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Abstract: The accuracy and speed of facial keypoint detection are crucial factors for effectively
extracting fatigue features, such as eye blinking and yawning. This paper focuses on the improvement
and optimization of facial keypoint detection algorithms, presenting a facial keypoint detection
method based on the Blaze_ghost network and providing more reliable support for facial fatigue
analysis. Firstly, the Blaze_ghost network is designed as the backbone network with a deeper structure
and more parameters to better capture facial detail features, improving the accuracy of keypoint
localization. Secondly, HuberWingloss is designed as the loss function to further reduce the training
difficulty of the model and enhance its generalization ability. Compared to traditional loss functions,
HuberWingloss can reduce the interference of outliers (such as noise and occlusion) in model training,
improve the model’s robustness to complex situations, and further enhance the accuracy of keypoint
detection. Experimental results show that the proposed method achieves significant improvements
in both the NME (Normal Mean Error) and FR (Failure Rate) evaluation metrics. Compared to
traditional methods, the proposed model demonstrates a considerable improvement in keypoint
localization accuracy while still maintaining high detection efficiency.

Keywords: face keypoint detection; PFLD; Blaze_ghost; HuberWingloss

1. Introduction

Since AlexNet kickstarted the era of deep learning in 2012, using convolutional neural
networks to detect facial features has become straightforward. Simultaneously, the main-
stream approach to identifying a driver’s fatigue state involves combining facial keypoint
detection with facial fatigue evaluation indicators. However, recognizing facial fatigue
indicators imposes strict requirements on the accuracy and precision of facial keypoint
detection. Therefore, it is necessary to investigate existing facial keypoint detection algo-
rithms and devise a high-precision and real-time keypoint detection model that accurately
localizes keypoints to address the challenges in fatigue driving identification. Existing
methods for facial keypoint detection can be classified into three categories: those based
on ASM and AAM models, those based on cascaded shape regression models, and those
based on deep learning.

In 1995, Cootes et al. [1] proposed the Active Shape Model (ASM), which is a method
for extracting keypoint coordinates on the distribution model of feature points (PDM). The
overall process of detection involves the “manual calibration of training sets–aligned shape
model construction–search matching”. After improving the ASM model structure, the
Active Appearance Model (AAM) [2] was proposed, which combines shape and texture
information to locate keypoints based on the grayscale value of all pixels in the face.
The ASM and AAM algorithms are pioneering algorithms in the field of facial keypoint
detection, and many researchers have developed their own methods based on them [3,4].
In 2010, Dollar [5] proposed the Cascaded Pose Regression (CPR) algorithm, which first
sets the initial predicted value and then uses cascade regressors to further narrow the
range of the initial prediction while gradually determining the shape of the object and
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finally combines all regressors to obtain the final detection result. Afterward, many facial
keypoint detection algorithms using feature detection combined with cascade regression
appeared [6,7]. In 2013, Professor Tang Xiao’ou [8] of the Chinese University of Hong
Kong and his team proposed the first application of the deep convolutional neural network
(DCNN) in detecting facial keypoints, which consists of three cascaded networks of different
levels to detect the five keypoints of the left eye, right eye, nose, and mouth on both sides.
The obtained keypoint coordinates are more accurate compared to the first two methods.
Zhou et al. [9] used a 68-point dataset for training the cascade network and proposed an
improved DCNN model. Since then, cascade regression convolutional neural networks
have become the mainstream method for researching facial keypoint detection, including
many algorithms, such as the TCDCN [10] network and MTCNN [11] network proposed
by Zhang et al. and the PFLD algorithm proposed by Guo Xiaojie and others [12].

In summary, the current facial keypoint algorithms have poor generalization in com-
plex environments, and the balance between accuracy and speed needs improvement.
Therefore, this study aims to address these issues and enhance the robustness and per-
formance of facial keypoint detection algorithms. Specifically, based on the PFLD facial
keypoint algorithm, this paper integrates BlazeNet [13] and Ghost Module [14] models
to design a new backbone network called Blaze_ghost. ASPP (Atrous Spatial Pyramid
Pooling) is also incorporated for more accurate keypoint extraction. Additionally, a new
loss function called HuberWingloss is introduced, and the Adadeleta [15] optimizer is used.
These improvements enable the enhanced facial keypoint model to extract keypoints more
accurately in a shorter time, meeting the requirements for fatigue feature extraction in
driving environments.

