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Abstract: Deep learning-based object detection methods address the problem of how to trade off the
object detection accuracy and detection speed of the model. This paper proposes the PBA-YOLOv7
network algorithm, which is based on the YOLOv7 network, and first introduces the PConv, which
lightens the ELAN module in the backbone network structure and reduces the number of parameters
to improve the detection speed of the network and then designs and introduces the BiFusionNet
network, which better aggregates the high-level semantic features and the low-level semantic features;
and finally, on this basis, the coordinate attention mechanism is introduced to make the network
focus on more critical features without increasing the model complexity. The coordinate attention
mechanism is introduced to make the network focus more on important feature information and
improve the feature expression ability of the network without increasing the model complexity.
Experiments on the publicly available KITTI’s dataset show that the PBA-YOLOv7 network model
significantly improves both detection accuracy and detection speed compared to the original YOLOv7
model, with 4% and 7.8% improvement in mAP0.5 and mAP0.5:0.95, respectively, and six frames
improvement in FPS. The improved algorithm in this paper weighs the model’s detection accuracy
and detection speed in the detection task. It performs well compared to other algorithms, such as
YOLOv7 and YOLOv5l.

Keywords: YOLOV7 network model; PConv convolution; BiFusionNet; coordinate attention

1. Introduction

Accompanied by the arrival and application of the Internet of Things and 5G tech-
nology, intelligent vehicles have entered a new stage of development, and environment
sensing based on target detection is the basis for realizing autonomous driving technol-
ogy [1]. In the complex street environment, it is of great significance to accurately and
efficiently identify the target information, reduce the misjudgment rate of the self-driving
vehicle in driving, and reduce the occurrence of traffic accidents. Traditional target detec-
tion methods utilize machine learning algorithms that mainly rely on a sliding window
selection of candidate regions to extract features in images, such as Scale-Invariant Feature
Transform (SIFT) [2], Histogram of Oriented Gradients (HOG) [3], and Deformable Part
Models (DPM) [4], etc., and then the obtained semantic features are classified and regressed
by Support Vector Machine (SVM) [5]. The traditional algorithms need better mobility and
more generalization ability, and the process of manually extracting features is cumbersome
and complex, which leads to the limitations of the algorithms’ applications and makes it
difficult to cope with today’s complex traffic scenarios.

With the rapid development of computers and deep learning [6,7], many researchers
have employed sophisticated deep learning models to implement object detection in sensed
images. Object detection algorithms based on deep learning neural networks can be broadly
categorized into two main types: two-stage detection algorithms and one-stage detection
algorithms.
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Two-stage detection algorithms concern two-stage processing of target frames or
images; representative algorithms are R-CNN (Region-based Convolutional Neural Net-
work) [8], Fast R-CNN, Faster R-CNN, and Mask R-CNN, which as the pioneering work
of two-stage detection, uses selective search algorithms to propose a series of Regions of
Interest (RoI) in the first stage, and uses CNNs to extract deep features within the regions
in the second stage and classify and localize them accordingly. Fast R-CNN [9] advances
the position of convolutional layers at each position and classifies and localizes them ac-
cordingly. In the Region of Interest (RoI) in the first and second stages, CNN is used to
extract the deep features in the region and classify and localize them accordingly. Fast
R-CNN advances the position of the convolutional layer and computes a set of feature
vectors at each position, which reduces the computational effort in the second stage to
compute the feature vectors at the corresponding positions through the positional mapping
relationship between the image and the features and reduces the computational effort in the
second stage. Faster R-CNN [10] proposes a Region Proposal Network (RPN) to replace the
selective search algorithm so that part of the convolutional layer directly generates region
proposals and intra-region detection features, simplifying the first stage’s computation
process. Fast R-CNN and Faster R-CNN reduce the computation time of the first and sec-
ond stages, respectively, based on R-CNN. However, the computation for many redundant
region proposals inevitably lowers the detection efficiency. Mask R-CNN [11] expands the
target instance segmentation function based on Faster R-CNN. In Faster R-CNN, the main
focus is on target detection, i.e., determining the location and class of the target. Mask
R-CNN further introduces pixel-level instance segmentation on this basis, i.e., generating
an accurate mask for each target.

The principle of the two-stage detection algorithm is to first extract a series of regions
of interest that may contain the target using a selective search method, and then use the
CNN model to extract the deep features of the candidate regions one by one, and finally
classify and regress the extracted features. Although the two-stage detection algorithm has
high detection accuracy, its many redundant operations increase its time cost, resulting
in slow detection speed, which cannot meet the real-time requirements and is difficult to
deploy on self-driving cars [12,13].

