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Abstract: The importance of empirical versus theoretical laws is a controversial issue in many
scientific fields, the latter being generally accepted and the relevance of which is not discussed here.
As in other areas, there are well-known theoretical and empirical formulas in geosciences that do not
adequately represent the reality of a given phenomenon. Quantitative comparison of geophysical and
petrophysical results with data from the other multiple fields that comprise the geosciences compels
a high exigency to avoid discontinuities in existing relationships. However, the proposal of new
empirical laws that more accurately reflect a given phenomenon is often considered insufficient to
contradict existing formulas. The aim of this work is to defend the development of new empirical laws
by showing that they constitute a true model of analysed behaviour if certain criteria are followed.
This defence is especially needed when non-linearisable functions are required to fit the empirical
data. To achieve this aim, this study shows the established algebraic function as a function of a single
variable, whose main advantage is its application to phenomena of a geological nature that show
two differentiated behaviours as the variable x is increased. A series of five examples of different
phenomena related to geosciences is selected to demonstrate the level of accuracy that new empirical
laws can reach in contrast to the widely accepted historical relationships.

Keywords: empirical laws; geosciences; function of double asymptote; nature double behaviour

1. Introduction

Contrary to theoretical laws, which are generally accepted, the new empirical laws in
geosciences that disagree with existing concepts and formulas often face more objections to
being accepted by the research community, thus reflecting a certain reluctance to accept
these types of laws. In the authors’ experience, concerns about the new empirical relation-
ships have not arisen due to the omission of any relevant variable suggesting a limited
understanding of the phenomenon under study but expressly due to their discordance
with the existing ones. The main criticism of new empirical laws is often dependent on
the existence of previous relationships whose results differ from those obtained using
the presented laws. Further criticism arises when the new empirical law is not presented
in the form of a well-known function such as linear, power, or exponential (polynomial
functions are not included because of the difficulty of assigning them a physical sense),
which is seemingly interpreted as if something is hidden or mysterious. New empirical
laws often encounter dogmatic criticism, as no arguments about the erroneous basis for the
development of the new formula are presented, and the goodness of obtained fit or high
correlation between the proposed function and empirical data are frequently ignored in the
peer review process, even when superior to those of existing laws.

Establishing a simple algebraic function that is shown to encompass several very
different phenomena in geological media leads to milestones with respect to the functions
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conventionally used to fit them. Phenomena in which the gradient of a variable y varies
gradually with the independent variable x generally tries to fit power or exponential
functions (both linearisable) unless prior knowledge is available to facilitate the use of a
specific function. However, there are many cases in practice in which the empirical data
do not adequately fit these types of functions but correspond to two different behaviours
dependent on the variation of the independent variable. This study presents a new type
of single variable function, named the function of double asymptote, which allows the
acceptance of new empirical laws, unlike other more complex processes such as the one
shown in Godoy et al. [1], and those showing a single asymptote are usually studied using
the empirical Hurst’s law [2]. A function of double asymptote of a single variable is one
that presents an infinite approximation to a straight line (horizontal, vertical, or oblique),
i.e., an asymptotic behaviour, at two different values, and these functions have been called
y2A(x). If fitting a comprehensive data series to a function of double asymptote y2A(x)
is substantially better, it implies that the phenomenon under analysis responds to two
different behaviours. The examples presented here show how an existing expression may
not be useful for covering a geological reality.

The aim of this work is to demonstrate that it is, today, possible and necessary to
develop mathematical expressions that faithfully represent some of the many phenomena
that occur in different fields of geosciences. If a new relationship is obtained from empirical
data and meets certain requirements (stated below), this law should be accepted despite its
results contrasting with those of previous models. The need to develop these new empirical
laws arises because the existing relationships are restricted due to poor fit, continuity
problems, lack of meaning beyond the analysed range, or other deficiencies.

This study is focused on the development of empirical laws as a possible analytical
(mathematical) solution to a given phenomenon in geosciences. Defending the possibilities
of empirical laws does not imply being against theoretical laws, nor is the intention to
evaluate the bases, tools, methods, and theoretical developments. In this study, it is
considered that analytical solutions in general, and empirical laws in particular, should
aim to avoid discontinuities, except when analysing physically discontinuous phenomena.
Hence, added to the above objective is the proposition that the new empirical laws should
continuously reflect the behaviour of natural media involving two distinct processes that
do not conform to conventional mathematical expressions of fit. One of the reasons for
defending empirical laws in complex phenomena lies in the fact that the step from the
infinitesimal theoretical formulation to the behaviour at a macroscopic scale (characteristic
in geosciences) involves the statistical generalisation of many variables, which does not
always conclude in an analytical expression.

This work affirms that it is still necessary to investigate certain phenomena in geo-
sciences in order to obtain new empirical laws that represent their behaviour. The y2A(x)
functions presented in this study demonstrate their usefulness in obtaining empirical laws
that accurately fit the empirical data. The applied character of the presented examples
supports the validity and use of empirical laws that allow a more realistic reflection of the
main characteristics of the phenomena analysed.

This work begins by framing the diatribe between empirical and theoretical laws, the
diversity of physical aspects that make up the geosciences, and the difference between more
descriptive (e.g., case studies) and methodological advances in this field, although these
aspects may also be found in other scientific fields. Some criteria are provided for outlining
function fitting to empirical data. The process by which the most appropriate function
is selected is not presented for each case because this search requires a tremendously
broad catalogue of diverse functions. The study then focuses on showing the established
function type, named functions of double asymptote y2A(x), specifically designed to model
natural phenomena involving two different behaviours depending on changes in a single
variable x. Some empirical relationships developed and published by authors in recent
years in sufficiently differentiated fields: petrophysics [3], fluid flow in porous media [4],
geotechnics [5], nuclear magnetic resonance [6], and spread of radioactive emissions [7]
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are presented as examples. In the discussion, some possible generic objections against the
development of new empirical relationships are presented.

