000091 (52568, 29656, 26707, 65548) 0.02 · 10−216

4 32 3924937701.831088 (2657113367, 4294721947, 1752687387, 729149879) 0.01 · 10−216

4 64 16095638220240922233.627427 (18444693828608548770, 11556647366118817625,
12170730014670266392, 18387437696418261637) 0.08 · 10−216

Appl. Sci. 2023, 13, 10495 9 of 15

Table 3. Cont.

Number of
Moduli Modulo Size, Bit Optimal Value minmax(C(Bi)) Set of Optimal Weights Absolute Error

4 128 2497169411772991202446841153047335967
24.351813

(340275175060926886165304188096319514004,
301020633665331798271476810118958979515,
336510905909786319187393834122600353777,
99612995849147588614905459610625716040)

0.02 · 10−216

4 256
846380475636402321226958149328072593
288597515865074329930973307110037476
65237.217685

(1157908361929757651664517735050588125551
03554725275435478021644406706452852642,
11384840556211506774718234676701921531
5787742518548679960714055806362839975028,
1048976990497638497932505819479506145344
37641870821417673690586136930726447933,
98923094989414098966296758255814077133551
266392072068398016455637357261600806)

0.08 · 10−216

4 512

113953975696041101526761682084879863
212642311387838517699902399278365448
099778104077095536414038143497251059
165116665607660088231059134150766785
88202679077.659230

(1307379244356929620555957580182196503736
664036227780907313385448381344149979018205
855844166646873007363243247346391152622109
823078619220482381715286142326,
554316440928670271657260146562203258588284
557182694432308509840061990432132560512292
462586421365955435616243246758046600624498
2571591123246118185797630700,
134076070316718623981837937193396281868600
798045300349056754960848934881509072297516
244238486375714475215395703895548383263627
22714909449872398349270086553,
638325415687188403262431483587542085732706
237832897015095684137130251257947650255142
941524569524358882705633870825453557853910
937588069767174410797637892)

0.03 · 10−216

4 1024

17390386487631557568771933569114495
34797022649742650820875279939219721
53368415498724475285244090921676645
64199202174827787854208393787105401
51839149324588766900832748708691225
92931606933916146527259690778373305
22822414425161846327261070088644807
27244708996046146205461812573141795
55871200198967252690396525188.328312

(63671267529045939176782891807597164779330
268199956543267364059858815426517192415527
888751878361965987088021377634357435656840
078061207715717709351178991647694721817028
847289870083432365650336968494534407212371
617155735472146154620756431111765526437519
455533696878348787266959037481180284373151
658835319232651,
442472548071303067784062271118714693029555
958016918932640878856358488838825647036753
262241309741690835137278721708712765965827
153215805131700924844053524448947823981492
582592947297107287118473732837109986912937
437269990827752644601820503739197649926454
720957316137571675890330750814515039714270
82800912256343,
179766120845700727769235813661981360140887
804560759723012786354441178092413793236878
864506017795612020779621713172819656884659
459971537103218335246165021703558837399335
545006425174142144942717705542008919767347
790879619910489640082914328259563779358224
376662886767659247506099747141422184308331
619563700807401,
142601023892529348692836223171335226264919
772235731226363440967200738053328128603186
683921762374795519794208008522994508516100
471629894809907768831591019555964856820924
572490471283932626475102107022108843426426
778025198809114047631745504328467163232132
797372534385677526604483471234849002200519
138695152264587)

0.1 · 10−216

3 32 3568024123.214328 (3837237931, 4294762609, 917896556) 0.02 · 10−216

4 32 3924937701.830790 (2692113808, 4294901084, 2570217672, 1022682509) 0.01 · 10−216

5 32 3908695829.805370 (4294390329, 3868346871, 2264663547, 928155071,
774470313) 0.03 · 10−216

6 32 3886001215.047813 (3932482126, 4115409466, 1216882072, 1716628707,
4293640252, 2871721103) 0.08 · 10−216

7 32 4018445179.076804 (4294885006, 2466465469, 391837946, 1166816806,
2142066795, 931058054, 3767377016) 0.04 · 10−216

8 32 3779516627.758768 (3457587344, 1948271198, 4294064264, 3496188834,
736551483, 3109143057, 1682604, 2979033662) 0.02 · 10−216

9 32 3648257309.749618
(3945387719, 3611636576, 3234580145, 3992778927,
1011101864, 1426654729, 4294456583, 696798307,
1248346682)

0.03 · 10−216

Appl. Sci. 2023, 13, 10495 10 of 15

Table 3. Cont.