2. Baseline Model

In this paper, the PFLD (Practical Facial Landmark Detector) model is chosen as
the baseline model. The facial keypoint detection algorithm called the PFLD was jointly
proposed by Tianjin University, Wuhan University, Tencent AI Lab, and others in February
2019. This algorithm exhibits significant advantages in terms of accuracy, efficiency, and
model compression. The model structure consists of a backbone network and an auxiliary
network. The backbone network is responsible for predicting facial keypoints, while the
auxiliary network is used to predict facial poses.

2.1. PFLD Backbone Network

As shown in Table 1, the backbone network of the PFLD adopts a structurally opti-
mized MobileNet-V2 [16] lightweight network. This network is used to locate the position
coordinates of facial keypoints and greatly reduces the model’s parameter and compu-
tational complexity due to its unique network structure, thereby improving the model’s
execution speed.

Table 1. PFLD backbone network.

Input Operator

1122 × 3 Conv3× 3
562 × 64 Depthwise Conv3× 3
562 × 64 Bottleneck
282 × 64 Bottleneck
142 × 128 Bottleneck
142 × 128 Bottleneck

(S1) 142 × 16 Conv3× 3
(S2) 72 × 32 Conv7× 7
(S2) 72 × 32 -

S1, S2, S3 Full Connection
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2.2. PFLD Auxiliary Network

The auxiliary network of the PFLD, as shown in Table 2, is a branch of the backbone
network used for head pose prediction during training to improve the localization accuracy
of keypoints. By default, the auxiliary network is not used during testing. The purpose of
this is to adjust the loss parameters based on the head pose angle obtained during training,
making the model pay more attention to rare samples and samples with large pose angles
and predict keypoint position coordinates more stably and robustly.

Table 2. PFLD auxiliary network.

Input Operator

282 × 64 Conv3× 3
142 × 128 Conv3× 3
142 × 128 Conv3× 3

72 × 32 Conv7× 7
12 × 128 Full Connection
12 × 32 Full Connection

2.3. The Loss Function of PFLD

The initial loss function of the PFLD algorithm is expressed as the formula below,
where M represents the number of samples, N represents the number of keypoints, γn
represents different weights, and ‖ ∗ ‖ is the distance metric for feature points.

L =
1
M

M

∑
m=1

N

∑
n=1

γn ‖ dm
n ‖ (1)

The loss function of the PFLD algorithm takes into account the possible significant
differences in the number of samples from different categories in the training set. The head
pose angles obtained from the auxiliary branch are applied to the loss penalties, and rare
samples are assigned higher weights to further refine γn. The optimized loss function is
expressed as the formula below.

L =
1
M

M

∑
m=1

N

∑
n=1

(
C

∑
c

ωc
n

K

∑
k=1

(
1− cosθk

n

))
‖ dm

n ‖2
2 (2)

3. Proposed Method

Based on the PFLD, this paper retains the output of keypoint coordinates and Euler
angles from the auxiliary network for pose correction and designs a new backbone network
called Blaze_ghost and a new loss function named HuberWingloss. This results in a facial
keypoint model with a higher accuracy, better performance, and generalization ability for
complex environments.

3.1. Related Theory

• The idea of BlazeNet is to achieve efficient feature extraction and accurate face de-
tection through the use of depthwise separable convolution, a lightweight feature
pyramid, and efficient model design strategies. Compared with traditional deep con-
volutional networks, BlazeNet has the advantages of low computational complexity,
a small storage size, fewer parameters, and a fast speed, making it suitable for edge
devices such as mobile phones. As shown in Table 3, BlazeNet’s structure consists
of a series of BlazeBlocks and DoubleBlazeBlocks, where the BlazeBlock is a basic
block consisting of multiple depthwise separable convolution layers, batch normal-
ization layers, and ReLU activation functions, as well as shortcut connections to help
information transfer and gradient back propagation. The DoubleBlazeBlock, in con-
trast, is a block consisting of two BlazeBlocks and a shortcut connection, with a more
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complex structure that can further improve the model’s detection ability. In addition
to the basic block, BlazeNet also employs the idea of a lightweight feature pyramid,
where each DoubleBlazeBlock downsamples its output feature map and stacks it with
the feature maps obtained from different scales, forming a set of feature maps with
different scales; the low-resolution feature map can capture a larger range of facial
information, while the high-resolution feature map is more suitable for detecting small
faces. Stacking feature maps of different levels improves the model’s detection ability
for faces of various scales.