The second category is single-stage detection algorithms. The main algorithms for
single-stage detection algorithms are the YOLO (You Only Look Once) series [14] and SSD
(Single Shot MultiBox Detector) [15]. The SSD algorithm is another deep learning-based
target detection algorithm whose core idea is to transform the target detection into a single
forward pass regression problem—being able to accomplish both target localization and
classification in a single forward propagation. The SSD algorithm performs target detection
by applying a series of predefined anchor boxes on feature maps at different scales, sliding
these anchor boxes on the feature map, and using convolutional operations to classify and
bounding box regression on them to obtain the final target detection results.

YOLO is a commonly used single-stage target detection algorithm with fast speed and
high accuracy [16,17]. Its core idea is to transform target detection into a single forward-
pass regression problem. A comparison table of the YOLO series versions is shown in
Table 1. YOLOv1 [16] is the initial version of the YOLO series. It implements real-time
target detection by dividing the input image into grid cells and predicting each cell’s
bounding box and category probabilities.YOLOv1 uses convolutional neural networks for
feature extraction and a fully connected layer for target prediction.YOLOv2 [18] introduces
several significant improvements over YOLOv1, including using the Darknet-19 archi-
tecture, multiscale training and testing, anchor frames, scale clustering, and fine-grained
features.YOLOv3 [19] added more improvements to YOLOv2, including using a Residual
Network (ResNet) as a feature extractor, adopting multiscale prediction, and using a feature
pyramid network for features of different scales.YOLOv4 [20] introduced some critical
improvements in the YOLOv3, introduced CSPDarknet53 as a feature extractor, used the
SPP structure, applied multiscale inference, and the PAnet network. YOLOv5 makes some
modifications and optimizations based on YOLOv4, including using a lightweight net-
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work structure, introducing model distillation techniques, and adding data enhancement
strategies. YOLOX, like YOLOv5, uses the Focus network structure in the backbone part,
obtains four independent feature layers, and then makes the four independent feature lay-
ers stacked. At this time, the width and height information is concentrated on the channel
information, and the input channel is expanded four times [21]. The YOLOv8 model in
adaptive multi-sample matching, concerning the YOLOX, adopts the Anchor-Free method
and introduces a dynamic TaskAlignedAssigner matching strategy. The YOLO detection
algorithm performs satisfactorily in detecting small and occluded targets in complex field
environments and has better detection speed than other deep learning algorithms [22,23].
The single-stage detection algorithm deals with detection as a regression problem, com-
pared to the two-stage detection algorithm that does not require a candidate region and
can directly generate information such as category probabilities for the target. Although
the single-stage detection method is faster in detection, the accuracy is relatively low.

Table 1. YOLO Series Version Comparison Table.

Model Size Train mAP@0.5 FPS

YOLOv1 416 ×416 VOC2007+2012 63.4% 45
YOLOv2 416 × 416 VOC2007+2012 76.8% 67
YOLOv3 416 × 416 MS COCO 55.3% 35
YOLOv4 608 × 608 MS COCO 65.7% 62

YOLOv5-l 640 × 640 MS COCO 66.9% 73
YOLOX-l 640 × 640 MS COCO 68.5% 69
YOLOv7 640 × 640 MS COCO 69.7% 161

In deep learning network training, the more sufficient samples of the model, the
stronger the generalization and the higher the robustness of the trained network model.
However, for simple datasets, overfitting, weak generalization ability, and low robust-
ness tend to occur when training the model due to too few samples. Fang presents an
inpainting strategy called comparative sample augmentation, which enhances the quality
of the training set by filtering irrelevant images and constructing additional images using
information about the surrounding regions of the target image. This strategy managed to
augment the datasets [24]. The datasets augmented by this strategy significantly reduce the
probability of model overfitting during model training and effectively improve the model’s
generalization ability. While acquiring the dataset, all the image data inevitably have noise,
such as granular speckles and discoloration. Zheng proposes a hybrid denoising CNN
(HDCNN) [25]. HDCNN improves the quality of the image and makes the image more
straightforward and more prosperous in detail. In many image processing and computer
vision tasks, such as image recognition, target detection, etc., removing noise improves the
accuracy and performance of the algorithm. Reducing noise reduces false detections and
misjudgments and improves the algorithm’s ability to understand and analyze the image.
Ahmad presented a technique called CBIR-similarity measure via artificial neural network
interpolation (CBIR-SMANN) [26]. CBIR-SMANN measures the similarity between an
interpolated image and a target image by using an artificial neural network and then
calculating the similarity between the interpolated image and the target image. The image
can be interpolated from low resolution to high resolution, thus improving the quality and
detail of the image. This interpolation technique can be used to generate a high-resolution
image similar to the target image by learning the features of the image through a neural
network and applying them to the target image. This ultimately improves the accuracy and
performance of the algorithm in image recognition or target detection tasks.