Number of
Moduli Modulo Size, Bit Optimal Value minmax(C(Bi)) Set of Optimal Weights Absolute Error

10 32 3319015825.455541
(1812568780, 1744305376, 2879177275, 2704532353,
740106217, 2133216454, 142907793, 1628758167,
4294755744, 3005613165)

0.09 · 10−216

11 32 3887252925.495630
(4294843612, 4072774593, 3479907851, 298939644,
473835803, 2964747990, 567788892, 2441223305,
1589870977, 3410254302, 4125735668)

0.007 · 10−216

12 32 4116388674.763324
(1505892188, 381403895, 2944743037, 1468923292,
872170926, 2727127099, 4294523003, 518813601,
2447761796, 2093868838, 642628657, 2306588867)

0.03 · 10−216

13 32 3839483959.395721

(939171569, 3907368894, 64568480, 2218303052,
4293911622, 2393109237, 4186379519, 864348774,
2385043194, 2111471880, 1805406759, 1171095431,
1559353300)

0.09 · 10−216

14 32 3986159380.261221

(616709959, 519448438, 477811205, 2399023990,
2083266316, 3919260116, 388017825, 2029968915,
3059987793, 4294573350, 2810153157, 3174088871,
2569069222, 285202218)

0.04 · 10−216

15 32 4033445816.904042

(3720535967, 601463582, 555133089, 2930592128,
2232245455, 679510902, 108449824, 411127992,
3007487310, 1296564010, 612933647, 1775883604,
4294791549, 931800587, 3264057027)

0.07 · 10−216

16 32 3936456732.318885

(187085904, 862570694, 3452682697, 768183615,
4209428887, 2440805784, 3193371456, 4294555286,
2837902995, 3705505493, 3771021744, 2723759171,
3695499094, 158931980, 2021526104, 348223685)

0.03 · 10−216

17 32 4252663218.916533

(2119312200, 564715578, 18835399, 3613263029,
3832444712, 1661175387, 1545638111, 4294254100,
3133195295, 265247941, 3881549301, 1930557313,
1735739591, 1946257665, 103142023, 3119952405,
3245461581)

0.08 · 10−216

18 32 4277036539.883138

(1721834367, 2312277614, 3273045534, 46432728,
1237032121, 1827774096, 1132197392, 2143658973,
3445768340, 1287239420, 2019238334, 1369430968,
1205953584, 1356879283, 1822651576, 3603025026,
4294935763, 2378100982)

0.1 · 10−216

19 32 4158164430.897782

(1274653369, 2956041026, 1966664630, 3073660627,
409387091, 1296327460, 3559335394, 1490335973,
2302687431, 3834698696, 3180769032, 1210931162,
2414378075, 170084862, 4294240447, 3462515808,
3698892625, 1052828145, 3082019895)

0.1 · 10−216

20 32 4087064891.159399

(2194625932, 3749491636, 738164928, 895890692,
1588777698, 3280055887, 1343047423, 3435587145,
1491029095, 2514950023, 2947973241, 4294680200,
3817426302, 659655741, 803902988, 4230645408,
638024259, 904912493, 1800410366, 1427397790)

0.1 · 10−216

The performance studies were carried out in a similar way to the previous study.
Research is conducted on the basis of programs written in Python, on equipment with

the following characteristics:

• CPU: frequency: 2.90 GHz, cores—6, process technology: 14 nm;
• GPU: video memory 6144 MB, memory frequency 14000 MHz, GPU frequency 1680 MHz,

TDP 500 W;
• RAM: 16 GB, frequency 3200 MHz;
• OS: Windows 11.
• The experiment is carried out in two stages:
• Stage A—performance study of 9 sets, 8 moduli, and dimensions from 8 to 1024 bits;
• Stage B—performance study of 20 sets, from 3 to 20 moduli, and a dimension of 32 bits.

When conducting a two-stage simulation, the time characteristics of each method were
obtained. The results obtained are reflected in the figures (Figures 1 and 2), where is the
absolute error equal to 0.1 · 10−216

, and the tables (Tables 1–3).

