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Abstract: The use of high-precision positioning systems in modern navigation applications is crucial
since location data is one of the most important pieces of information in Industry 4.0, especially for
robots operating outdoors. In the modernization process of global navigation satellite system (GNSS)
positioning, precise point positioning (PPP) has demonstrated its effectiveness in comparison to
traditional differential positioning methods over the past thirty years. However, various challenges
hinder the integration of PPP techniques into Internet of Things (IoT) systems for robot localization,
with accuracy being a primary concern. This accuracy is impacted by factors such as satellite
availability and signal disruptions in outdoor environments, resulting in less precise determination
of satellite observations. Effectively addressing various GNSS errors is crucial when collecting
PPP observations. The paper investigates the trade-off between kinematic PPP accuracy and cost
effectiveness, through the examination of various influencing factors, including the choice of GNSS
system (single or mixed), observation type (single or dual frequency), and satellite geometry. This
research investigates kinematic PPP accuracy variation on a 10.4 km observed track based on different
factors, using the GNSS system (single or mixed), and observation type (single or dual frequency).
It can be concluded that mixed (GPS/GLONASS) dual frequency offers a 3D position accuracy of
9 cm, while mixed single frequency offers a 3D position accuracy of 13 cm. In industry, the results
enable manufacturers to select suitable robot localization solutions according to the outdoor working
environment (number of available satellites), economical constraint (single or dual frequency), and
3D position accuracy.

Keywords: mobile robots; kinematic PPP; localization; GPS/GLONASS; single/dual frequency

1. Introduction

A robot’s localization is the problem of estimating the robot’s position relative to its
environment from sensor observations. Localization is a necessity for successful mobile
robot systems; it is the most fundamental problem in providing a mobile robot with
autonomous capabilities [1]. The robot must maintain an accurate knowledge of its position
and orientation to achieve autonomous navigation [2]. Many techniques are used for
robot localization such as visual-based localization (the use of cameras on the robot to
detect and recognize landmarks in the environment [3]; these landmarks are then used to
estimate the robot’s position), simultaneous localization and mapping (SLAM) (enables
a robot to create a map of an unknown environment while simultaneously determining
its position within the map) [4,5], radio frequency identification (where tags can be placed
in the environment, and the robot can detect these tags and use them to determine its
position), inertial-based localization (inertial sensors like accelerometers and gyroscopes
can be used to track the robot’s motion and estimate its position and orientation), long-term
evolution (LTE) and wheel odometry-based localization (in the case of GPS-denied outdoor
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environments, LTE filter and the mobile robot position is estimated given the applied
changes in odometry and received LTE [6]. However, the root-mean-square error (RMSE)
of the position accuracy results is 13.07 m, and GPS-based localization (GPS can be used for
indoor [7] or outdoor robot localization [8–13] by providing the robot’s position relative
to the global coordinate system). GPS-based localization is considered more cost effective
compared with other techniques [12,14,15]. GPS is a satellite-based global positioning
system that started with the USA system (GPS) (1991) and evolved into four global systems:
USA (GPS), Russia (GLONASS), China (BeiDou), and Europe (Galileo). Those GNSSs offer
a greater number of visible satellites with better distribution and more civilian signals that
ensure better accuracy for robot localization. GPS-based localization is ideal for outdoor
environments and not suitable for indoor environments because of the lack of satellite
signals. However, integration of GPS/INS systems could be used to account for satellite
outage intervals [14,16–18].