The application of intelligent vehicles is to be realized in complex urban environments.
The target detection technology in the field of automatic driving environment perception
not only requires high-precision recognition ability but also needs to be able to respond
in real-time to the complex and changing traffic scene to ensure that the driving system
can make timely and accurate instructions. Although the two-stage detection algorithm
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has high accuracy, its high time cost leads to slow detection speed which cannot meet the
real-time requirements. The single-stage detection method is faster, but the accuracy could
be higher, and security needs to be improved.

Synthesizing the above network model problems, this paper proposes the PBA-
YOLOv7 network model algorithm based on the YOLOv7 model, and the main contribu-
tions are as follows:

1. Firstly, lightweight convolutional Partial Convolution (PConv)is introduced to opti-
mize the ELAN module in the backbone to reduce the number of parameters and the
number of visits in the network.

2. Introduce BiFusionNet network to replace the original PANet network of YOLOv7
in the feature fusion module of Neck to enhance the localization signal without
increasing the computational burden.

3. Embedding the coordinate attention mechanism module before the representative
convolution module in the Neck network to improve the detection accuracy of the
network model while ensuring that the network is sufficiently lightweight.

The structure of this paper consists of four main parts. The first part details the
key issues and challenges of target detection, mainly as applied to intelligent vehicle
environment sensing detection, and methods to address these issues. The second part
describes the structural components of YOLOv7, the structure of PBA-YOLOv7, and other
principles and proposes in detail the improvement methods for each module. The third part
is the experimental analysis, which analyzes the detection performance of each improved
module in detail, evaluates and analyzes the experimental results, and compares them with
similar methods. Finally, the fourth part summarizes the thesis and gives an outlook on the
future research direction.

2. Methodology

YOLOv7 is a single-stage target detection algorithm that transforms the detection
task into a regression problem [27]. Compared with other detection algorithms, YOLOv7
has faster detection speed and higher accuracy, which meets the requirements of real-time
detection and recognition of targets in moving self-driving vehicles.

In this paper, we balance the detection speed and accuracy of the network model and
choose the YOLOv7 network as the fundamental network model.

2.1. YOLOv7 Network Architecture

The YOLOv7 network mainly contains Input, Backbone, Neck, and Head [27]. Firstly,
the image is pre-processed by Input and then sent to Backbone for feature extraction; then,
the extracted features are processed by Neck feature fusion to obtain features of three sizes:
large, medium, and small; and finally, the fused features are sent to the Head and output
the result after detection.

The Backbone consists of multiple convolutions involving an Efficient Layer Aggrega-
tion Network (ELAN) module and a Maximum Pooling Convolution (MPConv) module.
In the MPConv module, the MaxPool operation expands the sensory field of the current
feature layer. Then, it fuses it with the feature information after the normal convolution
process, which improves the network’s generalization. The SPPCSPC module adds multi-
ple MaxPool operations to the convolution in parallel to avoid distortion caused by image
processing operations. The input image is subjected to feature extraction in Backbone to
obtain three adequate feature layers for the following network construction.

The neck part of the three valid feature layers obtained from Backbone is used for
feature fusion in this part using PANet. PANet network is added on top of FPN with an
additional bottom-up path to shorten the information path of the low-level and top-level
features, which helps to propagate accurate signals from the low-level features [28]. This
part combines the feature information at different scales. It continues to extract features
from the valid feature layers already obtained, up-sampling the features for feature fusion,
and down-sampling the features again for feature fusion. Finally, RepConv is used to design
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a heavily parameterized convolutional architecture that provides more gradient diversity
for feature maps at different scales [29]. It increased the training time and improved the
inference effect [30].

The Head part selects IDetect Head with three target sizes: large, medium, and trim.
The Head is used as a classifier and regressor, and through the Backbone and Neck, three
enhanced adequate feature layers are obtained, which are inputted into the Head for
decoupling of feature information and outputting the position, confidence, and target type.
The network structure of YOLOv7 is shown in Figure 1.

Figure 1. Network structure diagram of YOLOv7.

2.2. PBA-YOLOv7: Improved Algorithm for YOLOv7

In this paper, the algorithm is based on YOLOv7. Firstly, Partial Convolution (PConv) [31]
is introduced in Backbone to optimize the Efficient Layer Aggregation Network (ELAN)
module [32] in the Backbone extraction network to alleviate the number of parameters and
the number of visits to the network and improve the detection speed of the network. Then,
in the feature fusion part of Neck, we design the BiFusionNet network to optimize the
feature pyramid network of YOLOv7 to better aggregate high-level semantic features and
low-level semantic features, which improves the detection accuracy. Finally, the Coordinate
Attention (CA) mechanism [33] is introduced to improve the detection accuracy of the
network model while ensuring that the network is lightweight enough. The improved
YOLOv7 network structure is shown in Figure 2.
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Figure 2. Improved YOLOv7 structure. (a) Structure diagram of CBS; (b) Structure diagram of
MPConv; (c) Structure diagram of PC-ELAN; (d) Structure diagram of SPPCSPC; (e) Structure
diagram of ConvCat.

