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Abstract: Genome-wide association studies (GWAS) have identified genetic markers associated
with type 2 diabetes mellitus (T2DM). Additionally, tissue-specific expression quantitative trait loci
(eQTL) studies have revealed regulatory elements influencing gene expression in specific tissues. We
performed enrichment analyses using spatial eGenes corresponding to known T2DM GWAS signals
to uncover T2DM pathological pathways. T2DM GWAS signals were obtained from the GWAS
Catalog, and spatial eQTL data from T2DM-associated tissues, including visceral adipose tissue, liver,
skeletal muscle, and pancreas, were sourced from the Genotype-Tissue Expression Consortium. The
eGenes were enriched in Kyoto Encyclopedia of Genes and Genomes biological pathways using the
Benjamini–Hochberg method. Colocalization analysis of 2857 independent T2DM GWAS signals
identified 556 eGenes in visceral adipose tissue, 176 in liver, 715 in skeletal muscle, and 384 in pancreas
(PFDR < 0.05 where PFDR is the false discovery rate). These eGenes showed enrichment in various
pathways (PBH < 0.05 where PBH is the corrected P for the Benjamini–Hochberg multiple testing),
especially the lysosomal pathway in pancreatic tissue. Unlike the mTOR pathway in T2DM autophagy
dysregulation, the role of lysosomes remains poorly understood. The enrichment analysis of spatial
eGenes associated with T2DM GWAS signals highlights the importance of the lysosomal pathway
in autophagic termination. Thus, investigating the processes involving autophagic termination
associated with lysosomes is a priority for understanding T2DM pathogenesis.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that can significantly
impact daily life and result in severe complications. It is characterized by elevated levels
of plasma glucose due to impaired glucose metabolism, insulin resistance, and impaired
insulin secretion. The dysregulation of glucose homeostasis, leading to T2DM, can be
attributed to various mechanisms such as reduced peripheral glucose uptake in muscles,
cytokine secretion in adipose tissue, increased glucose production in the liver, impaired
insulin secretion in the pancreas, and neuroendocrine regulation by the central nervous
system [1]. Hyperglycemia, a hallmark of T2DM, can lead to the overproduction of reactive
oxygen species (ROS), causing oxidative stress and redox imbalance, which is a major
contributor to the etiology of T2DM [2].

Extensive research efforts have been directed towards understanding the genetic sus-
ceptibility to T2DM. In particular, genome-wide association studies (GWAS) have been
extensively conducted over the past 15 years, moving away from the limited scope of link-
age analysis that only identified genetic variants segregating within families. These GWAS
studies have made significant contributions to the identification of common genetic factors
associated with T2DM. The findings from these studies provide valuable insights into the
pathological pathways involved in the development of T2DM. For instance, rs13266634,
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previously identified in studies by Sladek et al. [3], Zeggini et al. [4], and Scott et al. [5],
is an exonic variant of SLC30A8. This variant creates an R to W missense mutation at
position 325 in the β-cell zinc transporter ZnT-8, which plays a crucial role in the final
biosynthetic pathway of insulin production and secretion [6,7]. However, the precise
contributions of many GWAS signals to T2DM susceptibility remain unclear, as they are
often located in intergenic regions, and their target genes are assigned physically close
to these signals. To address this challenge, researchers have explored expression quan-
titative trait loci (eQTLs) and their corresponding target genes (eGenes). An example of
this approach is the identification of 33 eGenes through the integration of 143 meta-GWAS
signals with gene expression data from blood samples [8]. Nonetheless, our understand-
ing of the functional roles of eGenes remains limited, as their association with T2DM
does not necessarily indicate that a particular tissue is implicated in T2DM development.
Recent eQTL studies have focused on tissue-specific eQTL-eGene associations. For in-
stance, a study examining eQTLs specific to skeletal muscle revealed an eQTL (rs4547172;
p < 1.96 × 10−5) of PFKM, a critical regulatory enzyme of glycolysis [9]. This eQTL was
found to be in linkage with a T2DM GWAS signal (rs11168327; p = 2.7 × 10−3) identified
by the DIAGRAM consortium [10]. Furthermore, based on the additional association of
this eQTL with glucose uptake in skeletal muscle (p = 0.016), PFKM has been proposed as a
potential factor involved in the regulation of insulin sensitivity in skeletal muscle cells. An-
other association study of T2DM with genes encoding glutathione-metabolizing enzymes
(GSS and GGT7) identified nucleotide variants (rs13041792, rs6119534, and rs11546155;
p < 0.05) in linkage to eQTLs associated (p < 0.05) with the pancreatic expression of genes
(MAP1LC3A, EDEM2, MYH7B, and CPNE1) involved in the unfolded protein response
pathway [11]. This study suggests a hypothesis that glutathione deficiency may contribute
to misfolded proinsulin, leading to apoptosis of pancreatic beta cells. Other tissue-specific
eQTL studies have indicated additional etiological factors in T2DM, such as metabolic
stress-induced beta cell dysfunction [12] and mitochondrial dysfunction in adipose tis-
sue [13]. The objective of this study was to identify spatial eGenes associated with T2DM
GWAS signals and conduct enrichment analysis on these eGenes to uncover pathological
pathways potentially contributing to the development of T2DM.