Appl. Sci. 2023, 13, 10495 11 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 15

18 32 4277036539.883138

(1721834367, 2312277614, 3273045534, 46432728,
1237032121, 1827774096, 1132197392, 2143658973,
3445768340, 1287239420, 2019238334, 1369430968,
1205953584, 1356879283, 1822651576, 3603025026,
4294935763, 2378100982)

0,1⋅ 10ିଶభల

19 32 4158164430.897782

(1274653369, 2956041026, 1966664630, 3073660627,
409387091, 1296327460, 3559335394, 1490335973,
2302687431, 3834698696, 3180769032, 1210931162,
2414378075, 170084862, 4294240447, 3462515808,
3698892625, 1052828145, 3082019895)

0,1⋅ 10ିଶభల

20 32 4087064891.159399

(2194625932, 3749491636, 738164928, 895890692,
1588777698, 3280055887, 1343047423, 3435587145,
1491029095, 2514950023, 2947973241, 4294680200,
3817426302, 659655741, 803902988, 4230645408,
638024259, 904912493, 1800410366, 1427397790)

0,1⋅ 10ିଶభల

The performance studies were carried out in a similar way to the previous study.
Research is conducted on the basis of programs written in Python, on equipment with

the following characteristics:
• CPU: frequency: 2.90 GHz, cores—6, process technology: 14 nm;
• GPU: video memory 6144 MB, memory frequency 14000 MHz, GPU frequency 1680

MHz, TDP 500 W;
• RAM: 16 GB, frequency 3200 MHz;
• OS: Windows 11.

The experiment is carried out in two stages:
• Stage A—performance study of 9 sets, 8 moduli, and dimensions from 8 to 1024 bits;
• Stage B—performance study of 20 sets, from 3 to 20 moduli, and a dimension of 32

bits.
When conducting a two-stage simulation, the time characteristics of each method

were obtained. The results obtained are reflected in the figures (Figures 1 and 2), where is
the absolute error equal to 0,1 ⋅ 10ିଶభల, and the tables (Tables 1–3).

(a)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15

(b)

Figure 1. The results of the study: (a) stage A and (b) stage B.

(a)

(b)

Figure 2. The results of the study: (a) stage A and (b) stage B.

Namely, sets of moduli and their numbers, as well as optimal weights, were taken.
With these values, the positional characteristics of the number were calculated as 𝑋. The
same was undertaken under the conditions of the weights obtained by Formula (5).

Based on which three-time characteristics were obtained:
1. Positional characteristics are obtained based on optimal weights;
2. Positional characteristics are obtained based on the calculated weights with the

measurement of the time of their calculation;

Figure 1. The results of the study: (a) stage A and (b) stage B.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 15

(b)

Figure 1. The results of the study: (a) stage A and (b) stage B.

(a)

(b)

Figure 2. The results of the study: (a) stage A and (b) stage B.

Namely, sets of moduli and their numbers, as well as optimal weights, were taken.
With these values, the positional characteristics of the number were calculated as 𝑋. The
same was undertaken under the conditions of the weights obtained by Formula (5).

Based on which three-time characteristics were obtained:
1. Positional characteristics are obtained based on optimal weights;
2. Positional characteristics are obtained based on the calculated weights with the

measurement of the time of their calculation;

Figure 2. The results of the study: (a) stage A and (b) stage B.

Appl. Sci. 2023, 13, 10495 12 of 15

Namely, sets of moduli and their numbers, as well as optimal weights, were taken.
With these values, the positional characteristics of the number were calculated as X. The
same was undertaken under the conditions of the weights obtained by Formula (5).

Based on which three-time characteristics were obtained:

1. Positional characteristics are obtained based on optimal weights;
2. Positional characteristics are obtained based on the calculated weights with the mea-

surement of the time of their calculation;
3. Positional characteristics are obtained based on the calculated weights without mea-

suring the time of their calculation.

Based on the experiment, the following tables were obtained.
Let us consider the results obtained. The results obtained are presented both as tables

(Tables 1 and 2).
Based on the data obtained, we can say that the method we have developed for finding

optimal weights is effective. Efficiency was confirmed in both cases. When weights are
calculated and when weights are stored on disk. In both cases, the use of optimal weights
makes it possible to reduce the computational complexity of determining the positional
characteristics based on ACF. The result is explained by the reduction in the size of C(B),
which reduces the computational cost.