• The Ghost Module is a lightweight module based on depthwise separable convolution,
designed to reduce the model’s parameter and computational complexity. The Ghost
Module consists of two parts: primary convolution and a cheap operation. The
primary convolution is a regular convolutional operation, used to extract the main
features from the input feature map. The cheap operation, in contrast, is a depthwise
separable convolution, used for more detailed processing of the input feature map.
Finally, the feature maps obtained from the primary convolution and cheap operation
are concatenated and returned as a feature map with the specified output channel
number.

• ASPP (Atrous Spatial Pyramid Pooling) is a neural network module used for image
semantic segmentation, which can enhance the model’s receptive field and improve
the accuracy of segmentation. ASPP captures multi-scale information by introducing
atrous convolution kernels of different scales, achieving the effect of spatial pyramid
pooling. Specifically, ASPP applies different atrous convolution kernels at a given
spatial scale to obtain feature information at different scales. Then, it uses a global
average pooling layer to compress the convolutional result into a feature vector and
then maps the feature vector to the same size as the input feature map through 1 × 1
convolution, which serves as the output ASPP feature map. In ASPP, the expansion
size of the atrous convolution kernel used is called the dilation rate, and the larger the
dilation rate, the wider the range of the convolution kernel’s receptive field. ASPP is
widely used in visual tasks that require the capture of multi-scale information, such as
object detection and keypoint detection.

Table 3. BlazeNet network structure.

Input Layer

1282 × 3 Convolution
642 × 4 Single BlazeBlock
642 × 4 Single BlazeBlock
642 × 4 Single BlazeBlock

322 × 48 Single BlazeBlock
322 × 48 Single BlazeBlock
322 × 48 Double BlazeBlock
162 × 96 Double BlazeBlock
162 × 96 Double BlazeBlock
162 × 96 Double BlazeBlock
82 × 96 Double BlazeBlock
82 × 96 Double BlazeBlock

3.2. Backbone Network Design

The Blaze_ghost network proposed in this article first utilizes the Ghost Module to
replace some of the convolutional layers in BlazeNet. The Ghost Module is a lightweight
convolutional layer module that can significantly reduce the computational complexity and
model size while maintaining accuracy. It achieves this by dividing the input feature map
into smaller subsets and applying different linear transformations to each subset, which
reduces the number of parameters that need to be learned in the model and improves its
generalization ability.
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Secondly, the model uses an ASPP module, which is a multi-scale spatial pyramid
pooling module that can capture global contextual information from different scales and
enhance the model’s ability to distinguish specific objects. Specifically, the ASPP module
performs pyramid pooling on the feature maps at different scales and uses convolutional
layers and interpolation operations to upsample the feature maps to the original size
and then concatenates them at these different scales to obtain more global contextual
information.

In summary, this fusion model has been optimized for computational efficiency and the
model size, while using the ASPP module to improve the model’s recognition performance.
The optimized backbone network model structure is shown in Table 4.

Table 4. Blaze_ghost network structure.

Layer Input Output

firstconv (B,3,H,W) (B,24,H/2,W/2)
BlazeBlock (B,24,H/2,W/2) (B,48,H/4,W/4)

Double BlazeBlock1 (B,48,H/4,W/4) (B,96,H/8,W/8)
Double BlazeBlock2 (B,96,H/8,W/8) (B,96,H/8,W/8)

ASPP (B,96,H/8,W/8) (B,96,H/8,W/8)
FC (B,96 × 7 × 7) (B,numclass)

In Table 4, B represents batch size and H and W represent the height and width of the
input image. The network structure of Blaze_ghost mainly consists of the Ghost Module,
BlazeBlock, Double BlazeBlock, ASPP module, and fully connected layers, which are used
to implement the task of facial landmark detection. Here are detailed explanations of
each module:

• First convolutional layer: After passing through this layer, the input image’s channel
number changes from 3 to 24, which can effectively extract high-level features of
the image.