2. Materials and Methods
2.1. Theoretical Laws Versus Empirical Laws

Scientific laws can be described as reasonings that determine a univocal relationship
between different parameters or properties of an analysed medium or process, and they
can generally be represented by a mathematical expression. Theoretical laws are generally
considered to be those that enunciate a certain principle that relates to these properties
or are based on other general laws and accepted principles. Conversely, empirical laws
are based on empirical data, and the criterion for generating the function that relates the
analysed variables simply involves data fitting to a certain function. Nevertheless, an
empirical law can facilitate the subsequent development of a theoretical law.

The qualification of “laws” given to these relationships applies to phenomena that
involve a great generality, e.g., Newton’s second law, and those whose impact is limited
to a specific field, e.g., Darcy’s law [8] for water flow in semi-permeable porous media
and Archie’s first law [9] in petrophysics. A conventional way for accordingly differen-
tiating laws is to qualify the former as universal laws. The labelling of laws is generally
reserved for equations in which an analysed relationship between different parameters
is established for the first time. Although once established, these relationships typically
undergo improvements of their applied coefficients; they must not be considered as new
laws. In other cases, certain definitions may change the final expression of an established
law; for example, Poiseuille’s law [10] was determined before the definition of viscosity.

Interestingly, relationships of great interest are not always formalised as laws. As an
example, starting from empirical values, Sundberg [11] established that the ratio between
the resistivities of a solid porous medium ρ0 and fluid that fills its pores ρW presents a
constant value, which was initially called the resistivity factor and later the formation factor
F. Archie [9] later empirically determined that F = 1/Øm, where Ø is the porosity of the
analysed medium and m is its characteristic parameter, which would eventually be referred
to as the cementation exponent. Apart from the confusion involved in the naming of this
exponent, because it does not solely depend on the presence of cement in the analysed
medium, this relationship is known in petrophysics as Archie’s first law. However, the
establishment of the formation factor was not attributed to the character of a law, even
though this factor is an intrinsic parameter of geological media and provides considerably
greater characterisation.

The application range of a given relationship must also be considered to qualify an
obtained law. Although the qualification as a law for empirical laws is relative—and
somewhat pretentious—compared with universal laws, it can be said that a relationship
is considered a law when it is applicable to a large number of cases in a given field. For
example, although water is considered a reference fluid and NaCl is a characteristic ionic
bonding compound, the relationship between conductivity (σ) in µS/cm and concentration
(CC) in g/cm3 of a NaCl solution in water, given by CC(NaCl) = σ2/[1500·(σ + 500)] [12]
should not be considered an empirical law because this relationship does not hold for other
salts.

An objection that is often posed to new empirical laws is their lack of theoretical basis,
even though some empirical laws have achieved recognition similar to that of theoretical
laws. The most recognised example is the law of universal gravitation. However, a fact
that offsets the importance of empirical laws is that some of the most recognised theoret-
ical equations have arisen from one or more empirical laws, as in the case of Maxwell’s
equations for electromagnetic fields, which combines the previous laws of Ampere, Gauss,
and Faraday. A similar phenomenon occurs with the equation of transport in fluid media,
which combines the laws of Newton on viscosity (1687), Darcy (1856), and Fick (1955),
among others, although the consideration of the different included phenomena involves
the addition of empirical relationships that regulate each phenomenon. In some cases, the
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requirement of a theoretical basis has led to an initial error in the application of previous
laws, generally by considering the applicability of the model they represent. One example
is the case in which the equations of flow in straight capillaries are considered to govern
flow in porous geological media, which have been shown to be inappropriate for isotropic
homogeneous media [13].

The degree of objection to new empirical laws and the requirement of theoretical
justification depends, to a large extent, on the specific characteristics of each scientific field.
Some particularities within the geosciences are therefore discussed in the following section.

2.2. Knowledge-Based Approaches in Geosciences

Research in geoscience, as in other scientific fields, involves two types of contributions
to knowledge, in which case studies are differentiated from those that develop new methods
or whose results are generalisable. The first type of contribution presents specific data of
a study area that were not previously known (e.g., cartography, basin descriptions, and
seismic sections). The other type of contribution presents a novel technique for obtaining
data, new algorithms for data processing or interpretation, or new reasoning on the obtained
data that explains why the data behave in an observed manner. Among the latter, there
are investigations in which principles and rules that govern the analysed phenomenon,
typically constituting theoretical laws, are deduced based on theoretical reasoning. There
are also investigations in which relationships are developed to estimate a certain property
of an analysed process as a function of some other properties based on the observed data,
possessing a degree of predictive capacity, and these are used to establish empirical laws.

The particularities presented in this work on empirical laws refer to studies in which
these rules are materialised in the form of a mathematical relationship between analysed
variables or parameters, such as density as a function of depth or porosity as a function
of grain size distribution. The described difference is independent of its greater or lesser
significance. There have thus been great contributions to geological knowledge that did
not require a mathematical relationship, such as the explanation of continental movement
via plate tectonics.

As in many scientific fields, another widespread way to achieve the aforementioned
predictive nature in geoscience involves mathematical modelling using finite element or
finite difference methods, the main limitation of which is that they must be considered for
each specific case. The theoretical starting point is sometimes limited when applying these
techniques; for example, in the Monte Carlo modelling of radioactive spreading in subsoil,
the effect of accumulation is not considered [7]. The same occurs in the modelling of flow
in porous media when considering a tortuosity expression that does not reflect the real
tortuosity [13].