2.2.1. Optimization of the ELAN Module

ELAN [32], mainly composed of VoVNet [34] and CSPNet [35], is an efficient layer
aggregation network that optimizes the gradient length of the entire network using the
stacking structure in the computational blocks. The network is designed to avoid the
problems of using too many transition layers and the rapid lengthening of the shortest
gradient paths in the whole network. The emergence of ELAN solves the problem of
deterioration of the overall accuracy of the network due to reduced accuracy gains and
even deterioration of the network convergence that occurs when the model scales, i.e.,
when the model reaches a certain depth and the stacking of the computational blocks is
continued. However, the optimization of the ELAN network in terms of the number of
parameters and the amount of computation is suboptimal, so in this paper, while ensuring
the structural integrity of the ELAN network, we introduce the PConv, construct the PC-
ELAN network module, and replace the convolutional kernel of 3 × 3 convolutional layers
in the ELAN network by using the PConv. The structure of the PC-ELAN network is shown
in Figure 1(c). Partial Convolution (PConv) is a new type of simple convolution to reduce
computational redundancy while reducing memory access. Its working principle is shown
in Figure 3.
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Figure 3. Partial convolution structure diagram.

PConv applies regular convolution for spatial feature extraction on only a portion
of the input channels and keeps the rest of the channels unchanged, and for consecutive
or regular memory accesses, computes the first or last consecutive channel as if it were
representative of the entire feature map. The input and output feature maps have the same
number of channels without loss of generality.

r =
cp

C
(1)

In the formula, C is the number of regular convolution channels and cp is the number
of PConv channels.

h×ω× k2 × c2
p (2)

The formula is the FLOPs calculation formula, where h is the height of the feature
map, w is the width of the feature map, k is the width and height of the convolution kernel,
and cp is the number of PConv channels.

h×ω× 2cp + k2 × c2
p ≈ h×ω× 2cp (3)

The formula is the FLOPs calculation formula, where h is the height of the feature
map, w is the width of the feature map, k is the width and height of the convolution kernel,
and cp is the number of PConv channels.

In this paper, r = 1/4 is chosen, and from Equation (2), the computational amount of
PConv convolution is reduced by 15/16 compared to conventional convolution, and from
Equation (3), the memory access of PConv is reduced by 3/4 compared to conventional
Conv.

Both the computational and memory accesses of the PC-ELAN network compared to
the ELAN network have been drastically reduced. The overall structure of the network is
effectively optimized, and the inference speed of the network is improved.

2.2.2. Building a Bidirectional Fusion Network (BiFusionNet) Module

It has been shown in many experiments that multi-scale feature aggregation is a critical
component of target detection, and feature pyramid networks provide more accurate
localization by aggregating high-level semantic features and low-level semantic features
through top-down paths.

The YOLOv7 feature fusion network uses the PANet network structure [28]. PANet
is an additional bottom-up path added on top of FPN. The network feature fusion better
understands the contextual semantics of the target to shorten the information paths of both
low-level and high-level features, which helps to propagate accurate localization signals
from the low-level features. YOLOv6 [36] designed an enhanced feature fusion module,
the BiC-Bidirectional Connection Module, which aggregates the effective feature maps
of three neighboring layers to achieve enhanced localization signals without increasing
the computational burden. In this paper, BiFusionNet is constructed based on the BiC
bi-directional connectivity module principle. It better aggregates the three adequate feature
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layers in the backbone extraction network and the depth feature layer in the neck. It retains
more accurate localization signals compared to the PANet. A comparison of the structure
of the PANet and BiFusionNet is shown in Figure 4.

Figure 4. (a) Network structure of PANet; (b) Network structure of BiFusionNet. P is the low-level
feature obtained by the main trunk network, and C is the high-level feature obtained by the neck
network.

The BiFusionNet connection process is shown in Figure 5, where transposed convo-
lution is introduced instead of up-sampling for feature recovery and image expansion to
make the model more robust. Firstly, the same scale feature maps are downscaled using
convolution with kernel 1. Next, the large-scale feature map is down-sampled using a
convolution with convolution kernel 1 and down-sampled using a convolution with convo-
lution kernel 3 and step size 2. Then, the small-scale feature map is up-sampled using a
transposed convolution with convolution kernel 2. Finally, the feature maps obtained from
the three parts are spliced and down-sampled again using a convolution with convolution
kernel 1.

Figure 5. BiFusionNet Module connection flowchart. P is the low-level feature obtained by the main
trunk network, and C is the high-level feature obtained by the neck network.
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2.2.3. Coordinate Attention Mechanism

As the network structure becomes deeper and deeper and the layers are superim-
posed, although richer semantic information can be obtained, the resolution of the feature
map decreases, resulting in the loss of some target location information. The attention
mechanism is a standard data processing method widely used in machine learning tasks
in various fields [37]. To ensure the network can extract rich semantic information while
obtaining accurate location-aware information, the coordinate attention mechanism module
is embedded before the representative convolution module in the Neck network.

