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Abstract: The detection and accurate positioning of agricultural pests and diseases can significantly
improve the effectiveness of disease and pest control and reduce the cost of prevention and control,
which has become an urgent need for crop production. Aiming at the low precision of maize leaf
pest and disease detection, a new model of maize leaf pest and disease detection using attention
mechanism and multi-scale features was proposed. Our model combines a convolutional block
attention module (CBAM) with the ResNet50 backbone network to suppress complex background
interference and enhance feature expression in specific regions of the maize leaf images. We also
design a multi-scale feature fusion module that aggregates local and global information at different
scales, improving the detection performance for objects of varying sizes. This module reduces the
number of parameters and enhances efficiency by using a lightweight module and replacing the
deconvolutional layer. Experimental results on a natural environment dataset demonstrate that our
proposed model achieves an average detection accuracy of 85.13%, which is 9.59% higher than the
original CenterNet model. The model has 24.296 M parameters and a detection speed of 23.69 f/s.
Compared with other popular models such as SSD-VGG, YOLOv5, Faster-RCNN, and Efficientdet-D0,
our proposed model demonstrates superior performance in the fast and accurate detection of maize
leaf pests and diseases. This model has practical applications in the identification and treatment of
maize pests and diseases in the field, and it can provide technical support for precision pesticide
application. The trained model can be deployed to a web client for user convenience.

Keywords: maize leaf; disease and pest detection; CenterNet; multi-scale feature fusion; convolution
attention module

1. Introduction

Maize, one of China’s most important food crops and industrial raw materials, was
cultivated on 43,070 thousand hectares in 2022, which was 1.37 times larger than rice
and 1.72 times larger than wheat. However, the growth of maize is often hindered by
pests and diseases, posing a significant challenge for farmers [1]. The misuse of pesticides
not only affects crop quality and yield but also leads to excessive residue in agricultural
products and environmental pollution, posing a threat to the sustainable development of
agriculture [2]. Common maize leaf diseases include northern leaf blight (NLB), northern
leaf spot (NLS), and grey leaf spot (GLS) [3], as well as pests such as maize borers, aphids,
red spiders, armyworms, and peach borers. These diseases and pests have a severe impact
on maize production [4].

With the advancement of artificial intelligence, there has been a growing interest
in utilizing deep learning techniques for crop pest detection [5]. Xie et al. [6] proposed
a grape leaf disease detection model based on a modified Faster R-CNN, achieving an
average accuracy of 81.1% and a detection speed of 15.01 f/s. Liu et al. [7] improved
the YOLOv3 algorithm to detect tomato pests and diseases with a detection accuracy of
92.39 percent. Richey et al. [8] enhanced the YOLOv4 algorithm to detect northern leaf
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blight in maize, achieving an average detection accuracy of 93.55% for this particular disease.
Sun [9] proposed the MEAN-SSD algorithm based on the improved SSD algorithm for
detecting apple leaf disease, with an average detection accuracy of 83.12%. Yang et al. [10]
developed a maize stamen detection model by improving the CenterNet algorithm to
realize maize growth monitoring and yield estimation, achieving a recognition accuracy of
92.4%. However, the CenterNet model had some instances of missing dense targets.

While Faster R-CNN and other two-stage methods exhibit high detection accuracy,
they are computationally intensive and may not meet real-time requirements. On the other
hand, one-stage algorithms like YOLO directly take the image as input and learn pixel-
level features, but they often suffer from a high false detection rate, misclassifying some
background areas as targets. Additionally, most of the leaf image datasets used in research
are captured in laboratory environments with relatively simple backgrounds, which differ
significantly from the complex backgrounds found in real environments, including various
soils, vegetation, stones, and weeds. These varying background factors can interfere with
plant disease detection and affect algorithm performance.

To address these issues, this paper proposes an improved maize leaf disease and pest
detection model based on the CenterNet target detection algorithm. The model focuses on
several common maize leaf diseases and pests in natural environments, including three
diseases and five pests. Experimental comparisons with other detection algorithms are
conducted to verify the effectiveness of the proposed method. Furthermore, the model is
deployed on a web platform to provide farmers with a more convenient user experience.

2. Materials and Methods
2.1. Dataset

In this study, a total of 2775 images of maize leaf pests and disease were collected,
including 724 disease images and 2051 insect pest images. The disease images included
three categories of diseases: northern leaf blight (NLB), northern leaf spot (NLS), and grey
leaf spot (GLS). The insect pest images included five types of pests: maize borer, aphid, red
spider, armyworm, and peach borer. Figure 1 provides example images for various pests
and diseases.
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The dataset was annotated using the LabelImg image annotation tool, which generates
an XML file containing object information that is saved in PASCAL VOC format along
with the corresponding image file. The dataset was divided into an 80% training set, a
10% verification set, and a 10% test set. The original image was cropped and scaled by
affine transformation to 512 × 512 pixels as input to the model. The distribution of the data
samples is presented in Table 1.