2.3. Criteria for the Development of Empirical Laws

For a given phenomenon, there may be several functions with similar fits to the
empirical data. The selection of a fitting function thus becomes the key that determines
the quality of the obtained law in many cases. Functions that can be used to generate
empirical relationships range from simple proportionality to progressively more complex
expressions (e.g., explicit relationships of the friction factor in rough pipes to fit the non-
analytical-resoluble Colebrook equation [14] for rough pipes). In this sense, although there
is no universal principle according to which aspect of nature must be governed by simple
relationships, the search for empirical relationships that reflect natural behaviour must
have this aim, at least in principle.

The simplest functions are linear or linearisable functions (exponential and logarith-
mic) [15–18], which are often used owing to the ease by which their coefficients are obtained,
and the use of polynomial functions is also common [19,20]. Nevertheless, it must be noted
that a possible physical meaning is difficult to assign to polynomials with an order higher
than 2, except for those that correspond to the powers of binomials. The presentation of an
empirical law of this type is generally not disputed because of its inclusion in well-known
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calculation codes (e.g., MS Excel©, Version 1808, Office 2019), even though these functions
are often meaningless beyond the applied range. In contrast, in the authors’ experience,
strong reluctance is common when a non-typical function is used, even if the resulting
goodness of fit to the empirical data is higher using the new empirical law or if an existing
relationship is not contradicted.

One consideration that must be faced before searching for a mathematical relationship
that reflects a given process is the continuities and discontinuities that may exist in that
process. Although the aesthetics of continuity is undeniable, certain discontinuous prop-
erties are common in natural media. A characteristic example is the phase transitions of
water from solid to liquid and liquid to gas. Another not-so-well-known example is the
flow regime transition of water between laminar and turbulent flow.

Some of the empirical relationships presented in this study only aimed to achieve the
best fit to the empirical data without presenting, at first glance, an explanatory sense of the
phenomenon. Example 4, shown below, is one such case that presents a new permeability
relationship as a function of porosity in granular media and involves multiple factors.
The developed law explains what actually occurs in nature rather than investigating how
each involved variable affects that relationship. However, the obtained empirical law can
facilitate the further development of a theoretical law.

A key aspect of the development of a new empirical law must be the validation of its
results with empirical data. However, paradoxical cases are found in the literature. For
example, the Kozeny equation [21] for estimating intrinsic permeability as a function of
average grain size in porous media was developed, according to its author, for granular
media with grains of the same size. However, it has been used as a validation of later
models applied to media with different grain sizes. It is known that if the grain size
distribution widens, the permeability decreases. In Díaz-Curiel et al. [22], a modification
of this equation includes the grain size gradation coefficient, validated with the most
recognised empirical data. The authors do not know how to explain the validation of the
multitude of subsequent publications in which new equations were developed to estimate
the permeability of media with different grain sizes and in which the Kozeny equation was
used to validate their results.

Another example would be the equation established by Kleinberg and Horsfield [23]
to describe the total nuclear magnetic resonance curve as a function of the three relaxation
mechanisms (bulk B, surface S, and diffusion D) in all the pores of a granular medium.
Although all the studies on this process agree that they are processes that occur in parallel,
this equation proposed the analytical solution of this curve as the integral of the product of
the exponentials corresponding to the three mechanisms. In Díaz-Curiel et al. [24], it was
shown that this approach was incorrect because, among other reasons, it is contrary to the
inverse Laplace decomposition with which the total resonance curve is solved according
to all studies on this process (except that of the aforementioned equation and subsequent
publications). This equation leads to the inference that the relaxation times fulfil the relation
1/T = 1/TB + 1/TS + 1/TD. The permeability values obtained using the last relation are very
different from those obtained with the inverse Laplace decomposition analysis. Likewise,
we do not know how to explain the empirical validations shown in the many publications
in which it is used.

2.3.1. Limitations When Establishing Empirical Laws

The correct development of an empirical law must involve a physical sense of the
established functional dependence, indicating which parameter depends on the rest of the
variables. The fact that a function h(g) can be expressed in the form g(h) does not indicate
that the latter reflects the dependence that occurs in nature. For example, the relation of
fluid viscosity to its temperature does not imply that temperature depends on viscosity.
Similarly, with respect to a fluid flowing through the pores of a porous medium, the fact
that the cation exchange capacity (CEC) of the grains depends on the medium permeability
does not imply that permeability depends on the CEC.
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One of the empirical law limitations is the possibility of using different functions that
reach a similar degree of deviation with respect to the empirical data. In this process, it
should be considered that the use of goodness-of-fit indicators to evaluate a relationship to a
set of empirical data (e.g., correlation coefficient, mean deviation, R2) may have limitations.
For example, the least squares criterion to determine the fit coefficients of a linearisable
function to a set of data, in which the variable x involves both very high and very low
values, can provide fit coefficients that constitute a function that greatly deviates from
the data if there is a significant disparity in one of the lowest values. To show this effect,
consider two series of 23 data points, y1(x) = 10·exp(−0.2·x), and y2(x) = 0.1·x2 with (x = 1,
. . ., 23), and two other series y1’(x) and y2’(x) with the same values except for an anomalous
point of the lowest y values, for example, y1’(23) = 0.0001 (or another very close to zero)
instead of 0.1 and y2’(1) = 0.0001 instead of 0.1. Figure 1 shows that the fitting functions
y1’R(x) and y2’R(x) obtained using least squares to the y1’(x) and y2’(x) series substantially
differ from y1(x) and y2(x).
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The evaluation criteria for the goodness-of-fit relationship, which accounts for the
number of measurements (e.g., the use of deviation σn−1 versus the standard deviation),
should not be ignored. The indicator used in error minimisation processes should also
be considered for cases involving a single variable or multiple variables by solving the
Jacobian matrix, which is formed by the partial derivatives of the results with respect to the
variables. Linear convergence that involves the absolute value of the difference can thus
lead to different results than those obtained using a curved convergence, which involves
the conventional least squares criterion (i.e., the root of the squared differences).