The coordinate attention mechanism [33] can capture the associations and depen-
dencies between different locations in an image by computing attention on the spatial
coordinates of the features. This allows the model to understand better the spatial structure
information in the image, which improves the understanding and perception of the target.
The coordinate attention mechanism focuses on specific locations in the image and spatial
relationships at different scales. This allows the model to adapt to targets and scenes at
different scales, with better robustness to size, scale, and rotation changes in the image. The
coordinate attention mechanism also allows the network model to better model the spatial
relationships between different locations and more accurately model and understand the
details and local structures in the image.

The structure of the coordinate attention mechanism is shown in Figure 6, which
enhances the sensitivity to attentional information by decomposing the channel attention
into a process of one-dimensional feature encoding performed in parallel to form a set of
feature maps sensitive to both direction and position dimensions simultaneously.

Figure 6. Structure diagram of coordinate attention mechanism.

The coordinate attention mechanism module decomposes the coordinate information
into a set of one-dimensional feature codes by global pooling according to Equation (4).

Zc =
1

H×W

H

∑
i=1

W

∑
j=1

xc(i, j) (4)

In the equation, Zc is the output associated with the C channel, H and W are the height
and width of the input feature map, respectively, and xc (i, j) is the input feature map of
the C channel.
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For an input tensor X, each channel is encoded in the horizontal coordinate direction
using a pooling kernel of dimension (H, 1), and the output of the Cchannel with height H
can be represented as

ZH
C (h) =

1
W ∑

0≤i≤W
xc(H, i) (5)

In Equation ZH
C (h) is the output of the Cth channel with height H. W is the width of

the input feature map.
Encoding each channel in the vertical coordinate direction using a pooling kernel of

dimension (1, W), the output of the C channel of width W can be expressed as

ZW
C (w) =

1
H ∑

0≤j≤H
xc(j, W) (6)

After Equations (5) and (6) are used to aggregate features in horizontal and vertical
directions on the input, a pair of direction-sensitive attention features ZH and ZW are
outputted. This step enables the coordinate attention module to acquire remote dependence
in one spatial direction while preserving precise position information along another spatial
direction, which helps the network to better acquire the global sensory field and encode
more precise position information.

In the coordinate attention generation phase, the ZH and ZW attentional representa-
tions generated in the previous layer are first utilized in a cascade operation.

f =δ(F[ZH , ZW ]) (7)

F is the transform function and δ is the h_swish() activation function. Applying
Equation (7) yields f ∈ RC/r × (H + W) as the intermediate feature mapping for encoding
the coordinate features both horizontally and vertically, and r is the scaling parameter for
down-sampling to reduce the number of channels in f.

3. Experimental Results and Analysis
3.1. Experimental Environment and Parameter Setting

The network experimental environment is ubuntu20.04, python3.7.0, pytorch1.13.0,
and the related hardware configuration and model parameters are shown in Table 2.

Table 2. Hardware configuration and model parameters related to the experiment.

Parameter Configuration Parameter Configuration

GPU
CPU

CUDA
CUDNN

RTX3080Ti
CoreTMi9-10900X

11.3
11.3

Size of the picture
Learning rate

Batch size
Workers

Optimizer
Epochs

1242 × 375
0.01

8
8

Adam
100

Due to the YOLOv7 algorithm model layers being more profound, the number of
parameters is more significant, so the processor with higher computing power is used
to maximize the GPU utilization and set the batch size to eight. and workers to eight.
The model uses the Pytorch framework and the learning rate is 0.01. After the number of
training iterations of 100, the optimal weights file of the model is obtained.

3.2. KITTI’s Dataset

The KITTI dataset was co-founded in 2012 by the Karlsruhe Institute of Technology
(KIT) in Karlsruhe, Germany, and by the Toyota Technological Institute at Chicago (TTI-C)
in Chicago, U.S.A., and it is one of the most commonly used international datasets for
evaluating computer vision algorithms in autonomous driving scenarios.
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This paper conducts experiments on the KITTI’s dataset, a commonly used and pub-
licly available target detection dataset, for training and validation. A total of
7481 images are selected, which contain three categories: Car, Pedestrian, and Cyclist.
This total of 7481 images are randomly divided into training and validation sets according
to a 9:1 ratio and finally imported into the test sets with KITTI’s dataset. Care is taken to
ensure there are no duplicate images between the training set, validation set, and test set to
prevent overfitting of the model [38]. There are 6733 images in the training set, 748 in the
validation set, and 7518 in the test set.