Table 1. Data samples with the same statistics.

Pest and Disease Name Sample Size

Northern leaf blight 249
Northern leaf spot 213

Gray leaf spot 262
Maize borer 424

Aphids 879
Red spider 160
Armyworm 206
Peach borer 382

Total sample size 2775

CenterNet model is an anchor-free box detection algorithm proposed by ZHOU
et al. [11], which takes the object as a key point to estimate and then returns to other object
attributes. First, the CenterNet model generates a feature map of the input RGB image
through a feature extraction network and then sends the feature map to a detection network.
The detection network consists of three branches that predict the heatmap of the object, the
offset of the center point, and the width and height of the object.

2.2. Proposed Improve Centernet Model

CenterNet network adopts the “encoder–decoder” structure. After 32 times down-
sampling of the model, the feature layer of high-level semantic information is obtained via
deconvolution for object detection. However, this model does not consider the detection
ability of multi-scale objects, and the detection ability of small objects is weak. In the process
of feature extraction, multiple downsampling will cause the feature aggregation of small
objects, leading to the problem of missing detection and wrong detection. Additionally, the
different object types of maize leaf pests and diseases, as well as the variation in object size,
create a significant increase in detection difficulty, given the small and dense characteristics
of these objects.

To address these issues, we propose a maize leaf pest and disease detection model
based on the CenterNet algorithm. As shown in Figure 2, the model consists of three main
parts: backbone network, neck network and detection network. The backbone network uses
ResNet50 to extract features and embeds the convolutional attention module (CBAM) in the
second to fourth layers, which helps to learn the distribution law of features and improve
the weights of semantic and location features for pests and diseases. The neck network uses
multi-scale feature fusion module (MFF) to replace the deconvolutional layer of the original
model. The module fuses the input feature maps using a weighted bidirectional feature
fusion network and balances the contributions of feature maps with different resolutions in
the output by adding additional weights. Finally, the feature maps at different scales are
concatenated and fused with each other and fed into the detection network.

By improving the CenterNet model, the maize leaf pest detection model is able to
better detect small objects, as well as improve detection efficiency and accuracy.
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2.2.1. Convolutional Block Attention Module

To enhance feature expression in specific regions of the image, the attention module
CBAM [12] is embedded in the backbone network. This module is a lightweight universal
module that can be easily embedded into the network model and has little effect on the
parameter scale of the model. The structure of the CBAM module is illustrated in Figure 3.
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The channel attention mechanism module is introduced to enhance the attention to
object features. The calculation is performed as per Equation (1):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(1)

where F is the input feature map, Mc(F) channel attention output weight, W0 and W1 are
the weight matrix of the first and second fully connected layer, MLP is the shared fully
connected layer, σ is the Sigmoid operation, and Fs

avg and Fs
avg are the feature maps after

average pooling and maximum pooling on the channel.
By introducing the spatial attention mechanism module, the location information of

which is found clustered the most in the direction of the channel as a way of focusing on
the location information of the object, the calculation is performed as per Equation (2):

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))
= σ( f 7×7([Fs

avg; Fs
max]))

(2)

where F is the input feature map, Ms(F) is the output weight of spatial attention, Fc
avg and

Fc
max are the spatial feature map after average pooling and maximum pooling, and f 7×7 is

the convolution operation with a convolution kernel size of 7 × 7.
As shown in Figure 4a of the backbone network, the process of downsampling will

reduce the model’s ability to extract object features, thus reducing the detection accuracy.
To solve this problem, this paper embedded the CBAM module in the backbone network
and added it after each Conv block from Layer 2 to Layer 4, as shown in Figure 4b. In
this way, the detection model can capture key information more efficiently, improve the
weight of features related to pests and diseases, improve the effectiveness of features, and
improve classification accuracy by establishing interdependencies between convolutional
feature channels. In addition, CBAM module can effectively compensate for the small object
information lost via multiple convolution operations, and it can improve the sensitivity of
the model to small pests and diseases.
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2.2.2. Multi-Scale Feature Fusion Module

After many convolution and pooling operations, the features of small-sized pests and
diseases become blurred and difficult to extract. Even these features may get deformed
and lost. In the object detection task, to improve the detection ability of multi-scale objects,
a common method is to fuse the shallow features and deep features together. However,
direct fusion of features reduces the capacity of multi-scale representation. Furthermore,
the predictions between layers are independent of each other, making it easy to ignore
some important features.