In a similar sense, the use of scales of a differentiated range (i.e., choice of axes) for
parameters is not only a question of graphic representation but that the goodness of fit
obtained using different criteria (e.g., regression coefficient R2) can lead to inaccurate
results. For example, the relation between Young’s modulus of the ground ES and dynamic
modulus ED (i.e., obtained from seismic propagation velocities) presents strong dispersion,
which is seemingly eliminated if ES/ED is plotted against ED in a logarithmic scale.

Furthermore, there are other procedures that the authors consider to be inappropriate
for determining empirical laws. For example, the result of multiplying or dividing an
existing relationship by a factor does not strictly result in the establishment of a new law
but rather a modification of the previous law. In other cases, it is used as an incorrect
criterion that the new relationship is dimensionally consistent with a previous one (note
that it is not a classical procedure of dimensional analysis).
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2.3.2. Process for Obtaining Formulas

The first step to obtaining a certain empirical law is to analyse the geometry of the
trends shown by the empirical data, for example, by paying attention to the number of
curvatures, whether they show an increasing or decreasing trend, and whether they show
asymptotic trends when the variable approaches lower or upper limit values or both. The
logic of behaviour must be included in this process. For example, it is reasonable to consider
that the porosity of a granular medium involving equidimensional grains is higher than
that of a medium involving heterogeneous grain sizes, which can fill the remaining pores
between those of a larger size, independently of whether this is confirmed by the empirical
results.

After analysing the empirical data characteristics, a function that shows a similar
aspect must be chosen. For non-harmonic behaviour, this step requires some knowledge on
simple algebraic expressions. In this sense, the use of the trial-and-error method to select
an initial ratio function should not be ruled out. Once a function is chosen, which should
preferably contain few coefficients, the optimal value of these coefficients will be chosen
to achieve the best fit to the empirical data, in which minimum deviation (i.e., adopting
coefficients that minimise the difference between the fit function and empirical data) is an
important criterion. This process can be performed using known codes, such as the MS
Excel© solver function.

Although the individual steps to reach each formula are not shown in the different
examples of empirical laws presented here, a common subsequent process has been search-
ing secondary relationships for the coefficients of that first formula. For example, after
analysing the trend of the empirical viscosity data of some silty-clay muds as a function
of temperature (T), an ordinate determined at T ≥ 0 ◦C and an asymptotic decrease when
T→100 ◦C was observed; thus, the most relevant function appears to be a decreasing expo-
nential η(T) = a·exp(−b·T), where a and b are fitting coefficients. However, an adequate fit
to the data cannot be achieved using any set of coefficients despite obtaining an acceptable
regression coefficient (R2 = 0.93). Applying logarithms, it can be seen that the dependence
of the data on temperature, with the exception of the constant value ln(a), shows that
a power function explains the observed behaviour better. The chosen relationship for
which the minimum deviation coefficients are calculated is η(T) = n1·exp(−n2·Tn3). An
empirical relationship that more adequately describes that dependence (R2 = 0.99) is thus
given as η(T) = 1.8·exp(−0.044·T0.85) by Díaz-Curiel [25]. However, this relationship cannot
be considered a law, despite its usefulness in determining the changes in mud viscosity
with temperature in water and oil wells, because the analysed fluid has somewhat specific
characteristics.

2.4. A Fruitful Type of Double-Asymptotic Functions

The main reason for elaborating a new empirical relationship is the lack of a previous
theoretical basis for presupposing the dependence of a parameter y on the values of an
independent variable x. In some cases, the choice of function type has a theoretical explana-
tion, such as exponential functions that solve the proportionality y ∝ x at differential level
dy/dx = kC·y, which is the basis of many natural phenomena, where kC is a constant char-
acteristic of the analysed phenomenon. However, in other phenomena that seem to show
similar behaviour (e.g., growth attenuation in many living organisms), the empirical data
do not properly fit exponential functions. In such cases, the choice of a function type only
involves the generalised knowledge of certain simple functions. Thus, in addition to linear
behaviour, cases in which the gradient of y varies gradually with x are generally applied to
attempt to fit power or exponential (linearisable) functions. However, there are many cases
in practice in which the empirical data do not adequately fit these types of functions. This
study, therefore, considers it valuable to present a new type of simple function suitable for
the acceptance of new empirical laws, as briefly stated in the introduction.

Among the many possible functions to choose from, a type of algebraic relationship
defined for positive values of x is presented, which in this study are called functions of
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double asymptote y2A(x) because they exhibit asymptotic behaviour when the x values
tend to 0 or infinity. The general form of these functions is:

y2A =
c1·xz1 + c2

xz3 + c3
, (1)

Figure 2 shows some examples of y2A(x) functions, whose coefficients are listed in
Table 1.

Appl. Sci. 2023, 13, 10321 8 of 18 
 

functions. This study, therefore, considers it valuable to present a new type of simple func-
tion suitable for the acceptance of new empirical laws, as briefly stated in the introduction. 