• The subscript for the permeability of vacuum µ0, and other common scientific con-
stants, is zero with subscript formatting, not a lowercase letter “o”.

• BlazeBlock feature extractor: Consisting of several Ghost Modules, it outputs features
maps with higher dimensions for further processing in the next step.

• Double BlazeBlock feature extractor: Similar to BlazeBlock, it consists of multiple
Ghost Modules and is used to extract more complex features. Two Double BlazeBlock
modules are used in this model to give the model stronger representation capabilities.

• ASPP module: It adopts the method of multi-scale parallel convolution for feature
fusion, which is used to capture information of different scales and extract more
contextual features. In this model, the ASPP module receives the output of the last
Double BlazeBlock module as input and the output feature is used to predict facial
landmarks.

• Fully connected layer: It maps the previously generated feature maps to a 136-
dimensional vector, which is used to predict the position of facial landmarks.

Overall, Blaze_ghost has a certain level of complexity while being lightweight, which
can achieve high accuracy and computational efficiency. It is well suited for tasks such as
facial landmark detection.

3.3. The Design of the Loss Function

In this article, a new loss function called HuberWingloss is designed by linearly
combining huber_loss [17] and wing_loss [18], as shown in the formula below, to supervise
the training of the model. Huber_loss is typically used to handle outliers in regression
problems, as it is more robust and less sensitive to outliers than L2 loss; wing_loss is a
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loss function that balances smoothness and robustness, which can effectively improve the
accuracy of the model. Combining the two can further enhance the robustness of the model.

abserror = |y− ŷ| (3)

huberloss =

{
1
2 (abserror)

2, abserror ≤ δ

δ
(

abserror − 1
2 δ
)

, abserror > δ
(4)

wingloss =

{
w ∗ ln

(
1 + abserror

ε

)
, abserror ≤ w

abserror − c, abserror > w
(5)

c = w− w ∗ ln
(

1 +
w
ε

)
(6)

L(y, ŷ) = huberloss + wingloss (7)

Lweighted = euler_angle_weights ∗ L(y, ŷ) (8)

HuberWingloss =
1
N

N

∑
i=1

Lweighted (9)

In the equation, y represents the true label, ŷ represents the predicted value of the
model, abs_error represents the absolute difference between the two, huberloss represents
the result obtained from the calculation of the huber loss function, δ represents the critical
point where the huber loss changes from square loss to linear loss, wingloss represents the
result obtained from the calculation of the wing loss function, w and c are parameters of
the wing loss function, and c is a constant. L(y, ŷ) represents the calculation method of
the total loss function, using different calculation methods in different abs_error intervals.
euler_angle_weights represents the weight factors of the euler angle error in each sample.
When calculating the final loss value, if the euler_angle_weights parameter is not empty,
then each loss function value will be further multiplied, which helps adjust the importance
of different euler angle dimensions in the loss function. This can make the model pay more
attention to samples with larger euler angle errors. Lweighted represents the weighted loss
value obtained by applying the weight factor to the loss value of each sample, and, finally,
HuberWingloss represents the sum of the weighted loss values of all samples divided by
the number of samples, which is the final loss value of the model.

4. Experiment and Result Analysis
4.1. Dataset

The WFLW [19] dataset is primarily a facial keypoint localization dataset used for train-
ing facial alignment algorithms. As shown in Figure 1, it contains rich attribute annotations,
such as occlusion, poses, makeup, lighting, blur, and expressions, enabling comprehensive
analysis of existing algorithms. Compared to previous datasets, the WFLW dataset exhibits
significant variations in facial expressions, poses, and occlusion, allowing for the evaluation
of robustness in these aspects. The WFLW dataset consists of 10,000 images, each accompa-
nied by an annotation file. These images cover a wide range of features, expressions, and
poses from faces of different ages, races, and genders. The annotation information in the
dataset includes the bounding box of the face and the coordinates of 98 keypoints, which
mark important facial locations, such as the eyes, nose, and mouth.
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Figure 1. Partial WFLW dataset.