2. Materials and Methods
2.1. Colocalization Analysis

To examine the colocalization of single nucleotide variants associated with T2DM
susceptibility in GWAS, we analyzed their relationship with spatial eQTLs in visceral
adipose tissue, liver, skeletal muscle, and pancreas. These tissues were selected because
T2DM is primarily caused by insulin resistance in visceral adipose tissue, liver, and skeletal
muscle, followed by impaired insulin secretion by pancreatic β-cells to overcome the insulin
resistance [14]. GWAS signals were obtained from the National Human Genome Research
Institute-European Bioinformatics Institute GWAS Catalog (https://www.ebi.ac.uk/gwas;
accessed on 10 June 2021). The GWAS signals analyzed in this study have shown sug-
gestive associations with the significance threshold of p-value = 1 × 10−5 empirically
estimated for GWAS by Hindorff et al. [15]. The experimental factor ontology identifier of
T2DM used in the current study was MONDO_0005148. Only independent signals were
selected for colocalization. The colocalization for the T2DM GWAS signals was found when
the representative nucleotide variant within each signal was matched or strongly linked
(r2 > 0.95) to any eQTL provided by the Genotype-Tissue Expression (GTEx) Consor-
tium [16]. A file including summary statistics for eQTL-eGene associations was down-
loaded for each tissue (v8; https://gtexportal.org; accessed on 20 June 2021). The summary
statistics were estimated by the FastQTL [17], a linear regression program to find the best
nominal association between gene expression levels and genotypes. Of course, the gene
expression levels were preliminary filtered and normalized by the consortium (for details,
see the article by the GTEx Consortium [16]). Statistical significance for colocalization in
the current study was determined by 5% false discovery rate (PFDR) per tissue.

https://www.ebi.ac.uk/gwas
https://gtexportal.org
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2.2. Enrichment Analysis

We investigated the enrichment of eGenes identified from the colocalization analysis
with T2DM GWAS signals in each of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) biological pathway terms using Enrichr (https://maayanlab.cloud/Enrichr; ac-
cessed on 15 July 2021) [18]. The KEGG pathways included genetic and environmental
information processes, cellular processes, metabolism, organismal systems, human dis-
eases, and drug development. Enrichment analyses were conducted with eGenes specific
to each tissue, and further with eGenes shared by two or more tissues. The significance
threshold for enrichment was set at PBH = 0.05 where PBH is the p-value adjusted for the
Benjamini–Hochberg multiple testing.

This study was exempt from IRB review because we used publicly available population-
based secondary data and subjects could not be identified.