3.3. Object Detection Network Comparison Experiment Results

In selecting the object detection model, we apply the existing popular object detection
model to the KITTI’s dataset for training and testing. We also compare the average accuracy
mAP@0.5 and detection speed FPS as evaluation indicators. Finally, YOLOv7 was selected
as the target detection model for subsequent experiments. The experimental results are
shown in Table 3.

Table 3. Comparison of object detection algorithms.

Model mAP@0.5 FPS

SSD 44.03% 39
Faster R-CNN 55.2% 17

YOLOv5l 87.4% 40
YOLOv7-tiny 85.3% 48

YOLOv7 90.5% 37

As can be seen from Table 3, the detection performance of YOLOv7 is better than
other detection algorithms. For example, the mAP@0.5 of the YOLOv7 algorithm is 46.47%
higher than that of the SSD algorithm. Although the FPS of the YOLOv7-tin algorithm is
higher than that of YOLOv7, the mAP@0.5 is significantly lower than that of YOLOv7 by
5.2%. To better weigh the detection accuracy and detection speed of the model, we chose
YOLOv7 as the target detection algorithm used in the experiment.

3.4. Evaluation Metrics

To accurately evaluate the superiority of the algorithm, the evaluation metrics used in
this study are mean Average Precision (mAP), Frames Per Second (FPS), model size, and
number of parameters.

1. mAP: reflects the mean of the detection accuracy of all target categories in the dataset,
calculated as follows.

mAP =
1
C

C

∑
i=1

APi (8)

In the formula C denotes the number of all categories in the dataset, i denotes the
number of detections, and AP denotes the average of single-target detection accura-
cies.

2. FPS: The number of frames per second transmitted by the model, reflecting the
processing speed of the model.

3. Params: the number of parameters that reflect the model’s memory footprint.
4. Model Size: reflects the size of the memory occupied by the model in M.

3.5. Ablation Experiment and Analysis

To verify the improvement effect of the algorithm in this paper, ablation experiments
are used to verify each improved scheme under the condition that the environment and
parameter settings are kept uniform. Improvement point ablation experiments are carried
out in seven groups, with YOLOv7 as the baseline model, “

√
” indicates that the corre-

sponding improvement point is selected, and each improvement point is first added to
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the original model of YOLOv7 individually and sequentially to carry out the ablation
experiments. Model 6 is the model of this paper’s algorithm (PFA-YOLOv7) and the results
of the experiments are shown in Table 4. The comparison diagram of the model of the
ablation experiments is shown in Figure 7.

Table 4. Improved point ablation experiment.

Model YOLOV7 PConv BiFusionNet CA Parameters Size mAP@0.5 mAP@0.5:0.95 FPS

1
√

37,208 K 74.8 M 90.5% 60.5% 37
2

√ √
32,699 K 66.5 M 91.8% 62.4% 45

3
√ √

37,113 K 73.6 M 92.8% 65.3% 41
4

√ √
37,253 K 75.2 M 94.4% 69.1% 32

5
√ √ √

32,604 K 65.5 M 92.0% 63.4% 47
6

√ √ √ √
32,640 K 65.7 M 94.5% 68.3% 43

Figure 7. Comparison of experimental data of improved point ablation mAP@0.5.

The following conclusions can be drawn from Table 4:

1. Model 1 results from the original YOLOv7 algorithm experiment, a comparison
benchmark for the following sets of experiments. Its parameter count is 37,208 K,
model size is 74.8 M, mean average precision mAP@0.5 is 90.5%, mAP@0.5:0.95 is
60.5%, frames precision second (FPS) is 37.

2. Model 2 is the ELAN module that introduces a partial convolution to improve the
backbone network based on model 1, which not only reduces the number of parame-
ters and the size of the model relative to model 1, but also improves the mean average
precision and frames precision second based on this model.

3. Model 3 is based on model 1, wherein only the BiFusionNet module is replaced, and
this model keeps the number of parameters unchanged, based on which the mean
average precision and frames precision second is substantially improved.

4. Model 4 is based on model 1 and introduces the coordinate attention mechanism. This
model improves the mean average precision while reducing the frame’s precision by
a second.

5. Model 5 is based on model 1, which sequentially introduces the ELAN module
for partial convolutional improvement of the backbone network and introduces
the BiFusionNet module in the enhanced feature extraction network. This model
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improves the evaluation indexes relative to Model 1 and Model 2 and improves the
frame’s precision second relative to Model 3 while reducing the number and size
of the parameters of the model to ensure that the mean average precision does not
decrease significantly.

6. Model 6 is the algorithm of this paper, which introduces the ELAN module of the
partially convolutional improved backbone network, BiFusionNet module, and co-
ordinate attention mechanism for the enhanced feature extraction network which is
based on model 1.