GNSSs are satellite-based systems for measuring position and time on Earth. The accu-
racy of the estimated position depends mainly on the number of employed satellites. The
issue of an accurate, reliable, and secure GNSS-based localization and navigation approach
for mobile robotics has been widely addressed by several research and industrial projects,
and numerous solutions have been developed. GPS and GLONASS are the two GNSSs
that are currently accessible and commonly used in mobile robotics for robot localization.
The Galileo and BeiDou systems are emerging GNSSs for mobile robot applications. Addi-
tional sensors and/or filter-based systems can be combined with GNSS to enhance position
accuracy [19,20], such as Galileo E5 AltBOC with inertial measurement sensors [21], the
real-time kinematics differential global position system (RTK-DGPS) with a laser range
finder [22], and the low-cost RTK-GPS [23,24] (position accuracy of 0.08 m–0.1 m). Melita
et al. confirmed the performance of GNSS and satellite/ground-based augmentation sys-
tems for the autonomous lawn mower’s localization and navigation [25]. The assessment
was performed based on a comparison of the proposed localization algorithm with the
traditional differential GPS positioning system. The satellite/ground-based augmentation
systems-based localization solution presents technical barriers for a lot of potential cus-
tomers due to the lack of global coverage of augmentation systems. Zhang et al. developed
a new path-planning algorithm for unmanned aerial vehicles reducing the potential GPS
positioning error due to obstacles [26]. The mean real compiled positioning error is reduced
from 17.52 m to 4.94 m. Zhang et al. investigated the enhancement of positioning accuracy
using GNSS collaborative positioning receivers in urban regions [27].

GNSS users have considered differential positioning the sole accurate positioning
technique for many decades. Differential positioning provides the highest accuracy with
many limitations. The limitations primarily involve the requirement for a reference station
with known coordinates, restrictions on the distance between the rover and the reference
station, and the necessity for simultaneous observations between the reference and rover
stations.

PPP is a cost-effective standalone positioning technique, requiring a single GNSS
receiver. PPP uses un-differenced, differenced single-frequency, and differenced dual-
frequency pseudo-range and carrier-phase observations along with precise satellite orbit
and clock products to produce decimeter-to-sub-centimeter positioning in real-time and
post-processing [28–33]. PPP is considered a strong alternative for differential positioning
as it provides an accuracy that matches the need for enormous static and kinematic applica-
tions. PPP requires only one receiver to collect observations at an unknown station, while
the differential technique requires two receivers to gather observations simultaneously, one
at a known position station and the other at an unknown station.

Robot localization using the GNSS-PPP technique is considered a promising cost-
effective tool compared with other techniques that need more investigation from re-
searchers [34,35]. The GNSS-PPP technique can be used for real-time robot localization
applications [17,36]. This technique enables the design of cyber-physical system (CPS)-
based mobile robots according to RAMI 4.0 [37,38]. An architecture of CPS-based mobile
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robots for localization purposes is proposed in Figure 1. The choice of an architectural
design comprising five layers (physical, sensing, network, and control) draws an analogy
with the successful and efficient modeling and implementation of CPS in CNC machine
tools [39]. GSM and GNSS (GPS/GLONASS) receiver modules have become increasingly
affordable. The implementation of an Arduino unit including GPS and GSM modules,
along with a basic Arduino board, costs approximately USD 125 for a single frequency. Typ-
ically, single GNSS-based module (GPS or GLONASS) devices supporting dual-frequency
functionality are relatively more expensive (about 82%) than single-frequency ones. A
multi-GNSS Arduino unit with a dual frequency typically costs around 76% more than a
single-GNSS unit. Notably, prices may also vary based on the brand and optional features
of the devices. The widespread adoption of this architecture for mobile robot localiza-
tion based on an online IoT system in industrial applications has faced setbacks due to
constraints on position accuracy [40].
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Researchers have continued their efforts for more than two decades to increase the
accuracy provided by PPP. PPP accuracy depends mainly on the used GNSS systems (single
or mixed), observation type (single or dual), duration of observations, satellite geometry,
and processing software capabilities [41–47]. Kinematic PPP could be used for different
applications in strategic fields such as transport, mobile robots, infrastructure, hydrography,
and precision agriculture. Also, it is useful in areas where the GNSS infrastructure is not
completely developed [48].

Kinematic PPP is considered a hot topic for research, and there is a great research
effort dedicated to improving the accuracy of kinematic PPP. Many researchers proved that
kinematic PPP provides less accuracy than static PPP because of limitations in collected
observations for each station. Static PPP could involve hundreds of collected observations
at each station [33], while kinematic PPP deals only with one observation at each station.
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So, extra research effort is needed to improve the accuracy of kinematic PPP based on
factors such as used systems (single or mixed), observation type (single or dual frequency,
and satellite geometry.