Among the many possible functions to choose from, a type of algebraic relationship 
defined for positive values of x is presented, which in this study are called functions of 
double asymptote y2A(x) because they exhibit asymptotic behaviour when the x values 
tend to 0 or infinity. The general form of these functions is: 𝑦 = · , (1) 

Figure 2 shows some examples of y2A(x) functions, whose coefficients are listed in 
Table 1. 

  

  
Figure 2. Examples of functions y2A(x): (a) Cases with one principal curvature (concave or convex). 
(b) Cases with two or more curvatures. (c) Plot of data series from which the functions f01, f03, y f05 in 
(a) are obtained in addition to the exponential or potential best fit to root mean square (RMS) curves. 
(d) Cases with equal exponents equal and c2  =  c3. 

Table 1. Coefficients and exponents of functions y2A(x) shown in Figure 2. 

 f01 f02 f03 f04 f05 f06 f07 f08 f09 f10 f11 f12 f13 f14 
c1 0.1 0.04 1.0 1.0 - 2.5 2.0 1.5 −8.0 −1.5 1.6 5.4 −1.0 −2.7 
z1 2.0 2.5 1.0 1.0 - 0.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 
c2 - 1.0 - 0.5 1.0 - −7.0 −2.0 - - - - 1.0 10.5 
z3 1.0 1.0 1.0 1.0 1.0 1.0 4.0 3.6 6.0 4.0 4.0 5.0 3.5 4.0 
c3 4.0 15.6 3.0 2.0 1.0 2.0 3.5 2.0 5.1 1.0 5.1 6.6 1.0 5.1 

Figure 2c shows that some curves with apparently exponential or power aspects 
clearly better fit to a function y2A(x), which reflect a variation of a determined gradient up 
to a given value of x and a different later gradient. Thus, despite obtaining high R2 values, 
the data series of function f01 do not fit a power function with a power greater than 1 (y = 
0.016·x 1.9, R2  =  0.99), those of function f03 do not fit a power function with a power less 
than 1 (y = 0.2·x 0.9, R2  =  0.99), and those of function f05 do not fit an exponential function 
(y = 0.75·e0.26·x, R2  =  0.90). 

Different asymptotic values can be obtained using different combinations of coeffi-
cients. Figure 2b shows some cases in which the two asymptotes are horizontal. It is also 
possible to obtain different asymptotic behaviours, such as from positive to horizontal, 

Figure 2. Examples of functions y2A(x): (a) Cases with one principal curvature (concave or convex).
(b) Cases with two or more curvatures. (c) Plot of data series from which the functions f 01, f 03, y
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Table 1. Coefficients and exponents of functions y2A(x) shown in Figure 2.

f 01 f 02 f 03 f 04 f 05 f 06 f 07 f 08 f 09 f 10 f 11 f 12 f 13 f 14

c1 0.1 0.04 1.0 1.0 - 2.5 2.0 1.5 −8.0 −1.5 1.6 5.4 −1.0 −2.7
z1 2.0 2.5 1.0 1.0 - 0.3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
c2 - 1.0 - 0.5 1.0 - −7.0 −2.0 - - - - 1.0 10.5
z3 1.0 1.0 1.0 1.0 1.0 1.0 4.0 3.6 6.0 4.0 4.0 5.0 3.5 4.0
c3 4.0 15.6 3.0 2.0 1.0 2.0 3.5 2.0 5.1 1.0 5.1 6.6 1.0 5.1

Figure 2c shows that some curves with apparently exponential or power aspects
clearly better fit to a function y2A(x), which reflect a variation of a determined gradient
up to a given value of x and a different later gradient. Thus, despite obtaining high R2

values, the data series of function f 01 do not fit a power function with a power greater
than 1 (y = 0.016·x1.9, R2 = 0.99), those of function f 03 do not fit a power function with a
power less than 1 (y = 0.2·x0.9, R2 = 0.99), and those of function f 05 do not fit an exponential
function (y = 0.75·e0.26·x, R2 = 0.90).

Different asymptotic values can be obtained using different combinations of coeffi-
cients. Figure 2b shows some cases in which the two asymptotes are horizontal. It is also
possible to obtain different asymptotic behaviours, such as from positive to horizontal,
from horizontal to positive, and from negative to horizontal (Figure 2a). Furthermore, it is
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possible to fit x values with wide variation ranges, different curvatures (concave/convex),
or where the inflexion point occurs at very different x values by varying the coefficients
on these functions of double horizontal asymptote y2A(x). Even within this subtype, a
suitable fit for different data sets can be achieved by varying the coefficients of the function.
Figure 2d shows an example of the different behaviours captured by the function y2A(x)
when all of the exponents are equal and c2 = c3; thus, the asymptotes on the left and right
are y = 1 and y = c1, respectively.

The fit to a function y2A(x) is interesting because it may lead to a more theoretical
law in the sense that it models an analysed parameter in a more diverse way than that
corresponding to a single dependence, with this analysis and the subsequent one not
being a purely theoretical development. This implies that if the fit to a function of double
asymptote y2A(x) is substantially better than when using a power asymptote, the analysed
phenomenon responds to two different behaviours, starting from the value of x at which the
transition occurs (see examples 1 and 5); or if the two asymptotes have opposite directions,
the analysed behaviour is also physically opposite (see example 4).