To solve these problems, Liu et al. proposed a bidirectional feature fusion network
called PANet [13]. PANet achieves bidirectional convergence by introducing bottom-up
connectivity. As shown in Figure 5, there are some nodes in PANet with only input edges,
which do not contribute much to the performance of the network, and they add additional
parameters and computations.
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A weighted bidirectional feature fusion module (MFF) is proposed in this paper.
First, the MFF module removes nodes with only input edges and the last node in layer 6.
These nodes only pass input features without feature fusion, which contributes little to the
network performance and increases the number of parameters. Second, the MFF module
adds skip connections to establish connections between inputs and outputs at the same
scale layer, both to avoid excessive computational costs and to better fuse features. Since
input features with different resolutions contribute differently to the output, additional
weights are added for each input feature to learn their importance in the output. A fast
normalization fusion method with weights is adopted. Finally, the four feature maps with
different resolutions are aggregated into high-resolution output through up-sampling and
other operations to summarize multi-scale local information and global information to
improve the performance of object detection.

O = ∑
i

wi
ε + ∑

j
wj
•Ii (3)

where O is the output value of the node, Ii is the input value from node I, wi and wj are
the input weights of the corresponding nodes. A small quantity ε is guaranteed to be
numerically stable, ε = 0.0001.

The structure of the MFF module is shown in Figure 6.
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First, C4 is downsampled to generate C5 and C6. Then, each node is appended with
weights for fast normalized feature fusion. Taking the third layer as an example, PIN

3 is
the input of the third layer, Ptd

3 is the intermediate node of the third layer, and Pout
3 is the

output of the third layer with weight fusion.
The intermediate node features are calculated as shown in Equation (4).

Ptd
3 = Conv(

ω1•PIN
3 + ω2•Resize(Ptd

4 )

ω1 + ω2 + ε
) (4)

where Conv is the convolution operation, Resize is the size scaling operation, and ω1 and
ω2 are the learnable weights of the corresponding node inputs.

The output node features with weight fusion are calculated as in (5).

Pout
3 = Conv(

ω1
′•PIN

3 + ω2
′•Ptd

3 + ω3
′•Resize(Pout

2 )

ω1
′ + ω2′ + ω3′ + ε

) (5)

where ω1
′, ω2

′, and ω3
′ are the learnable weights entered by the corresponding node.

After fast normalization fusion with weights, four layers of features with different
resolutions are obtained. These features are then adjusted to the same resolution and fused
into one feature.

3. Experimental Results and Analysis
3.1. Experimental Environment Configuration and Evaluation Metrics

The experimental environment configurations are listed in Table 2.

Table 2. Experimental environment configuration.

Parametric Configure

Operation System Ubuntu18.04
CPU Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50 GHz
GPU NVIDIA GeForce RTX 2080 Ti

Graphics Card Memory 11 GB
Programming Language Python3.8

Graphics Acceleration Environment CUDA 11.3, cuDNN 8
Deep Learning Framework Pytorch 1.11.0, torchvision 0.12.0

Indices used to evaluate the detection effect of multiple object categories include the
mean average precision (mAP) and the average precision (AP) for each category. The AP is
determined by the Recall rate (R) and the Precision rate (P), and it is an intuitive standard
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for the model performance results of a single category. The F1 score takes into account both
the precision and recall of the model.

Recall is calculated using the equation:

R =
TP

TP + FN
× 100% (6)

Precision is calculated using the equation:

P =
TP

TP + FP
× 100% (7)

where TP is the number of correctly detected object objects, FN is the number of correctly
detected object objects, and FP is the number of incorrectly detected object objects.

The higher the AP and mAP scores, and the higher the FPS, the better the detection
performance and speed of the model. The F1 score is also a measure of model performance,
taking into account both precision and recall.

3.2. Experimental Results

To evaluate the performance of the proposed method in object detection, the model was
trained on the constructed dataset using the Adam optimizer with iterative training. The
initial learning rate was 5 × 10−4, and the learning rate was adjusted by cosine annealing
during training. The weights of the CenterNet-ResNet50 network pre-trained on Imagenet
were used to initialize the network parameters, and the entire network was trained for
200 epochs with transfer learning. The loss curves are shown in Figure 7. It can be seen
that the loss value decreased rapidly in the first ten cycles and then became basically
stable after 150 cycles of training, indicating that the model gradually learned the object
detection features.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 17 
 

is determined by the Recall rate (R) and the Precision rate (P), and it is an intuitive stand-
ard for the model performance results of a single category. The F1 score takes into account 
both the precision and recall of the model. 

Recall is calculated using the equation: 

P

P N

TR = 100%
T + F

×
 

(6) 

Precision is calculated using the equation: 

P

P P

TP = 100%
T + F

×
 

(7) 

where PT  is the number of correctly detected object objects, NF  is the number of cor-
rectly detected object objects, and PF  is the number of incorrectly detected object objects. 

The higher the AP and mAP scores, and the higher the FPS, the better the detection 
performance and speed of the model. The F1 score is also a measure of model perfor-
mance, taking into account both precision and recall. 

3.2. Experimental Results 
To evaluate the performance of the proposed method in object detection, the model 

was trained on the constructed dataset using the Adam optimizer with iterative training. 
The initial learning rate was 5 × 10−4, and the learning rate was adjusted by cosine anneal-
ing during training. The weights of the CenterNet-ResNet50 network pre-trained on 
Imagenet were used to initialize the network parameters, and the entire network was 
trained for 200 epochs with transfer learning. The loss curves are shown in Figure 7. It can 
be seen that the loss value decreased rapidly in the first ten cycles and then became basi-
cally stable after 150 cycles of training, indicating that the model gradually learned the 
object detection features. 