Relative to model 1, the parameter of parameters is reduced by 4568 K, the size
of the model is reduced by 9.1 M, the mAP@0.5 is significantly improved by 4%, the
mAP@0.5:0.95 is significantly improved by 7.8%, and six frames significantly increase
the FPS. The experiments show that the algorithm in this paper substantially improves
all evaluation indexes compared with the original YOLOV7 algorithm, which not only
balances the model detection speed and detection accuracy to meet the demand of real-time
detection but also minimizes the parameters and size of the model.

Relative to Model 2, the number of parameters is reduced by 59 K, the model size is
reduced by 0.8 M, the mAP@0.5 is improved by 2.7%, the mAP@0.5:0.95 value is improved
by 5.9%, and two frames reduce the FPS. Model 6 is based on Model 2, first replacing
the PANet module with the BiFusionNet module as a path-combining network and later
introducing the coordinate attention mechanism. Although the complexity of the model
computation is increased, the inspection accuracy is significantly improved with the reduc-
tion of the detection speed FPS, and the number of parameters and the model size are also
reduced to different degrees.

Relative to Model 3, the parameter quantity was reduced by 4473 K, the model size
was reduced by 7.8 M, the mAP@0.5 was increased by 1.7%, the mAP@0.5:0.95 value
was increased by 3%, and two frames increased the FPS. Model 6, based on model 3, has
introduced part of the convolution to improve the ELAN module of the backbone network
and the coordinate attention mechanism, which on the whole reduces the computational
complexity of the model as well as makes the model obtain richer semantic information
about the network. The experiments have shown that the various evaluation indexes of the
model have been improved, which proves the necessity of the experimental improvement.

Relative to Model 4, the number of parameters is reduced by 4613 K, the model size is
reduced by 9.5 M, the mAP@0.5 is increased by 0.1%, the mAP@0.5:0.95 value is reduced
by 0.8%, and nine frames increase the FPS. Model 6, based on model 4, also successively
introduces the ELAN module and BiFusionNet module of a partially convolutional im-
proved backbone network as an enhanced feature extraction network, which reduces the
complexity of the model and makes the model better aggregate high-level and low-level
semantic information. Experiments show that under the premise of guaranteeing detection
accuracy, the detection speed of the model is significantly improved, and the model size
and number of parameters are minimized. The model size and the number of parameters
are minimized to meet the real-time demand of model detection.

Compared with Model 5, the number of parameters increased by 36 K, the model size
increased by 0.2 M, the mAP@0.5 increased by 2.5%, the mAP@0.5:0.95 value increased by
4.9%, and the FPS decreased by four frames. Model 6 introduces the coordinate attention
mechanism based on model 5, which increases the complexity of the model computation,
delays the detection speed, and consequently increases the number of parameters and
model size slightly, but the detection accuracy is significantly improved.

The algorithm balances detection accuracy and detection speed and maximizes the
detection accuracy to meet the real-time demand.

3.6. Comparative Experiments and Analysis of PBA-YOLOv7 and Baseline Model YOLOv7

The performance metrics of this paper’s model PBA-YOLOv7 and the baseline model
YOLOv7 are compared on KITTI’s dataset, as shown in Table 5.
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Table 5. PBA-YOLOv7 and baseline model YOLOv7 comparison experiments.

Model Parameters Size mAP@0.5 mAP@0.5:0.95 FPS

YOLOv7 37,208 K 74.8 M 90.5% 60.5% 37
PBA-

YOLOv7 32,640 K 65.7 M 94.5% 68.3% 43

From Table 5, it can be seen that the PBA-YOLOv7 model has better parameters, model
size, mAP@0.5, mAP@0.5:0.95, and FPS than the YOLOv7 model where the parameters and
model size are reduced by 4568 K and 9.1 M, respectively, and mAP@0.5, mAP@0.5:0.95,
and FPS are higher by 4%, 7.8%, and six FPS, respectively. The Precision-Recall curve of the
two models is shown in Figure 8 and the test results are shown in Figure 9.

Figure 8. Precision-Recall curve for the model. (a) YOLOv7; (b) PBA-YOLOv7.

Figure 9. Comparison chart of test results on the KITTI dataset. (a) YOLOv7; (b) PBA-YOLOv7.
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As can be seen from the detection results in Figure 9, compared with the baseline
model YOLOv7, the introduction of BiFusionNet instead of PANet as the feature fusion
network better aggregates the effective feature layer in the backbone extraction network
and the depth feature layer in the neck to enhance the localization signals in the target
detection, and finally the introduction of the coordinate attention mechanism significantly
improves the model detection accuracy, and also effectively reduces the leakage detection
rate.

In order to verify the superiority of the model performance in this paper, we used
the PBA-YOLOv7 and baseline model YOLOv7 algorithms to train, validate, and test
the VOC2012 dataset under the same environment and experimental conditions. A total
of 21,503 images which contained 20 categories were selected. The 21,503 images were
randomly divided into the training set, validation set, and test set according to a ratio
of 7:2:1, where the training set, validation set, and test set are 15,052, 4301, and 2150,
respectively. The experimental results are shown in Table 6.