Marreiros et al. explored the application of PPP solutions in marine applications,
reporting a decimeter-level accuracy in ellipsoidal height comparisons [49]. Similarly, the
PPP solution for maritime applications was evaluated by Alkan et al. [50]. At Halic Bay,
Istanbul, Turkey, in August 2009, a test was conducted. Leica Geo-Office 8.0 software
was used to acquire the reference differential GNSS (DGNSS) solution, and the Canadian
Spatial Reference System (CSRS) PPP online service was used to generate the kinematic
PPP solution. The kinematic PPP solution provided a position accuracy of 15 cm and height
accuracy of up to 25 cm, compared to the DGNSS solution. Abdallah et al. investigated
the accuracy of the kinematic PPP solution using Bernese GNSS Version 5.2 software for
hydrographic applications [51]. Their PPP solutions were compared with the double-
difference solution from Bernese software. The research involved two kinematic trajectories
along the Rhine River in Duisburg, Germany. In the first kinematic trajectory, the kinematic
PPP solution exhibited standard deviations of 6 cm in the east, 2.1 cm in the north, and
6.8 cm in height. The second trajectory, which started with 40 min of quasi-static observation
time (non-moving vessel), achieves a more precise solution. The standard deviation values
of all measurements are 1.7 cm in the east, 2.6 cm in the north, and 4.9 cm in height. Ju et al.
assessed the effectiveness of GNSS kinematic PPP and PPP-Inter Ambiguity Resolution
(IAR) techniques in monitoring the structural health of bridges [52]. This investigation
utilized regional network stations located in China. The findings indicated that both GNSS
kinematic PPP and PPP-IAR approaches can achieve precise structural health monitoring of
bridges, while PPP-IAR is anticipated to exhibit quicker convergence and greater real-time
monitoring accuracy. Gurturk et al. presented the possibility of using the PPP-Ambiguity
Resolution (AR) method in the precise positioning of the aircraft [53]. GPS data were
gathered during two distinct photogrammetric flights conducted within a project aimed
at creating a digital photogrammetric map of the Izmir region in Turkey. Accuracies of
2.75 cm, 3.0 cm, and 6.0 cm were achieved for north, east, and height, respectively.

Recently, there has been a notable trend towards increased accessibility and afford-
ability of single and dual frequencies, along with the availability of GPS and GLONASS
satellites. This development holds great promise for facilitating a more flexible integration
of mobile robot localization in industrial applications through online IoT systems. However,
to ensure that these advancements align with the precision accuracy required by mobile
robots, further investigations and research are necessary. These studies will help determine
the suitability of these technologies for meeting the specific requirements of outdoor mobile
robots in the context of Industry 4.0 [5,40].

This paper addresses the accuracy issue of robot localization systems using the GNSS-
PPP kinematic technique. A GPS, GLONASS, and multi-GNSS with single- and dual-
frequency observations-based kinematic PPP solutions are proposed. The six solutions aim
to provide robot designers with balanced alternatives between accuracy and cost.

The rest of the paper is organized as follows: In Section 2, the scope of the study is
presented. The results of the six studied solutions are shown and evaluated in Section 3,
followed by Section 4. The conclusion is presented at the end.

2. Test Study Scope

The scope of the study is to investigate the variation in kinematic PPP’s accuracy
based on the used system (GPS, GLONASS, and mixed GPS/GLONASS). Also, the study
investigates the effect of using single- and dual-frequency observations from those three
system configurations on kinematic PPP’s accuracy (Figure 2). Commonly, the use of a
single-frequency receiver is more cost-effective than a dual-frequency receiver.
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A kinematic track of 10.4 km was observed on the campus of King Saud University 
[54], Riyadh, KSA (Figures 3 and 4) using dual-frequency mixed (GPS/GLONASS) obser-
vations using the Sokkia-GRX1 instrument [55]. Observations were gathered using a 15-
degree mask elevation angle and a one-second observation interval in clear sky conditions 
to prevent multipath errors. The rover receiver was mounted on a moving vehicle with an 
average speed of 15 km/h, and its antenna was positioned vertically above the vehicle’s 
roof for an unobstructed sky view. The total observation time was 54 min and 29 s. The 
Sokkia-GRX1 instrument processed multiple signal types, including GPS (L1, L2, C/A) and 
GLONASS (L1, L2, C/A) signals. Observation timing was carefully planned to maximize 
the number of visible satellites and achieve the best position dilution of precision (PDOP) 
values. Table 1 presents the no. of visible satellites and PDOP values for used systems on 
observation day (22,306 GPS day).  
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Figure 2. Study scope.