 
Figure 7. Model training loss curve. 

In the experiments of this paper, the test results of each class were evaluated, and the 
accuracy and average test time were calculated. According to the results shown in Table 
3, this research model demonstrates good performance in the detection of different object 
categories. Taking maize borer infestation as an example, the accuracy of the model 
reached 93.98%, which proves that the model can accurately identify maize borer infesta-
tion. For northern leaf blight (NLB) disease, a detection accuracy of 86.60% was obtained, 
indicating that the model is highly reliable in detecting this type of disease. 

  

Figure 7. Model training loss curve.

In the experiments of this paper, the test results of each class were evaluated, and the
accuracy and average test time were calculated. According to the results shown in Table 3,
this research model demonstrates good performance in the detection of different object
categories. Taking maize borer infestation as an example, the accuracy of the model reached
93.98%, which proves that the model can accurately identify maize borer infestation. For
northern leaf blight (NLB) disease, a detection accuracy of 86.60% was obtained, indicating
that the model is highly reliable in detecting this type of disease.
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Table 3. Model detection results in this paper.

Label Name AP (%) P (%) R (%) F1 Score

Maize borer 93.98 94.44 72.34 0.82
Army worm 91.50 92.31 75.00 0.83

NLB 86.60 89.55 64.52 0.75
Red spider 88.27 93.75 83.33 0.88
Peach borer 81.90 88.89 69.57 0.78

Aphids 87.69 90.60 67.95 0.78
NLS 76.35 96.25 24.06 0.39
GLS 74.73 93.75 25.62 0.40

Moreover, in terms of average detection time, the model in this paper takes only
0.025 s, indicating the fast processing capability of the model while efficiently detecting the
object. Therefore, the model is able to detect both diseases and pests with good results in
terms of speed and accuracy.

3.3. Analysis of Experimental Results
3.3.1. Ablation Experiment

To verify the performance of the attention module proposed in this paper, we selected
and compared the widely used SENet [14], ECA-Net [15], and SimAM [16] attention
modules with the CBAM module used in this paper. By embedding them into the CenterNet
backbone network, we obtained four models: CenterNet+SENet, CenterNet+ECA-Net,
CenterNet+SimAM, and CenterNet+CBAM.

As can be seen from the results in Table 4, the model in this paper has a higher
recall and can detect more pests and diseases than the other attention modules. The
average F1 score is also higher than that of the SENet, ECA-Net, and SimAM models, with
improvements of 0.11, 0.10, and 0.09, respectively. The CBAM module focuses on both
channel and spatial attention mechanisms, while SENet and ECA-Net focus on channel
direction only, and SimAM is a 3D attention module that differs from existing channel and
spatial attention modules.

Table 4. Comparison of results by different attention mechanisms.

Model P (%) R (%) F1 Score mAP (%)

CenterNet+SENet 96.17 43.39 0.58 78.27
CenterNet+ECA-Net 94.87 44.71 0.59 76.97
CenterNet+SimAM 96.98 48.10 0.60 77.51
CenterNet+CBAM 91.39 61.03 0.69 78.62

Compared with the CenterNet+SENet, CenterNet+SimAM and CenterNet+ECA-Net
models, the proposed model improves the mAP by 0.44%, 1.41%, and 2.1%, respectively.
This indicates that the CBAM module chosen in this paper can effectively calibrate the
channel and spatial features, thus improving the detection performance of the algorithm.

To further demonstrate the effectiveness of the modified module in the proposed algo-
rithm, ablation experiments were conducted to compare the performance of the following
four sets of models:

(1) In the existing CenterNet model, the backbone network is ResNet50, and the neck
network is the deconvolution network layer, hereinafter referred to as ResNet50+
deconvolution layer;

(2) The CBAM module is embedded in the backbone network of the original CenterNet
model, hereinafter referred to as ResNet50+CBAM+deconvolution layer;

(3) The backbone network is ResNet50, the new MFF module is added as the neck
network, and the deconvolution layer of the original CenterNet model is deleted,
hereinafter referred to as ResNet50+MFF;
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(4) The algorithm in this paper is based on (3) to embed the CBAM module in the
backbone network, hereinafter referred to as ResNet50+CBAM+MFF.

As can be seen from the results in Table 5, the addition of CBAM module and MFF
module significantly improves the model accuracy. Especially after adding the MFF module,
the mAP of the ResNet50+MFF model improved by 6.96% compared to the original model.
Moreover, the mAP of the ResNet50+CBAM+deconvolutional layer model with CBAM
module embedded in the backbone network is 3.08 percent higher than that of the original
model. This indicates that these two separate modules are very helpful for model detection.