Analyzing the results of Table 2, we can say that the result obtained in Table 1 is
adequate. With this study, we confirmed that the resulting sets are stable, both with
an increase in the size of the moduli and with an increase in their number. Thus, it is
possible to use both the method presented in the work and the obtained weight table in
the operation of real systems. The benefit obtained in our study is within 1%. Despite
the small productivity gains, this is an important result. When using RNS methods for
the safety and reliability of systems, this increase is noticeable. For example, RNS is
used in homomorphic encryption [26–28]. Homomorphic encryption arithmetic has high
computational complexity. RNS is used to speed it up due to some of its properties. Thus,
an increase of even 1% will allow the use of this type of encryption with greater efficiency.

We examine the data indicated in the table as follows. Since, based on the data, the
performance advantage of our method is obvious, let us compare our method with the
experiment closest in performance. Namely, with the classical calculation of the core
without calculating the weights. Additionally, we obtain the following graphs (Figure 1).
To do this, we divide the values without calculation weight by the optimal weight and
obtain how many times our method is more effective than the classical one.

Here, we can observe the following picture. In general, throughout the study, the
proposed method had an advantage. However, we can observe the following trend. De-
pending on the size of the moduli, the performance ratio of both methods tends to unity
(Figure 1a) exponentially. This is explained by the fact that with an increase in the size of the
moduli, the computational complexity of the calculations also increases. The essence of our
method is to manage this complexity by introducing optimal weights. However, due to the
fact that for huge values of moduli, the computational complexity is colossal, the influence
of optimal weights on it is reduced. However, there is still relevance here. Special attention
is paid to the performance value when the module size is 8 bits. This anomalous value
(which is clearly less than expected) is explained by the low computational complexity of
the ACF calculation operation. However, as we can observe, the performance is still higher
since, in the presence of optimal weights, the value of C(Bi) is less.

In the case of stage B, we can observe the following (Figure 1b). The performance
ratio of the methods also tends to unity; however, we can observe that the graph line is
broken. This can be explained by the fact that, although the number of moduli increases the
computational complexity, it is not as fast as in the case of stage A. This is because in RNS,
in most situations, only the number of addition operations in formulas depends on the
number of moduli, which carries a lower computational load. In addition, as mentioned
above, we use the Monte Carlo method based on random weights, which of course can also

Appl. Sci. 2023, 13, 10495 13 of 15

have a certain effect on the result. However, as mentioned above, the proposed method
had the best performance throughout the study.

As a result of the simulation, we obtained the following results, presented in Table 3.
Let us consider the received data in more detail. The first column stores the number of

moduli in the set, and the second column stores the size of one modulo in the set. These
columns are necessary for the convenience of finding the required set of weights. The third
column, the value of maxC(B), allows you to compare the basis on which the set of optimal
weights was determined. The fourth column is a set of optimal weights. The fifth column
displays the absolute error of converting a number from RNS to a positional system when
using the resulting set of weights. Let us analyze the value of the absolute error. To do this,
we constructed the graph in Figure 2.

In this case, we can observe the following. Despite some deviations, in both cases, the
value of the error on average increases with the growth of the computational complexity
of the experiment, which is a logical result. However, the value of the error does not
go beyond the previously indicated boundary, which is equal to 0.1 · 10−216

, which is a
good result.

5. Conclusions

This paper continues the research that was started in [1]. The work included a part
of the study devoted to research related to the calculation of ACF. It has been found that
the ACF weights can be generated randomly without seriously affecting the accuracy of
the result.

Based on this fact, a method was developed to obtain the optimal set of weights for a
given set of moduli. The method consists of applying the Monte Carlo method to iterate
over random values of the weights to find the most appropriate result. As an optimum
criterion, the following was chosen: the minimum–maximum value of the core of the basis
C(B), as well as the absolute calculation error equal to 0.1 · 10−216

.
Based on the method obtained, a performance study was conducted. The performance

of the previous study was taken as a benchmark [1]. It also added the performance of
calculating the positional characteristic without considering the calculation of weights,
as well as the sets we offer. The results of the experiment allow us to talk about the
effectiveness of the solution obtained based on the optimal ACF core.