A kinematic track of 10.4 km was observed on the campus of King Saud University [54],
Riyadh, KSA (Figures 3 and 4) using dual-frequency mixed (GPS/GLONASS) observations
using the Sokkia-GRX1 instrument [55]. Observations were gathered using a 15-degree
mask elevation angle and a one-second observation interval in clear sky conditions to
prevent multipath errors. The rover receiver was mounted on a moving vehicle with an
average speed of 15 km/h, and its antenna was positioned vertically above the vehicle’s
roof for an unobstructed sky view. The total observation time was 54 min and 29 s. The
Sokkia-GRX1 instrument processed multiple signal types, including GPS (L1, L2, C/A) and
GLONASS (L1, L2, C/A) signals. Observation timing was carefully planned to maximize
the number of visible satellites and achieve the best position dilution of precision (PDOP)
values. Table 1 presents the no. of visible satellites and PDOP values for used systems on
observation day (22,306 GPS day).
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Table 1. Average (no. visible satellites and PDOP) for observed track during GPS day (22,306).

System Average No. Visible
Satellites Average PDOP

GPS 9 1.85
GLONASS 6 3.41
Mixed GPS/GLONASS 15 1.39

The reference solution was acquired through differential positioning, utilizing a refer-
ence station with a maximum baseline of 3 km. This differential solution was generated by
processing two observation files (Figure 2), one from the reference control station and the
other from the kinematic rover receiver. Differential corrections from the reference station
are used to correct errors in the observations of the kinematic rover receiver. Six PPP solu-
tions were investigated using NET_DIFF online Processing service [56], namely GPS (single
and dual frequency), GLONASS (single and dual frequency), and mixed GPS/GLONASS
(single and dual frequency). TEQC software (2019 Feb 25 final release) was used during
this study for translation, editing, and quality checks of the originally collected obser-
vation file [57]. The translation process aims at converting the format of the originally
collected observation file from binary to Rinex format (required by the online processing
service). The editing process aims to generate six observation files from the originally
collected observation file. Each generated file provides a unique PPP solution (GPS dual
frequency, GPS single frequency, GLONASS dual frequency, GLONASS single frequency,
mixed GPS/GLONASS dual frequency, and mixed GPS/GLONASS single frequency).

The observation data were processed using Net_Diff 1.16 software for GNSS down-
load, positioning, and analysis [56]. The Net_Diff service allowed us to carrying out
SPP/PPP/PPP-AR/DSPP/DPPP/RTK/PPP-RTK [1,58]. From single frequency to triple
frequency, all the current GPS, GLONASS, BeiDou, Galileo, QZSS, and IRNSS signals
are enabled.

Table 2 presents PPP processing parameters used in Net_Diff. software. The advan-
tages of Net_Diff. service over other PPP services is its ability to process observations
from all available systems (GPS/GLONASS/BeiDou/Galileo/QZSS/IRNSS) with different
combinations between those systems as well as its ability to process different-frequency
observations (single/dual/triple). Those two advantages are ideal for research purposes.
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Table 2. PPP processing parameters used in Net_Diff. service.