Table 5. Ablation experiments based on improved CenterNet model.

Model P (%) R (%) F1 Score mAP (%) Parameters
(M)

ResNet50+Deconvolutional
(Original) 95.36 32.01 0.45 75.54 32.665

ResNet50+CBAM+Deconvolutional 91.39 61.03 0.69 78.62 33.714
ResNet50+MFF 91.21 57.97 0.68 82.50 23.952

ResNet50+CBAM+MFF (Ours) 92.11 60.30 0.70 85.13 24.296

When the deconvolutional layer of the original model is removed after adding the
MFF module, the number of parameters in the ResNet50+MFF model is reduced by 26.67%.
Compared to the deconvolutional layer of the original model, the MFF module has a smaller
parameter scale, and the number of parameters of the model is reduced, while the accuracy
of the model is greatly improved. By adding these two modules for training at the same
time, the model in this paper (ResNet50+CBAM+MFF) reaches the highest mAP, which is
9.59% higher than the original model. The improved model also achieved the highest F1
score of 0.70, indicating that the integrated performance of the model is also better.

In summary, the model in this paper significantly improves the accuracy while reduc-
ing the number of parameters, demonstrating that the attention mechanism and multi-scale
feature fusion module (MFF) can significantly enhance the comprehensive performance of
the model, and is more suitable for the detection of maize pests and diseases.

3.3.2. Comparative Analysis Experiment

The detection results of the proposed model and the original CenterNet model on
the test set are compared and analyzed. In the detection results, all detected objects are
marked with a border, and the label name and confidence level of the object are displayed.
It can be seen from Figure 8 that the original model misses detection when the infestation
is clustered, and from Figure 9, it can be seen that the original model misdetects the GLS as
the NLS at the same time. The improved model uses an attention mechanism to suppress
interfering objects, integrates multi-scale features, improves the detection performance of
objects, effectively detects object outcomes, and has higher confidence in prediction results.

To further evaluate the performance of this model, a comparison experiment was con-
ducted using mainstream object detection algorithms. The dataset used in the experiments
was the maize leaf pests and diseases dataset from this paper, and the same experimental
parameters and experimental environment were set. Disease and insect detection were per-
formed between the proposed model and the Faster R-CNN [17], YOLOv5, SSD-VGG [18],
and Efficientdet-D0 [19] models. Table 6 and Figure 10 show that compared with SSD-VGG,
YOLOv5, Faster R-CNN, and Efficientdet-D0 methods, the mean average precision (mAP)
of the proposed model was the highest among the five detection algorithms, increasing by
9.17%, 7.34%, 4.43%, and 2.46%, respectively. This demonstrates the effectiveness of the
proposed method.
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Table 6. Pest detection results of different object detection models.

Model P (%) R (%) F1 Score mAP (%) Parameters
(M) FPS (f/s)

SSD-VGG 78.63 65.82 0.68 74.17 26.285 58.13
CenterNet 95.36 32.01 0.45 75.54 32.665 57.60

Faster R-CNN 54.10 82.55 0.64 76.00 137.099 12.29
YOLOv5 90.83 45.98 0.59 78.91 47.057 48.18

Efficientdet-D0 87.23 71.62 0.76 82.67 3.874 14.63
Ours 92.11 60.30 0.70 85.13 24.296 23.69
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The SSD-VGG algorithm is a one-stage algorithm. It first performs dense sampling
uniformly at different locations on the image and then uses convolutional neural networks
for feature extraction, followed by classification and regression. The SSD-VGG algorithm
has the advantage of its fast speed, which is the fastest among the six algorithms, but its
detection accuracy is insufficient. Compared to the SSD-VGG algorithm, Faster R-CNN has
a higher detection accuracy, but the parameter scale is large due to its two-stage algorithm.
The YOLOv5 algorithm improves the detection accuracy and parameter scaling to some
extent, but its detection performance is poor on this dataset. The Efficientdet-D0 algorithm
has the smallest parameter size among the six algorithms, but it uses more convolution
operations, resulting in slower model detection.

In order to visually demonstrate the detection performance of the proposed algorithm,
the detection results of the proposed algorithm in the test set were compared and analyzed
with those of Faster R-CNN, YOLOv5, SSD-VGG, and Efficientdet-D0 algorithms. The
detection results were presented in Figure 11. As shown in Figure 11, the first column
represents images with GLS disease, the second column represents images with Aphids pest,
and the third column represents images with NLB disease. It can be observed from Figure 11
that while Faster R-CNN detected a larger number of targets, it also had a significant
number of false detections. On the other hand, YOLOv5, SSD-VGG, and Efficientdet-
D0 displayed missing detections in certain instances. Additionally, the Efficientdet-D0
algorithm misclassified GLS disease as NLB disease in the first column. In the third column,
both Faster R-CNN and YOLOv5 were able to detect the fuzzy small target, while the
other three algorithms failed to detect it. Overall, in all three columns of images except
for the fuzzy small target in the third column, all other targets of pests and diseases were
successfully detected. Based on this analysis, it can be concluded that compared with the
comparison algorithm, the proposed algorithm is more accurate in the detection of pests
and diseases.
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3.4. Web Detection Platform