We should point out that the number of degrees of freedom of the function y2A(x)
depends on the geometry of the phenomenon to be fitted since the key to the y2A(x) function
is its ability to fit complex natural behaviours such as those reflected in the examples shown
in this study, while maintaining the asymptotic values expected from the phenomena
analysed. The general expression of the function y2A(x), including five fitting coefficients,
does not mean that the resulting empirical relationship in each case maintains the five
coefficients or degrees of freedom. Thus, in the application examples presented in Section 3,
in which the function y2A(x) is fitted to empirical data or to existing empirical formulas
(maintaining the physical sense they already had), its degrees of freedom are reduced by
determining the specific fitting coefficients in each example. In the example of Figure 3,
the existing equation to determine the influence q2 of the width (B) of the foundation
footing on the allowable soil load, which was the standardised disjunctive expression:
[=1 if B < 1.2; ={(B + 0.3)/B}2 if B > 1.2], is passed from the three coefficients of freedom of
that equation to the five of the continuous equation of Figure 3. Regarding the transition
from the standardised linear equation (1 + 0.33 − D/B), with two coefficients of freedom,
to determine the influence of embedment (D/B) with D being the depth of the foundation,
it is passed to the three coefficients of freedom of the q3 equation in Figure 3, which limits
a relationship that tends to infinity. In simpler behaviours, Figure 2c shows that f 03 has
two fitting coefficients (such as the potential function obtained by root mean square (RMS)),
and f 05 has two fitting coefficients (such as the exponential function obtained by RMS).
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3. Examples of New Empirical Laws from y2A(x)

Although the developed relationships have already been published in specialised
journals in geosciences [3–7], it is important to note that the intention of presenting examples
is not to review the published works but, rather, to show the physical scope of the algebraic
function y2A(x) in different phenomena. In each example, the limitations of the existing
relationships and a brief description of the contribution of the new formulas are included.

3.1. Allowable Soil Pressure in Geotechnics

In civil engineering, the resistance of the ground to footing foundations is important
for the construction of road structures and buildings. The so-called allowable soil pressure
qa is conventionally used to characterise this geomechanical resistance. This parameter
provides the pressure which the foundation footings (indeed, the ground) can withstand
according to a target structure and without exceeding the subsidence limit determined in
the standard formulation (e.g., 25 mm settlement in Part 2 of Eurocode 7 for geotechnical
design). This standard also includes the widespread Bowles relation [26], which relates qa
with penetrometric data N, footing radio B, and embedment D as the standard equation.
However, these standard equations have two flaws. (1) Two different expressions are
required depending on the footing dimensions, which involve unnatural discontinuities.
(2) These equations are only valid up to a depth that is limited by the footing width. The
empirical data from which the conventional relationships are derived show that the ground
subsidence gradually changes from a relatively constant behaviour to a critical value from
which the ground tends asymptotically to a different constant value. This can lead to the
conclusion that the footing is supported on the ground up to a certain size but sinks into
the ground beyond that size, resulting in a different response behaviour. From a theoretical
point of view, it would, therefore, be possible to search for a function that reflects both
behaviours with a corresponding continuous transition between them.

To adequately resolve these issues, Díaz-Curiel et al. [5] modified the standard for-
mula for calculating the allowable pressure value as a function of footing width, among
other variables. Figure 3 shows the comparison between the resulting curve from the
two existing relationships with discontinuous gradients and the resulting curve from the
new single relationship with continuous gradients. This new formulation also makes it
possible to establish a single parameter q1(N) that includes a new relationship between
NSPT (obtained by the standard penetration test in boreholes) and the more extensively
used NDPSH (obtained by the dynamic penetration test). This parameter is independent
of footing and reflects the terrain characteristics that affect its allowable pressure. A new
relationship q3(D/B) was also developed to evaluate the variation of the allowable pressure
for appreciably greater depths than the footing width. Thus, correcting the continuous
increasing linear expression (1 + 0.33·D/B) from Terzaghi and Peck [27], established for
D < B, on the influence of D/B for allowable pressure values. The three relationships q1(N),
q2(B), and q3(D/B) were developed using the y2A(x) function.

3.2. Nuclear Magnetic Resonance Soundings

The application of nuclear magnetic resonance (NMR) is widely accepted in many
fields (e.g., medicine), and its application and validity for the characterisation of geological
media have increased in recent decades. Apart from the technological advances that
have allowed its implementation, NMR values allow estimating some properties of the
subsurface, such as porosity and permeability. The most relevant formulation is the one
that allows an estimation of medium permeability from the free porosity Ømr obtained
using NMR, knmr = C·pmr·T2

1, where C is an adjustment factor, T1 is the NMR relaxation
time, and p is an exponent with two possible values. These two values come from the
fact that the relationship knmr(Ø,T1) has two distinct sources: (1) a theoretical–empirical
origin [28], which concludes that p = 1; and (2) a purely empirical character [29], which
concludes that the best fit is obtained for p ≈ 4. Clearly, the selection of either exponent
value radically alters the obtained results; thus, the values of C vary by several orders of
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magnitude, which greatly reduces the application of the NMR technique for estimating
permeability.

Under the hypothesis that this exponent is a characteristic parameter of each geological
medium, Díaz-Curiel et al. [6] resolved this limitation by developing an empirical relation-
ship to obtain this exponent in unconsolidated detrital media. The exponents that yield a
minimum deviation with respect to the directly measured hydraulic data were obtained
for each aquifer using the empirical data of 23 magnetic resonance soundings measured
in four detrital aquifers of four continental basins. Because the p values do not correlate
well with any of the parameters provided by the NMR technique, a new variable ζM was
defined: ζM = h

mr,M·T
2
1,M, where Ømr,M and T1,M denote the average Ømr and T1 values

in each aquifer, respectively, and h is an adjustment coefficient close to 1. ζM provides a
high correlation (R2 = 0.95) with the empirical data, and the fitting to a monotonic function
reaches a maximum for h = 0.87. The developed function of double asymptote (Figure 4)
presents a mean deviation of 1.5%. The function of double asymptote obtained thus pro-
vides the expected asymptotic values, which would not have been otherwise obtained
using linearisable functions. The determination of h and the coefficients of the developed
relationship in other geological media will allow this relationship to be applicable to any
porous lithology; thus, it could be considered a general empirical law or its application
range is limited to unconsolidated detrital formations.
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3.3. Correction of Gamma-Ray Well Logs

The knowledge of natural radioactivity is important not only for localising radioactive
mineral deposits for nuclear energy use but also for quantifying the percentage of clay
contained in many sedimentary formations, which strongly influences the medium perme-
ability. A representative case of subsurface characterisation involves the measurement of
gamma radioactivity in boreholes.