PPP Processing Parameters Values

Reference System ITRF2008
Coordinate format ENH (UTM)

Satellite orbit and clock ephemeris source
CODE final

30 s for clock
15 min for orbits

Satellite phase center offset IGS ANTEX
Receiver phase center offset IGS ANTEX

Tropospheric model Saastamoinen
Meteorological model GPT

Mapping function Global Mapping Function (GMF)
Ionospheric model Final Global Ionospheric Maps (GIM) from IGS

Mask angle 10◦

Observation type Code + Phase
System GPS/GLONASS/BeiDou/Galileo/QZSS/IRNSS

Frequency Single/Dual/Triple
Processing mode Static

Estimation method Kalman Filter

3. Study Results
3.1. Kinematic PPP Positioning Accuracy Using Single-Frequency Observations

The study of kinematic PPP accuracy using single-frequency observations is crucial
for robot localization systems as it provides a low-cost solution compared with the high-
cost solution using dual-frequency observations [30]. The results of this study show that
kinematic PPP positioning accuracy is computed relative to the reference differential solu-
tion. Figure 5a presents kinematic PPP coordinate differences using GPS single-frequency
observations. Figure 5b presents kinematic PPP coordinate differences using GLONASS
single-frequency observations. Figure 5c presents kinematic PPP coordinate differences
using mixed GPS/GLONASS single-frequency observations.

3.2. Kinematic PPP Positioning Accuracy Using Dual-Frequency Observations

The study of kinematic PPP accuracy using dual-frequency observations is crucial for
robot localization systems as it provides the ideal solution compared with the less accurate
solution using single-frequency observations. Dual-frequency observations mitigate effi-
ciently the Ionospheric delay (the largest source of errors for GNSS observations) compared
with single-frequency observations. Figure 5d presents kinematic PPP coordinate differ-
ences using GPS dual-frequency observations. Figure 5e presents kinematic PPP coordinate
differences using GLONASS dual-frequency observations. Figure 5f presents kinematic
PPP coordinate differences using mixed GPS/GLONASS dual-frequency observations.

As a result of this study, kinematic PPP positioning accuracy is computed by compar-
ing kinematic PPP observation with the reference differential solution.

Figure 6a presents kinematic PPP RMSE using single-frequency observations from
GPS, GLONASS, and mixed GPS/GLONASS.
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Figure 5. Kinematic PPP coordinate differences using (a) GPS single-frequency observations,
(b) GLONASS single-frequency observations, (c) mixed GPS/GLONASS single-frequency obser-
vations, (d) GPS dual-frequency observations, (e) GLONASS dual-frequency observations, and (f)
mixed GPS/GLONASS dual-frequency observations.
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Figure 6. Kinematic PPP RMSE from GPS, GLONASS, and mixed GPS/GLONASS using (a) single-
frequency observations, and (b) dual-frequency observations.

Figure 6b describes kinematic PPP RMSE using dual-frequency observations from
GPS, GLONASS, and mixed GPS/GLONASS.

4. Discussion

Table 3 presents the RMSE and 3D position RMSE for different kinematic PPP solutions
resulting from this study compared with the differential solution.

Table 3. RMSE from different kinematic PPP solutions compared with the differential solution.

Obs. Type System RMSE (m)
3D Position RMSE (m)Lat. Long. Height

Single
Frequency

GPS 0.056 0.125 0.157 0.208
GLONASS 0.129 0.314 0.258 0.426
GPS/GLONASS 0.039 0.071 0.104 0.132

Dual
Frequency

GPS 0.031 0.074 0.078 0.112
GLONASS 0.044 0.141 0.122 0.192
GPS/GLONASS 0.021 0.069 0.057 0.092

On the date of the study (22,306 GPS day), GPS has 31 healthy satellites, while
GLONASS has 22 healthy satellites. This constellation status explains the GPS no. of
visible satellites (nine), while the GLONASS no. of visible satellites was only six. The
mixed system offers 15 visible satellites with 1.68 position (3D) dilution of precision (PDOP).
Mixed PDOP improved by 25% over GPS-PDOP and by 100% over GLONASS-PDOP. As
GPS is better than GLONASS in satellite geometry for the study geographic region (Riyadh,
KSA), it can be concluded that GPS will provide better performance for kinematic PPP
positioning accuracy over GLONASS. However, the GLONASS system serves as a viable
alternative to GPS, and also, it can augment GPS in different environments to ensure better
behavior using a mixed system (GPS/GLONASS).