To facilitate farmers in easily and quickly identifying and detecting pests and diseases,
the model is deployed in a web application that detects pests and diseases on maize leaves,
assisting farmers in understanding the conditions of pests and diseases and obtaining
expert guidance. In this application, users can detect maize leaf pests and diseases by
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uploading local pictures, and the test results are presented in Figure 12. Additionally,
the application utilizes an embedded database, SQLite, to construct a web user service
system, including registration and login functions, maize leaf pest detection functions,
encyclopedia search functions, and pest control advice functions. Through the above
functional design and implementation, the application provides users with convenient
services and practical functions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17 
 

by uploading local pictures, and the test results are presented in Figure 12. Additionally, 
the application utilizes an embedded database, SQLite, to construct a web user service 
system, including registration and login functions, maize leaf pest detection functions, 
encyclopedia search functions, and pest control advice functions. Through the above func-
tional design and implementation, the application provides users with convenient ser-
vices and practical functions. 

 
Figure 12. Web application interface diagram. 

4. Discussion 
Detecting leaf pests and diseases in agriculture is critical to ensuring crop health and 

yield. In recent years, various machine learning and deep learning models have been de-
veloped to automate this process, leading to more efficient and accurate detection. In this 
case, we evaluated the performance of our proposed model compared to existing state-of-
the-art methods. We evaluated their model’s accuracy, parameter size, detection speed, 
and dataset to understand its strengths and limitations. 

Based on Table 7, several observations can be made. When it comes to accuracy, our 
model, with an mAP of 85.13%, represents a significant improvement over the Pest R-
CNN model by Du et al., 2022 [20], which achieved an mAP of 60.2%. However, when it 
comes to maize disease detection, the EfficientNet model from Liu et al., 2022 [21] slightly 
outperforms ours with an accuracy of 98.52%. Zhang et al., 2020 [22] effentnet-b4 model 
accuracy reaches 97%, but the model size is larger, 268.62 M, while our model not only 
has a smaller parameter size, 24.296 M, but also realizes a competitive mAP, highlighting 
its efficiency. In terms of detection speed, our model can process each image in a mere 
0.025 s, outpacing the ResNet50 model from Shin et al., 2021 [23], which takes 0.076 s per 
image. This rapid detection speed is crucial for real-time applications in agriculture. The 
diversity and quality of datasets used for training play a crucial role in model perfor-
mance, with many studies like those by Zeng et al., 2022 [24], and Chen et al., 2021 [25], 
utilizing the PlantVillage dataset. However, our model is trained on a dataset collected 
from the network, which may contain a wider range of scenarios and conditions than the 
PlantVillage dataset. In essence, while each model has its own strengths and weaknesses, 
our proposed model strikes a commendable balance between accuracy, efficiency, and 
speed. The ability to detect both disease and pest tasks further increases its potential for 
practical agricultural applications. 

Future research can be approached from several perspectives. Firstly, the model’s 
training can be deepened further, and various data enhancement techniques can be em-
ployed to enhance the model’s generalization ability. Secondly, research can be combined 
with other fields, such as remote sensing technology, to achieve rapid detection of pests 

Figure 12. Web application interface diagram.

4. Discussion

Detecting leaf pests and diseases in agriculture is critical to ensuring crop health and
yield. In recent years, various machine learning and deep learning models have been
developed to automate this process, leading to more efficient and accurate detection. In
this case, we evaluated the performance of our proposed model compared to existing
state-of-the-art methods. We evaluated their model’s accuracy, parameter size, detection
speed, and dataset to understand its strengths and limitations.

Based on Table 7, several observations can be made. When it comes to accuracy,
our model, with an mAP of 85.13%, represents a significant improvement over the Pest
R-CNN model by Du et al., 2022 [20], which achieved an mAP of 60.2%. However, when it
comes to maize disease detection, the EfficientNet model from Liu et al., 2022 [21] slightly
outperforms ours with an accuracy of 98.52%. Zhang et al., 2020 [22] effentnet-b4 model
accuracy reaches 97%, but the model size is larger, 268.62 M, while our model not only
has a smaller parameter size, 24.296 M, but also realizes a competitive mAP, highlighting
its efficiency. In terms of detection speed, our model can process each image in a mere
0.025 s, outpacing the ResNet50 model from Shin et al., 2021 [23], which takes 0.076 s per
image. This rapid detection speed is crucial for real-time applications in agriculture. The
diversity and quality of datasets used for training play a crucial role in model performance,
with many studies like those by Zeng et al., 2022 [24], and Chen et al., 2021 [25], utilizing
the PlantVillage dataset. However, our model is trained on a dataset collected from
the network, which may contain a wider range of scenarios and conditions than the
PlantVillage dataset. In essence, while each model has its own strengths and weaknesses,
our proposed model strikes a commendable balance between accuracy, efficiency, and
speed. The ability to detect both disease and pest tasks further increases its potential for
practical agricultural applications.
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Table 7. Comparison of proposed advanced pest and disease detection method with other state-of-
the-art approaches on maize and other plant datasets.