Radioactive nuclides undergo a series of collisions with each other and other particles
in a medium during their displacement. This produces two different effects: (1) attenuation
when the particles are transformed in these collisions and (2) build-up in certain spatial
areas owing to the trajectory deviations. The geometry of the source-detector system also af-
fects the measurements, whose correction is conventional in laboratory processes. However,
the environmental conditions are highly variable when measuring natural radioactivity
in boreholes. Thus, empirical charts were used until 2018 for each set of environmental
conditions and probes.

This led to the development of several empirical relationships to quantify the attenua-
tion and accumulation that occurs in cylindrical sources towards their interior (axis). In this
case, the empirical relationships developed by Díaz-Curiel et al. [7] not only provided ana-
lytical expressions to obtain the clay content but also implemented the accumulation effect,
which had not been previously considered. This effect was not addressed in studies that
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attempted to establish a solution using Monte Carlo modelling, which focused on empirical
relationships to obtain the effective distances for application in the radiation attenuation
and accumulation equations when propagating through a cylindrical medium from the
outside to the inside. That work concluded with formulas fitted to the historically used
empirical charts. In addition to the application in wells, the relationships developed for this
geometry in their inverse form are of great interest in the study of geological repositories of
radioactive waste containers. However, these are admittedly specific applications.

Nevertheless, in the procedure of arriving at these relationships, an empirical relation-
ship must be included to reflect the sharp reduction to zero of the radioactive build-up
as a function of energy at very low energies (Figure 5). Although the energy values of
radioactive nuclides in nature are considerably higher than 0.1 MeV, without this consider-
ation, the energy dependence would establish that the accumulation of radiation grows
asymptotically toward ∞ when approaching very low energies, which has no physical
meaning.
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3.4. Porosity/Permeability Relationship in Granular Porous Media

The relationship between permeability (k) and porosity (Ø) in natural porous media
is an important foundation in petrophysics. For granular media, in particular, porosity
values mostly range between 0% and 50%, with ~25% representing a very significant
structural difference between cemented and unconsolidated media. Prior to 2015, there
were two ways to understand the k(Ø) relationship. In the petroleum field, the general
idea was that porosity and permeability are positively correlated in granular media, which
was reflected in a large number of publications on cemented rocks. However, in the field
of hydrogeology, it was widely known that the correlation is negative in unconsolidated
granular media. This disagreement was not resolved even though one of the most accepted
relationships for estimating permeability is the equation of Kozeny [21], according to which
the permeability of a medium of smaller grain size (clay–silt) is lower than those in media
with larger grain sizes (sand–gravel). It should be noted that both cemented media with
low Ø and unconsolidated media with high Ø have smaller grain sizes.

A continuous relationship was presented in Díaz-Curiel et al. [3] that encompasses
cemented to unconsolidated formations (Figure 6) and is a function of a well-known
parameter in petrophysics: the exponent m of the porosity in Archie’s first law (F = 1/Øm).
This exponent is referred to as the cementation coefficient owing to the large number of
publications in the petroleum literature, even though it also applies to unconsolidated
formations. In this case, the developed fitting function has vertical asymptotes for Ø = 0
and Ø = 1 and is thus a modified y2A(Ø) formula.
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This is a good example to understand to what extent an existing expression, a model
based on ideal configurations, or laboratory measurements limited to specific lithologies
may or may not be useful to cover a geological reality. That would be the case where the
variety of behaviours can only be expressed by relationships from a completely empirical
point of view. It should be noted that some lithologies have characteristics that strongly
differ from those of most granular formations, such as certain volcanic rocks (e.g., pumice)
and karst formations (e.g., fractured limestone).

3.5. Continuous Relationship for Laminar Flow to Turbulent in Hydraulics

The importance of the flow characteristics of water and hydrocarbons is recognised for
all transport networks through circular conduits (pipes). The capillary model is the most
commonly used approach to understand flow behaviour in the geological porous media of
the subsoil. Knowledge of the relations governing these flows through circular channels is
a crucial aspect that presents a particularly differentiated behaviour between low-velocity
(laminar) and high-velocity (turbulent) regimes. The transition interval between these
two flow regimes is neither a strictly continuous step nor discontinuous. In laminar flow,
the fluid advances homogeneously along the channel length and width; when the flow is
completely turbulent, the fluid becomes homogeneously disordered. Spatial and temporal
heterogeneities arise within the transition interval, and different results can be obtained
from instantaneous images or punctual measurements. The formulation applied until
2020 relatively disregarded the transition interval between these regimes, particularly
its effects on two crucial parameters for hydraulic calculations: (1) the ratio of the axial
distribution of the flow velocity inside the pipes to velocity in the axis v(rD)/vmax (the
velocity law), and (2) the friction factor in smooth pipes f smooth, for which there were no
applicable relationships in the transition interval between the two flows. In Díaz-Curiel
et al. [4], relationships for both parameters were presented for the velocity law as a function
of the turbulence exponent τ (Figure 7) and for the friction factor as a function of the
Reynolds number Re (Figure 8). Thus, the previous transition interval ambiguity of the
conventional equations was solved, providing expressions that continuously reflect the
fluid flow behaviour for any regime.