The common facial landmark localization methods include 5-point, 68-point, and
98-point localization. The 5-point localization can only be used for facial contour localiza-
tion; the 98-point localization contains too much facial information, which can cause a large
computational load and low recognition efficiency. The 68-point localization can accurately
describe the facial contour and local features, such as the eyes and mouth, while reducing
the computation time and improving the recognition efficiency. Therefore, in this paper,
we processed the WFLW dataset for the training and testing of 68-keypoint localization.
As shown in Figure 2, in 68-point localization there are 6 keypoints in the left eye (37–42),
6 keypoints in the right eye (43–48), and 20 keypoints in the mouth (49–68), while the rest
are facial contour keypoints.

Figure 2. Sixty-eight points of face keypoints.

4.2. Experimental Environment and Parameter Settings

The experimental environment for this experiment is the Ubuntu 20.04.5 LTS operating
system, CUDA10.0, cudnn7.6.5, an IntelR CoreTM i5-9500 CPU @ 3.00GHz × 6 processor,
an NVIDIA Corporation TU104 (GeForce RTX2080 SUPER) graphics card, 16 G of memory,
the Pycharm community compilation platform, python3.7, and pytorch1.7.1.

Before training the model, the network training parameters were set, and, based on
factors such as the actual graphics memory size, a batch_size parameter value of 16 was set
in this paper. Adadelta was selected as the optimizer, and the decay rate rho was set to the
default value of 0.95, which controls the exponential weighted average of historical gradient
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squares and determines the adaptive range of the learning rate. The increment stability
coefficient epsilon was set to the default value of 1× 10−6, which is a small constant used
to avoid division by zero, and the initial value of the smooth average is an epsilon. The
Adadelta algorithm is a powerful and adaptive gradient descent algorithm, which further
simplifies the parameter adjustment process compared with Adam and SGD algorithms
since it does not require the manual setting of global learning rates and momentum, and
it is more adaptive and robust. In the entire training process, a total of 100 epochs were
iterated; that is, all samples were trained 100 times.

For data preprocessing, in order to improve the robustness and generalization ability
of the model, this paper adopted a series of data augmentation methods, including color
transformation, scaling, rotation, and Gaussian blur, to increase the sample diversity of the
training set and improve the robustness of the model.

4.3. Result and Discussion
4.3.1. Comparative Experiment

This paper uses the NME (Normal Mean Error), FR (Failure Rate), Inference Time, and
model size as evaluation indicators. Among them, the NME is the normalized average
error, which is the value obtained by averaging the normalized estimated errors of all
keypoints on a face. The FR is another standard for evaluating the accuracy of facial
keypoint positioning algorithms. The Inference Time is the time it takes to locate the
keypoints. This paper uses 2500 testing data from WFLW for testing and compares the
experimental data of the proposed model with the data of the original network model, as
shown in Table 5.

Table 5. Comparative experiment.

Backbone
Network NME FR Model Size Inference Time

Mobilev2
(PFLD) 0.062 0.125 1.1 M 0.121 (s)

Resnet50 0.053 0.073 122.27 M 0.304 (s)
Blaze_ghost 0.056 0.073 5.66 M 0.141 (s)

From the experimental data comparison in Table 5, it can be seen that the improved
backbone network proposed in this paper, Blaze_ghost, has reduced the NME and FR to
varying degrees in the evaluation indicators. At the same time, although the Inference
Time and model size have not decreased, the model still maintains its lightweight structure.
These data indicate that the overall performance of the improved facial keypoint detection
algorithm has been significantly improved.

4.3.2. Ablation Experiment

In order to verify the effectiveness of the Blaze_ghost backbone network, the Huber-
Wingloss loss function designed in this paper, and the use of Adadelta optimizer, a series of
ablation experiments were conducted, and the experimental results are shown in Table 6.

Table 6. Ablation experiment.