From the resulting kinematic PPP coordinate differences shown in Figure 5a,b,d,e,
it can be concluded that GPS offers stable performance for kinematic PPP positioning
accuracy. As GLONASS’s performance is variable due to the effect of satellite geometry
variation, PDOP gets higher, which indicates worse positioning accuracy. GPS single
frequency performance is twice as great as GLONASS single frequency. The GPS dual
frequency performance is twice as good as the GPS single frequency. The accuracy differ-
ence can be justified due to the excellent performance of dual frequency observations in
mitigating the ionospheric delay which considers the largest source of error that affects
GNSS observations. GPS and GLONASS provide better positioning accuracy for latitude
than longitude coordinates using either type of observation (single or dual). This behavior
is due to the increased number of satellite tracks in the latitude direction (north–south)
compared with the least number of satellite tracks in the longitude direction (east–west).

From Figure 5c,f and Table 3, it can be concluded that a mixed system (GPS/GLONASS)
is providing the best performance in positioning accuracy compared with individual
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systems (GPS or GLONASS). Using mixed single-frequency observations improves the
acquired accuracy by 100% over GLONASS and by 38% over GPS.

Using mixed-dual frequency observations improves the acquired accuracy by 100%
over GLONASS and by 18% over GPS. Using mixed-dual frequency observations improves
the acquired accuracy by 30% over mixed single-frequency observations. The results of
Table 3 are in agreement with recent studies [33,35,53,59]. The paper’s findings on accu-
racy and cost percentages provide valuable design guidelines for mobile robot designers,
expediting the sustainable integration of outdoor robot-based CPS systems in Industry 4.0.

5. Conclusions

Improving kinematic PPP positioning accuracy needs further research efforts, given
its significance in serving various strategic applications aligned with sustainability goals
and the broader vision of KSA and global requirements. GNSS-PPP is a promising cost-
effective technique for robot localization. The study proves the effect of the number of
working satellites offered by each system over the acquired positioning accuracy. GPS
systems currently provide a greater number of working satellites (31) compared with the
GLONASS system (22). GPS provides better kinematic PPP accuracy over GLONASS. The
study presents ideal kinematic PPP solutions using dual-frequency observations as well
as cost-effective kinematic PPP solutions using single-frequency observations. GPS dual
frequency offers accuracies of (0.03 m, 0.07 m, and 0.08 m) for latitude, longitude, and
height, respectively, with 3D position accuracy of 11 cm, while GPS single frequency offers
accuracies of (0.06 m, 0.13 m, and 0.16 m) for latitude, longitude, and height, respectively,
with 3D position accuracy of 21 cm. GLONASS dual frequency offers accuracies of (0.04 m,
0.14 m, and 0.12 m) for latitude, longitude, and height, respectively, with 3D position
accuracy of 19 cm, while GLONASS single frequency offers accuracies of (0.13 m, 0.31 m,
and 0.26 m) for latitude, longitude, and height, respectively, with 3D position accuracy
of 43 cm. Mixed (GPS/GLONASS) dual frequency offers accuracies of (0.02 m, 0.07 m,
and 0.06 m) for latitude, longitude, and height, respectively, with 3D position accuracy
of 9 cm, while mixed single frequency offers accuracies of (0.04 m, 0.07 m, and 0.10 m)
for latitude, longitude, and height, respectively, with 3D position accuracy of 13 cm. The
paper’s findings provide reliable alternative solutions for robot localization, considering
the availability of satellites in outdoor environments, the economic aspect of using single
or dual frequency, and the required level of position accuracy. Further research is needed
to enhance kinematic PPP accuracy by incorporating GALILEO and BeiDou alongside
GPS and GLONASS in multi-GNSS observations. Using the four global systems will
ensure a greater number of visible satellites, better PDOP, and an increased amount of
collected observations which will reflect better achieved kinematic PPP accuracy that
meets the desired accuracies for a robot localization system. The achieved kinematic PPP
accuracies will empower the advancement of real-time robot localization applications.
GNSS technology offers a low-cost alternative for robots operating outdoors.
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