References Type of Plant Dataset Technique Performance

(Zhang et al., 2020) [22] Cucumber Private EfficientNet-B4
Accuracy: 97%

Parameters: 268.62 M

(Shin et al., 2021) [23] Strawberry Private ResNet50
Accuracy: 98.11%
Detect each image:

0.076 s

(Jiang et al., 2021) [26] Paddy Wheat Dataset provided by
website

VGG16
Paddy: 97.22%
Wheat: 98.75

Parameters: 68 M
(Elfatimi et al., 2022)

[27] Beans public dataset
presentedby tensorflow MobileNetV2 Accuracy: 92.0%

(Zeng et al., 2022) [24] Maize (disease) PlantVillage, Private Lightweight
dense-scale network

Accuracy: 95.4%
Parameters: 0.59

(Chen et al., 2021) [25] Maize (disease) PlantVillage and
private DenseNet Accuracy: 95.86%

(Liu et al.,2022) [21] Maize (disease)
Crop disease AI

Challenge dataset EfficientNet
Accuracy: 98.52%

Parameters: 46.21 M
(Yin et al., 2022) [28] Maize (disease) Private DISE-Net Accuracy: 97.12%
(Du et al.,2022) [20] Maize (Pest) private Pest R-CNN mAP: 60.2%

Ours
Maize (disease and

pest)
Dataset provided by

website
Enhancement of

Centernet.

mAP: 85.13%
parameters: 24.296 M

Detect each image:
0.025 s

Future research can be approached from several perspectives. Firstly, the model’s
training can be deepened further, and various data enhancement techniques can be em-
ployed to enhance the model’s generalization ability. Secondly, research can be combined
with other fields, such as remote sensing technology, to achieve rapid detection of pests
and diseases on a larger scale. Finally, lightweight optimization of the model needs to
be considered to enable it to run on low-performance equipment, thereby extending its
practical application in the field.

5. Conclusions

In this paper, we construct a model for corn leaf disease and insect detection that
integrates multi-scale features and attention mechanisms to detect three corn leaf diseases
and five pests. The CBAM attention module is added to improve the ability to extract
relevant features of pests and diseases. The MFF module is designed in the neck network,
and a weighted bidirectional feature fusion network is employed to enable the model to
better detect multi-scale objects. The experimental results demonstrate that the constructed
model achieves 85.13% accuracy on the test dataset, which is 9.59% higher than the accuracy
of the original CenterNet model. The improved model has a parameter scale of 24.296 M,
which is 25.7% smaller than the original CenterNet model. It takes 0.025 s to predict a
512 × 512 pixel image, and the processing speed reaches 23.69 f/s, which can meet the
requirements of real-time detection. Compared with Faster R-CNN, YOLOv5, SSD-VGG,
and Efficientdet-D0 models, the proposed model achieves better detection accuracy under
the same experimental conditions. Therefore, this model can achieve rapid and accurate
detection of pests and diseases and meet the requirements of pest and disease detection.
The model is deployed in a web application that allows users to upload photos for quick de-
tection, providing users with convenient services and practical features to assist farmers in
understanding the situation of pests and diseases. In the future, a lightweight model will be
designed, and the model structure will be further optimized using distillation technology.



Appl. Sci. 2023, 13, 10441 16 of 17

Author Contributions: Investigation, J.K.; methodology, W.Z.; software, W.Z.; supervision, J.K.;
writing—original draft preparation, W.Z.; writing—review and editing, J.K., W.L. and Y.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Youth Fund of the National Natural Science Foundation
of China (Grant No. 62203285) and the Youth Fund of Shaanxi Provincial Natural Science Basic
Research Program General Project (Grant No. 2022JQ-181) and was also funded by the Xi’an Science
and Technology Plan Project (Grant No. 23NYGG0070).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their constructive
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhai, Z.Y.; Cao, Y.F.; Xu, H.L.; Yuan, P.S.; Wang, H.Y. Review of key techniques for crop disease and pest detection. Trans. Chin.