3. Results
3.1. Colocalization Analysis

In the GWAS Catalog, we identified a total of 4049 genetic associations of single
nucleotide variants with T2DM susceptibility (p < 10−5). After excluding duplicates,
2857 unique GWAS signals remained. All available GWAS signal-eQTL pairs were searched
to see if they were colocalized. This colocalization analysis revealed 556 eGenes for visceral
adipose tissue, 176 eGenes for the liver, 715 eGenes for skeletal muscle, and 384 eGenes for
the pancreas (PFDR < 0.05; Figure 1). The numbers of eGenes shared by multiple tissues are
also presented in Figure 1.
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3.2. Enrichment Analysis

Enrichment analysis showed that these eGenes were significantly enriched in 12 path-
ways for visceral adipose tissue, 18 pathways for the liver, 22 pathways for skeletal muscle,
and 20 pathways for the pancreas (PBH < 0.05; Supplementary Tables S1–S4). None of these
enriched pathways were identified when analyzing the mapped genes physically close
to T2DM GWAS signals (Supplementary Table S5). Except for major histocompatibility
complex (MHC)-related pathways, only two pathways were found to be enriched: ‘lyso-
some’ for the pancreas and ‘other glycan degradation’ for skeletal muscle. Subsequent
enrichment analysis was performed to investigate whether the eGenes shared by multiple
tissues were enriched in these two pathways (Tables 1 and 2). In particular, the eGenes
shared by the the pancreas and skeletal muscle showed the largest enrichment in the term
‘lysosome’ (PBH = 1.1 × 10−3).

Table 1. Enrichment of ‘lysosome’-related eGenes resulted from T2DM GWAS signals.

Tissue a
eGenes Relevant to Lysosome p-Value c

Name No b Raw Adjusted d

A GGA3, NPC1, IDUA, HYAL3, CTSH,
CTSW, AP3S2, AP3B2 8 2.9 × 10−2 3.2 × 10−1

L CTSH, AP3S2, ABCB9 3 1.0 × 10−1 4.3 × 10−1

M
NPC1, IDUA, CTSZ, HYAL3, GBA,
CTSH, ACP2, AP3S2, DNASE2,
ABCB9, AP3B2

11 6.2 × 10−3 7.1 × 10−2

P NPC1, IDUA, HYAL3, GBA, CTSH,
AP3S2, ABCB9, AP3B2 8 3.3 × 10−3 4.0 × 10−2

AL CTSH, AP3S2 2 1.7 × 10−1 4.1 × 10−1

AM NPC1, IDUA, HYAL3, CTSH, AP3S2,
AP3B2 6 1.7 × 10−2 1.2 × 10−1

AP NPC1, IDUA, HYAL3, CTSH, AP3S2,
AP3B2 6 2.9 × 10−3 1.8 × 10−2

LM CTSH, AP3S2, ABCB9 3 3.0 × 10−2 8.9 × 10−2

LP CTSH, AP3S2, ABCB9 3 3.5 × 10−2 1.1 × 10−1

MP NPC1, IDUA, HYAL3, GBA, CTSH,
AP3S2, ABCB9, AP3B2 8 8.4 × 10−5 1.1 × 10−3

ALM CTSH, AP3S2 2 1.2 × 10−1 2.5 × 10−1

ALP CTSH, AP3S2 2 1.2 × 10−1 2.7 × 10−1

AMP NPC1, IDUA, HYAL3, CTSH, AP3S2,
AP3B2 6 8.5 × 10−4 4.7 × 10−3

LMP CTSH, AP3S2, ABCB9 3 1.9 × 10−2 5.1 × 10−2

ALMP CTSH, AP3S2 2 9.9 × 10−2 2.0 × 10−1

a Two or more letters indicate that enrichment was analyzed using eGenes shared by tissues. A: visceral adipose
tissue; L: liver; M: skeletal muscle; P: pancreas. b There was a total of 128 lysosome-related genes in the KEGG
pathway. c Significance with p < 0.05 is presented in bold. d Adjusted p-values were obtained using the Benjamini–
Hochberg method to correct for multiple testing.