Backbone
Network

Loss
Function Optimizer NME FR Model Size

Blazelandmark Wingloss SGD 0.081 0.197 7.52 M
Blaze_ghost Wingloss SGD 0.077 0.178 5.66 M
Blaze_ghost Wingloss Adadelta 0.057 0.082 5.66 M
Blaze_ghost HuberWingloss Adadelta 0.056 0.073 5.66 M
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From the experimental comparison in Table 6, it can be seen that Blaze_ghost is an
effective optimization of the BlazeLandMark network based on the Ghost Module, making
the model more lightweight and improving the model’s inference speed. At the same
time, it can also be seen from the table that the introduction of the Adadelta optimizer
and the HuberWingloss loss function proposed in this paper have significantly reduced
the two indicators of the NME and FR. This indicates that the Adadelta optimizer and
the HuberWingloss loss function can effectively apply to the improved keypoint detection
algorithm proposed in this paper, thereby improving the performance of keypoint detection.

4.3.3. Detection Performance Validation

In order to visually check the effect of keypoint localization, the detection results
of some facial images were output and displayed. The detection results under normal
conditions are shown in Figure 3, which can intuitively show that the labeled keypoints
can accurately depict the contour of the key facial area, demonstrating good performance.

Figure 3. Effect of detection under normal conditions.

Due to the complexity and variability of the real driving environment, drivers may
wear face coverings, such as glasses or masks, and there may be an uneven facial lighting
distribution due to lighting environment effects. In addition, image blurring may occur
due to issues with the acquisition equipment such as infrared cameras. These factors
can all affect the effect of keypoint localization, as shown in Figures 4–6, which show the
localization results of the improved model under different influencing factors. It can be
seen intuitively from the detection result figures that the above factors did not cause too
much interference in the detection results, indicating that the improved algorithm has good
robustness.

Figure 4. Detection effect when the acquisition image is blurred.

To verify the performance of our keypoint detection model in extracting fatigue
features, we conducted experiments in a simple system that recognizes blinking and
yawning behavior through mouth aspect ratio (MAR) and eye aspect ratio (EAR) calculation
using face keypoints. We first used the retinaface [20] face detection network to locate
and refine the target area of the portrait in the video image frames from coarse to fine
to improve the localization efficiency and reduce the size of subsequent input images.
Then, we used our proposed keypoint detection algorithm to extract keypoints and finally
extract the fatigue features. Different faces were tested in the experiment, and the results
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are shown in Figure 7. It can be seen that under oblique facial conditions the model can
fit the eye contour well and accurately reflect the opening and closing status of the eyes.
When the driver yawns, the mouth keypoints can also fit well and accurately reflect the
driver’s mouth state. In summary, based on the results of different facial fatigue features,
our proposed face keypoint detection algorithm can accurately detect and identify the face
in the image, extract 68 keypoints of the face, and accurately extract fatigue features, such
as blinking and yawning, indicating that our algorithm has high effectiveness and stability
and can meet the requirements of fatigue feature extraction.

Figure 5. Detection effect when light distribution is not uniform.

Figure 6. Detection effect in case of partial occlusion.

Figure 7. Detection effect of fatigue features.

5. Conclusions and Future Work

This paper proposes a facial keypoint detection method based on the Blaze_ghost
network. It designs the Blaze_ghost network as the backbone network and utilizes Huber-
Wingloss as the loss function. Adadelta is used as the optimizer. The proposed algorithm
is compared and analyzed with the PFLD algorithm in the WFLW dataset for 68-point
keypoint detection. The advantages of the proposed facial keypoint detection method are
validated through metrics such as the NME, FR, Inference Time, and model size. Addi-
tionally, the real effects of the proposed method on facial keypoint detection and simple
fatigue feature extraction tasks like eye blinking and yawning are visually demonstrated
using images. In future research, we will further expand and improve the facial keypoint
localization method. Firstly, we plan to consider training and evaluating with larger and
more diverse datasets to enhance the algorithm’s robustness and generalization ability. Sec-
ondly, we will explore more advanced deep learning models and algorithms or introduce
self-supervised learning methods to reduce the reliance on labeled data.
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