Table 6. PBA-YOLOv7 and baseline model YOLOv7 comparison experiments.

Model Parameters Size mAP@0.5 mAP@0.5:0.95 FPS

YOLOv7 37,208 K 75.1 M 77.3% 46.7% 35
PBA-

YOLOv7 32,990 K 66.9 M 85.7% 53.6% 44

The data in Table 6 shows that the PBA-YOLOv7 model is 8.4% and 6.9% higher than
the original YOLOv7 model with mAP@0.5 and mAP@0.5:0.95, and the detection speed
is nine FPS higher than the original model. The parameters and the model sizes have
been reduced by 4218 K and 8.2 M, respectively. The results of the PBA-YOLOv7 and the
YOLOv7 algorithms on VOC2012 are shown in Figure 10.

Figure 10. Comparison chart of test results on the VOC2012 dataset. (a) YOLOv7; (b) PBA-YOLOv7.
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3.7. Experimental Comparison of Different Models

In order to verify the superiority of this paper’s algorithm (PFA-YOLOv7), the pro-
posed algorithm is compared and experimented with other popular network algorithms
to ensure the identical configuration environment and training parameters. The single-
stage detection algorithms SSD, YOLOv5l, YOLOv7-tiny, YOLOX-l, YOLOv8n, and the
two-stage detection algorithm Faster R-CNN are selected as the comparison algorithms.
The experimental results are shown in Table 7.

Table 7. Comparative experiment.

Model mAP@0.5 FPS

SSD 44.03% 39
Faster R-CNN 55.2% 17

YOLOv5-l 87.4% 40
YOLOv7-tiny 85.3% 48

YOLOX-l 82.9% 31
YOLOv8n 89.3% 68

Algorithm of this paper 94.5% 43

The Faster R-CNN algorithm uses a region proposal network (RPN) to select candi-
date regions from the features extracted by the backbone network. Then, it extracts the
information of the candidate regions for detection in the second stage. However, the mAP
and FPS are lower than the algorithm proposed in this paper (PFA-YOLOv7), and it is
worth mentioning that the FPS of Faster R-CNN is only 17 frames.

Compared with the Faster R-CNN algorithm, the SSD algorithm does not need to
select candidate regions and can simultaneously localize and classify targets in one forward
propagation by predicting targets at different scales on different feature scales. Although
the FPS is fast enough, its mAP0.5 is relatively low.

For the YOLOv5l algorithm, the method uses PANet as a path-binding network to
realize the fusion of feature maps at different scales, and the use of a lightweight network
structure makes the detection fast enough. Although the FPS is 40, it is reduced by 7.1%
compared to the mAP@0.5 algorithm in this paper.

YOLOv7-tiny uses a more lightweight network structure, and despite an FPS of 48,
the mAP0.5 is significantly lower.

YOLOX-l, like YOLOv5, uses the Focus network structure in the backbone part, which
reduces the number of parameters to be computed and improves the model’s speed.
However, its mAP0.5 is then 3% lower relative to YOLOv7-tiny. It is significantly lower by
11.6% compared to the modeling algorithm in this paper.

YOLOv8, currently the newest detection method in the YOLO family, is fast enough.
However, its average accuracy could be more significant, with a mAP0.5 that is 5.2% lower
relative to the model algorithm PBA-YOLOv7 in this paper.

In conclusion, the algorithm in this paper has a more significant performance in target
detection compared to other algorithms.

4. Conclusions

Deep learning-based target detection methods address the problem of how to trade
off the target detection accuracy and detection speed of the model. In this paper, we take
the YOLOv7 network as the baseline model and propose an improved YOLOv7 network
model. Firstly, we introduce PConv to optimize and improve the ELAN module in the
backbone network, in order to reduce the model size and parameter counts significantly
and improve the detection speed of the network under the guarantee of the model detection
accuracy. In the path aggregation network, the BiFusionNet network is designed to replace
the PAnet network, which better fuses and utilizes the shallow and deep information of the
network, as well as retaining the rich feature information and more accurate localization
information of the shallow network targets, which further improves the detection accuracy
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of the network. Finally, the coordinate attention mechanism is introduced to ensure that
the network can extract the rich semantic information and at the same time obtain accurate
location-aware information, which makes the detection accuracy of the network further
improved. Experimental results show that the improved YOLOv7 algorithm exhibits good
robustness compared to the original YOLOv7 model and other comparative models in the
public KITTI’s dataset test, thus proving the effectiveness and superiority of the algorithm
proposed in this paper.

In the future, the network structure algorithm will continue to be optimized to meet
the complex and changing environment of automated vehicle driving. Furthermore, when
a new domain dataset is used, the model in this paper can be used as a pre-trained model to
efficiently and quickly adapt to the new dataset, thus improving the detection performance
of new domain targets.
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