Table 2. Enrichment of ‘other glycan degradation’-related eGenes resulted from T2DM GWAS signals.

Tissue a
eGenes Relevant to Other Glycan

Degradation p-Value c

Name No b Raw Adjusted d

A MAN2C1, GBA2 2 9.1 × 10−2 8.0 × 10−1

L MAN2C1 1 1.5 × 10−1 5.7 × 10−1
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Table 2. Cont.

Tissue a
eGenes Relevant to Other Glycan

Degradation p-Value c

Name No b Raw Adjusted d

M NEU3, GBA, MAN2C1, GBA2 4 3.0 × 10−3 4.2 × 10−2

P GBA, MAN2C1, GBA2 3 4.6 × 10−3 5.0 × 10−2

AL MAN2C1 1 1.0 × 10−1 2.9 × 10−1

AM MAN2C1, GBA2 2 3.3 × 10−2 2.1 × 10−1

AP MAN2C1, GBA2 2 1.6 × 10−2 9.3 × 10−2

LM MAN2C1 1 9.0 × 10−2 2.4 × 10−1

LP MAN2C1 1 9.6 × 10−2 2.7 × 10−1

MP GBA, MAN2C1, GBA2 3 9.4 × 10−4 7.7 × 10−3

ALM MAN2C1 1 7.2 × 10−2 1.5 × 10−1

ALP MAN2C1 1 8.1 × 10−2 2.0 × 10−1

AMP MAN2C1, GBA2 2 1.0 × 10−2 5.1 × 10−2

LMP MAN2C1 1 7.6 × 10−2 1.8 × 10−1

ALMP MAN2C1 1 7.2 × 10−2 1.5 × 10−1

a Two or more letters indicate that enrichment was analyzed using eGenes shared by tissues. A: visceral adipose
tissue; L: liver; M: skeletal muscle; P: pancreas. b There was a total of 18 other glycan degradation-related genes in
the KEGG pathway. c Significance with p < 0.05 is presented in bold. d Adjusted p-values were obtained using the
Benjamini–Hochberg method to correct for multiple testing.

4. Discussion
4.1. Identification of Pathways with eGenes

This study identified a total of 556 eGenes associated with visceral adipose tissue,
176 eGenes associated with the liver, 715 eGenes associated with skeletal muscle, and 384
eGenes associated with the pancreas, all of which were linked to 2857 independent T2DM
GWAS signals. Furthermore, these eGenes were found to be enriched in 12 KEGG pathways
for visceral adipose tissue, 18 pathways for the liver, 22 pathways for skeletal muscle, and
20 pathways for the pancreas. Importantly, these pathways were novel findings that were
not identified when analyzing the mapped genes physically close to T2DM GWAS signals.

4.2. Lysosomal Pathway

Notably, after excluding MHC-related pathways, which may have spurious signifi-
cance due to strong linkage, only two significant pathways remained: ‘lysosome’ for the
pancreas and ‘other glycan degradation’ for skeletal muscle. The ‘lysosome’ pathway plays
a critical role in various cellular processes, including apoptotic cell death, intracellular
pathogen killing, antigen presentation, plasma membrane repair, cell adhesion and migra-
tion, energy metabolism, tumor invasion and metastasis, metabolic signaling, and gene
regulation. Most importantly, lysosomes are responsible for the degradation of cellular
waste materials through autophagy and endocytosis. The dysregulation of autophagy in
pancreatic beta cells has been extensively studied in the context of T2DM pathogenesis.
Studies have shown that Zucker diabetic fatty rats exhibit ubiquitinated protein aggregates
in pancreatic beta cells during hyperglycemia [19]. Additionally, knockout mice for the
autophagy gene Atg7 showed reduced beta cell numbers, impaired glucose tolerance, and
decreased insulin secretion [20]. The present study suggests that the pathogenic mecha-
nism of T2DM may involve a failure of the autophagic termination process associated with
lysosomes. This finding aligns with previous studies that have observed the accumulation
of autophagosomes in pancreatic beta cells in T2DM, which is associated with impaired
insulin secretion and beta cell apoptosis [20–22]. While the activation of the mTOR sig-
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naling pathway has received significant attention in the dysregulation of autophagy in
T2DM [23,24], other mechanisms underlying the dysregulation of autophagy in T2DM
remain unclear. This study highlights the importance of investigating the failure of the
autophagic termination process associated with lysosomes as a priority for understand-
ing the pathogenesis of T2DM. Understanding how lysosomal dysfunction contributes
to T2DM would lead to better diagnostic tools and strategies for early detection of the
disease. Moreover, it is necessary to discover specific genetic factors, proteins, and signaling
pathways involved in lysosomal function, which may have significant clinical implications
in prevention, diagnosis, and treatment of T2DM in the future.