In future studies, we plan to conduct even more experiments related to finding the
optimal value of the ACF coefficients. As well as implementation and testing on real
systems. In addition, we plan to conduct a more detailed study of optimization methods
for ACF.

Author Contributions: Conceptualization, methodology, software, validation, research, manuscript—writing,
E.S.; methodology, research, manuscript—writing, supervision, N.K.; conceptualization, methodol-
ogy, research, manuscript—writing, supervision, M.B.; conceptualization, methodology, research,
manuscript—writing, V.L.; methodology, validation, manuscript—writing, S.A.-G. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education and Science of the Russian Federa-
tion (Project 075-15-2020-788).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 10495 14 of 15

References
1. Shiriaev, E.; Kucherov, N.; Babenko, M.; Nazarov, A. Fast Operation of Determining the Sign of a Number in RNS Using the

Akushsky Core Function. Computation 2023, 11, 124. [CrossRef]
2. Babenko, M.; Tchernykh, A.; Pulido-Gaytan, B.; Avetisyan, A.; Nesmachnow, S.; Wang, X.; Granelli, F. Towards the Sign Function

Best Approximation for Secure Outsourced Computations and Control. Mathematics 2022, 10, 2006. [CrossRef]
3. Tchernykh, A.; Babenko, M.; Avetisyan, A.; Drozdov, A.Y. En-AR-PRNS: Entropy-Based Reliability for Configurable and Scalable

Distributed Storage Systems. Mathematics 2021, 10, 84. [CrossRef]
4. Babenko, M.; Golimblevskaia, E. About One Property of Number Rank in RNS. In Proceedings of the 2021 IEEE Conference of

Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, 26–29 January 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 212–216.

5. Anawar, M.R.; Wang, S.; Azam Zia, M.; Jadoon, A.K.; Akram, U.; Raza, S. Fog Computing: An Overview of Big IoT Data Analytics.
Wirel. Commun. Mob. Comput. 2018, 2018, 7157192. [CrossRef]

6. Deakin, M.; Al Waer, H. From Intelligent to Smart Cities. Intell. Build. Int. 2011, 3, 140–152. [CrossRef]
7. Ahmed, E.; Rehmani, M.H. Introduction to the Special Section on Social Collaborative Internet of Things. Comput. Electr. Eng.

2017, 58, 382–384. [CrossRef]
8. Challenges and Solutions in Fog Computing Orchestration|IEEE Journals & Magazine|IEEE Xplore. Available online: https://

ieeexplore.ieee.org/abstract/document/8121864?casa_token=emXdvLOG3pIAAAAA:tHZXQba5P9akxxpRNNeGqtImVtRWoU3
4WXvwqyzLZuf7_60-AEisOkB_lcgrWI92rxb5bTav72I0yA (accessed on 10 July 2023).

9. Hoque, S.; De Brito, M.S.; Willner, A.; Keil, O.; Magedanz, T. Towards Container Orchestration in Fog Computing Infrastructures.
In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Torino, Italy, 4–8
July 2017; Volume 2, pp. 294–299.

10. Costa, B.; Bachiega Jr, J.; de Carvalho, L.R.; Araujo, A.P. Orchestration in Fog Computing: A Comprehensive Survey. ACM
Comput. Surv. (CSUR) 2022, 55, 1–34. [CrossRef]

11. Chandak, A.; Ray, N.K. A Review of Load Balancing in Fog Computing. In Proceedings of the 2019 International Conference on
Information Technology (ICIT), Odisha, India, 19–21 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 460–465.

12. Kashani, M.H.; Ahmadzadeh, A.; Mahdipour, E. Load Balancing Mechanisms in Fog Computing: A Systematic Review. arXiv
2020, arXiv:2011.14706.

13. Kashani, M.H.; Mahdipour, E. Load Balancing Algorithms in Fog Computing. IEEE Trans. Serv. Comput. 2022, 16, 1505–1521.
[CrossRef]

14. Ningning, S.; Chao, G.; Xingshuo, A.; Qiang, Z. Fog Computing Dynamic Load Balancing Mechanism Based on Graph Reparti-
tioning. China Commun. 2016, 13, 156–164. [CrossRef]

15. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart
Factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [CrossRef]

16. Garner, H.L. The Residue Number System. In Proceedings of the Papers presented at the the March 3–5, 1959, western joint
computer conference, San Francisco, CA, USA, 3–5 March 1959; pp. 146–153.