Soc. Agric. Mach. 2021, 52, 1–18.
2. Shao, M.Y.; Zhang, J.H.; Feng, Q.; Chai, X.J.; Zhang, N.; Zhang, W.R. Research progress of deep learning in detection and

recognition of plant leaf diseases. Smart Agric. 2022, 4, 29–46.
3. Ahmad, A.; Saraswat, D.; Gamal, A.E.; Gurmukh, J. CD&S Dataset: Handheld imagery dataset acquired under field conditions

for maize disease identification and severity estimation. arXiv 2021, arXiv:2110.12084.
4. Wang, Z.Y.; Wang, X.M. Current status and management strategies for maize pests and diseases in China. Plant Prot. 2019,

45, 1–11.
5. Guo, X.Y.; Yu, S.Q.; Shen, H.C.; Li, L.; Du, J.J. Deep Learning Network for Crop Disease Recognition with Global Feature

Extraction. Trans. Chin. Soc. Agric. Mach. 2022, 53, 301–307.
6. Xie, X.; Ma, Y.; Liu, B.; He, J.; Li, S.; Wang, H. A deep-learning-based real-time detector for grape leaf diseases using improved

convolutional neural networks. Front. Plant Sci. 2020, 11, 751. [CrossRef] [PubMed]
7. Liu, J.; Wang, X. Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network. Front. Plant

Sci. 2020, 11, 898. [CrossRef]
8. Richey, B.; Shirvaikar, M.V. Deep learning based real-time detection of Northern Maize Leaf Blight crop disease using YoloV4. In

Proceedings of the Defense + Commercial Sensing; SPIE: Bellingham, WA, USA, 2021.
9. Sun, H.N.; Xu, H.W.; Liu, B.; He, D.J.; He, J.R.; Zhang, H.X.; Geng, N. MEAN-SSD: A novel real-time detector for apple leaf

diseases using improved light-weight convolutional neural networks. Comput. Electron. Agric. 2021, 189, 106379. [CrossRef]
10. Yang, S.Q.; Liu, J.C.; Xu, K.K.; Sang, X.; Ning, J.F.; Zhang, Z.T. Improved CenterNet based maize tassel recognition for UAV

remote sensing image. Trans. Chin. Soc. Agric. Mach. 2021, 52, 206–212.
11. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
12. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module; Springer: Cham, Switzerland, 2018; pp. 3–19.
13. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
14. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
15. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.
16. Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In

Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021.
17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
18. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of

the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
19. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.
20. Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y. A Novel Object Detection Model Based on Faster R-CNN

for Spodoptera frugiperda According to Feeding Trace of Maize Leaves. Agriculture 2022, 12, 248. [CrossRef]
21. Liu, J.; Wang, M.; Bao, L.; Li, X. EfficientNet based recognition of maize diseases by leaf image classification. J. Phys. Conf. Ser.

2020, 1693, 012148. [CrossRef]

https://doi.org/10.3389/fpls.2020.00751
https://www.ncbi.nlm.nih.gov/pubmed/32582266
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.1016/j.compag.2021.106379
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.3390/agriculture12020248
https://doi.org/10.1088/1742-6596/1693/1/012148


Appl. Sci. 2023, 13, 10441 17 of 17

22. Zhang, P.; Yang, L.; Li, D. EfficientNet-B4-Ranger: A novel method for greenhouse cucumber disease recognition under natural
complex environment. Comput. Electron. Agric. 2020, 176, 105652. [CrossRef]

23. Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based
powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [CrossRef]

24. Zeng, W.; Li, H.; Hu, G.; Liang, D. Lightweight dense-scale network (LDSNet) for maize leaf disease identification. Comput.
Electron. Agric. 2022, 197, 106943. [CrossRef]

25. Chen, J.; Wang, W.; Zhang, D.; Zeb, A.; Nanehkaran, Y.A. Attention embedded lightweight network for maize disease recognition.
Plant Pathol. 2021, 70, 630–642. [CrossRef]

26. Jiang, Z.; Dong, Z.; Jiang, W.; Yang, Y. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer
learning. Comput. Electron. Agric. 2021, 186, 106184. [CrossRef]

27. Elfatimi, E.; Eryigit, R.; Elfatimi, L. Beans Leaf Diseases Classification Using MobileNet Models. IEEE Access 2022, 10, 9471–9482.
[CrossRef]

28. Yin, C.; Zeng, T.; Zhang, H.; Fu, W.; Wang, L.; Yao, S. Maize Small Leaf Spot Classification Based on Improved Deep Convolutional
Neural Networks with a Multi-Scale Attention Mechanism. Agronomy 2022, 12, 906. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compag.2020.105652
https://doi.org/10.1016/j.compag.2021.106042
https://doi.org/10.1016/j.compag.2022.106943
https://doi.org/10.1111/ppa.13322
https://doi.org/10.1016/j.compag.2021.106184
https://doi.org/10.1109/ACCESS.2022.3142817
https://doi.org/10.3390/agronomy12040906

	Introduction 
	Materials and Methods 
	Dataset 
	Proposed Improve Centernet Model 
	Convolutional Block Attention Module 
	Multi-Scale Feature Fusion Module 


	Experimental Results and Analysis 
	Experimental Environment Configuration and Evaluation Metrics 
	Experimental Results 
	Analysis of Experimental Results 
	Ablation Experiment 
	Comparative Analysis Experiment 

	Web Detection Platform 

	Discussion 
	Conclusions 
	References