4.3. eGenes for Lysosomal Pathway

The eGenes shared by skeletal muscle and pancreas exhibited the most significant
enrichment in the analysis (p = 8.4 × 10−5). These eGenes encode NPC1, IDUA, HYAL3,
GBA, CTSH, AP3S2, ABCB9, and AP3B2. There is suspicion of potential pathogenic mech-
anisms related to lysosomal dysfunction that link some of these eGenes to T2DM. For
instance, NPC1, which is located in the lysosomal membrane, is responsible for transport-
ing low-density lipoproteins from the late lysosomal interior to the cytoplasm. Mutations
in this gene, such as rs80358259 (Ile1061Thr), lead to Niemann-Pick type C disease, a
neurodegenerative lysosomal disorder characterized by disrupted lipid metabolism and
the accumulation of cholesterol and glycosphingolipids in the lysosomes of the brain, lungs,
liver, and spleen [25]. Moreover, common exonic variants in NPC1, rs1805082 (Ile858Val)
and rs1788799 (Met642Ile), which encode its major structural domains, have shown as-
sociations with susceptibility to T2DM as well as obesity (p < 0.05) [10]. GBA, another
lysosomal membrane protein, cleaves the beta-glucosidic linkage of glycosylceramide.
Mutations in this gene can cause Gaucher disease, characterized by the accumulation of
glucocerebrosides in lysosomes [26]. CTSH is a cysteine cathepsin that plays a critical role
in the degradation of lysosomal proteins. IDUA and HYAL3 are involved in the lysosomal
degradation of glycosaminoglycans. However, the functions of AP3S2, ABCB9, and AP3B2
have not been well determined.

5. Conclusions

In conclusion, our findings demonstrate that spatial eGenes associated with T2DM
GWAS signals are enriched in the lysosomal pathway. This highlights the autophagic termi-
nation process related to lysosomes as a potential pathogenic mechanism underlying T2DM.
Some eGenes, including NPC1, IDUA, HYAL3, GBA, and CTSH, which contribute to this
enrichment, have the potential to contribute to lysosomal dysfunction-based pathogenic
mechanisms in T2DM. Although this study is based on T2DM GWAS signals, the lysoso-
mal pathway was inferred from the eGenes associated with genetic variation in normal
individuals. Differential eGene expression between T2DM patients and controls would
confirm the target genetic risk factors for T2DM susceptibility suggested in this study. To
gain a deeper understanding of the pathology and genetic etiology of T2DM, further exper-
imental studies are required to elucidate the underlying mechanisms that link eGene-based
lysosomal dysfunction to susceptibility to T2DM.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app131810447/s1, Table S1: Significant KEGG terms resulted
from the enrichment analysis with eGenes of visceral adipose tissue; Table S2: Significant KEGG
terms resulted from the enrichment analysis with eGenes of liver; Table S3: Significant KEGG terms
resulted from the enrichment analysis with eGenes of skeletal muscle; Table S4: Significant KEGG
terms resulted from the enrichment analysis with eGenes of pancreas; Table S5: Significant KEGG
term resulted from the enrichment analysis with mapped genes of T2D GWAS signals.
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