17. Pei, D.; Salomaa, A.; Ding, C. Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography; World Scientific:
Singapore, 1996.

18. Akushsky, I.Y.; Yuditsky, D.I. Machine Arithmetic in Residue Classes; Sov. Radio; Sov. Radio: Moscow, Russis, 1968.
19. Akushsky, I.Y.; Akushsky, V.M.; Pak, I.T. About the New Positional Characteristic of the Non-Positional Code and Its Application.

In Theory of Coding and Optimization of Complex Systems; Alma-Ata: Nauka, Kazakhstan, 1977; pp. 8–16.
20. Akushsky, I.Y.; Burtsev, V.M.; Park, N.T. Calculation of Positional Characteristics (Kernel) of Non-Positional Code. In Theory of

Coding and Optimization of Complex Systems; Alma-Ata: Nauka, Kazakhstan, 1977; pp. 17–25.
21. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: Berlin/Heidelberg, Germany, 1993; Volume 107.
22. Akushsky, I.Y.; Yuditsky, D.I. Weak Position System. Quest. Spec. Electron. Ser. Microelectron. 1967, 7, 10–17.
23. Shmelev, V.E. Principles of Non-Redundant Polynomial Digital Coding of Measurement Information. In Science, Education,

Innovation: Topical Issues and Modern Aspects; 2021; pp. 88–90.
24. Miller, D.D.; Altschul, R.E.; King, J.R.; Polky, J.N. Analysis of the Residue Class Core Function of Akushskii, Burcev, and Pak. In

Residue Number System Arithmetic: Modern Applications in Digital Signal Processing; Association for Computing Machinery: New
York, NY, USA, 1986; pp. 390–401.

25. Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef] [PubMed]
26. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings of

the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 3–7
December 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 409–437.

https://doi.org/10.3390/computation11070124
https://doi.org/10.3390/math10122006
https://doi.org/10.3390/math10010084
https://doi.org/10.1155/2018/7157192
https://doi.org/10.1080/17508975.2011.586671
https://doi.org/10.1016/j.compeleceng.2017.04.023
https://ieeexplore.ieee.org/abstract/document/8121864?casa_token=emXdvLOG3pIAAAAA:tHZXQba5P9akxxpRNNeGqtImVtRWoU34WXvwqyzLZuf7_60-AEisOkB_lcgrWI92rxb5bTav72I0yA
https://ieeexplore.ieee.org/abstract/document/8121864?casa_token=emXdvLOG3pIAAAAA:tHZXQba5P9akxxpRNNeGqtImVtRWoU34WXvwqyzLZuf7_60-AEisOkB_lcgrWI92rxb5bTav72I0yA
https://ieeexplore.ieee.org/abstract/document/8121864?casa_token=emXdvLOG3pIAAAAA:tHZXQba5P9akxxpRNNeGqtImVtRWoU34WXvwqyzLZuf7_60-AEisOkB_lcgrWI92rxb5bTav72I0yA
https://doi.org/10.1145/3486221
https://doi.org/10.1109/TSC.2022.3174475
https://doi.org/10.1109/CC.2016.7445510
https://doi.org/10.1109/TII.2018.2818932
https://doi.org/10.1080/01621459.1949.10483310
https://www.ncbi.nlm.nih.gov/pubmed/18139350

Appl. Sci. 2023, 13, 10495 15 of 15

27. Al Badawi, A.; Polyakov, Y.; Aung, K.M.M.; Veeravalli, B.; Rohloff, K. Implementation and Performance Evaluation of RNS
Variants of the BFV Homomorphic Encryption Scheme. IEEE Trans. Emerg. Top. Comput. 2021, 9, 941–956. [CrossRef]

28. Gomathisankaran, M.; Tyagi, A.; Namuduri, K. HORNS: A Homomorphic Encryption Scheme for Cloud Computing Using
Residue Number System. In Proceedings of the 2011 45th Annual Conference on Information Sciences and Systems, Baltimore,
MA, USA, 23–25 March 2011; pp. 1–5.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TETC.2019.2902799

	Introduction
	About the Residue Number System and Akushsky Core Function
	A Probabilistic Approach to Determining the Optimal Weight of the Akushsky Core Function
	Method for Determining Optimal Weights
	Conclusions
	References