The main problem we encountered was that, in general, the characterisation of the
transition interval had been underestimated. This contrasts with the fact that the interpola-
tion between laminar and turbulent flow is supported from an experimental point of view
in the classical and most recent widespread studies, and its convenience was predicted
by well-known authors (referred to in that publication). Although, in this case, the two
generated laws show that both phenomena can be represented by a double-asymptote
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dependence, the one shown by the velocity law is particular because it deals with the radial
behaviour of the friction attenuation phenomenon as a function of the distance to the wall.
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4. Discussion

Considering that the y2A(x) functions do not consist of functions of multiple non-
periodic inflexions but involve two distinct trends along the x-axis, the way used to assume
that such a mathematical expression is able to reflect these two trends has been to show a
series of examples of which this double behaviour is known in geosciences and in which
the fit obtained is sufficiently precise.

Next, some possible concerns about the development of new empirical relationships
are discussed. This discussion does not include debates on each of the presented examples,
as the differences with existing relationships were added in each of the corresponding
publications.

A first possible objection might be that only in a relatively small number of cases the
empirical relationship between two or more parameters is purely based on the observation
of a statistical correlation. However, the above representative cases of empirical relation-
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ships between two quantities have already shown, based on the observation of a statistical
correlation and the criteria for its development detailed in Section 2, to improve certain
existing relationships, and nowhere in this study is it claimed that this occurs in all cases.
In some phenomena that occur in geological environments, the number of variables may
be very high. Theoretically, quantifying the effect of each is then very complex, making it
necessary first to consider the existence of relationships that comprise the entire set of data
(see [3]).

A possible second reproach might be that deviations between empirical data and
existing relationships derived from well-known theoretical models are attributable to the
lack of knowledge of some involved parameters. However, it would be lax to use this
argument to dismiss the new empirical relationships rather than the existing theoretical
equations unless it were true that this is the case in the new relationships rather than
in the existing ones. By way of example, it might be thought that there is a one-to-one
relationship between permeability and porosity in fractured rocks such that the deviations
between empirical data and existing relationships would be due to a lack of knowledge
of the statistical distribution of fractures and their extent and connectivity. However, it
is known that there is no unique dependence between permeability and porosity, so it
is that assumption that fails in this case. Conversely, if in the development of a new
empirical relationship, the formation factor of a fractured rock is considered to comprise
these overlooked variables, this should lead to the acceptance of this new law, even if it
is empirical in origin. Indeed, it may be that such dependence has not been analysed to
date for fractured rocks, as is the case of the porosity/permeability relationship in granular
porous media shown in this study.

The third possible disapproval might be that empirical laws allow comparing substan-
tially different phenomena from a physical point of view, such as the correlation between
strength features and stress–strain behaviour. In the case of the relationship between
strength and Young’s modulus in soils, these may appear to be two substantially different
phenomena to those that do not consider the degradation of this characteristic with respect
to the load to which a soil is subjected. The same may be said for the relationship between
NSPT (dynamic penetration data) and seismic wave velocities (vS and vP) in soils, which are
different phenomena, as they consider very different degrees of deformation. However, if
it is considered that the deformation of the modulus with load in granular soils follows an
evolution closely related to the granulometric grading coefficient, a correlation relationship
can be found between NSPT and vs. and vP that involves these two degrees of deformation
(see [5]). In other words, the new empirical law would establish that in soils, degradation of
static moduli with strength remains statistically correlated with the granulometric grading
coefficient.

In the case of existing empirical relationships, even those based on partial theoretical
knowledge of a studied phenomenon, an anticipated discrepancy might be the argument
that their replacement with new relationships that have no theoretical basis might not
be appropriate, even when the latter provides a better data fit. In this regard, it should
be noted that the aim of this study is not to criticise theoretical laws but to point out
the possibilities of empirical laws in some cases. In fact, partial knowledge of a given
phenomenon may have caused some theoretical laws to diverge from the empirical data.
One such case, even including the development of a theorem [33], would be not considering
the accumulation in the dispersion of gamma radiation inside the wells, producing results
far from the empirical values for large well diameters (see [7]). Another case would be
the misconception produced in the conventional expression of the formation factor F* for
clay-containing media. Waxman and Smits [34], starting from σ0 = kx·σc + ky·σw, where σ0,
σc, and σw are the conductivities of a sample, clay exchange cations, and salt solution in
equilibrium, respectively, and kx and ky are the appropriate geometric factors. Then, they
assumed that the geometric factor is the inverse of the formation factor (according to their
equation, kx = ky = 1/F*). This is not appropriate, as the formation factor would vary with,
for example, the length of the sample (see [3]).
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Finally, a possible objection might be that the function of double asymptote y2A(x) is
independent of the mechanics of the underlying phenomenon and does not provide any
information in this regard. First, this objection would rule out the interest for calculations
in industrial applications of having a suitable relationship that allows a much more precise
calculation of the parameter value under analysis, as in the case of the admissible pressure
in buildings or the determination of the flow velocity that minimises the transport cost in
macro-installations such as refineries. Secondly, it has already been stated in this study
that obtaining a well-adjusted empirical formula allows, by itself, the search for and
development of appropriate theoretical formulas. That is, starting from a function of double
asymptote y2A(x), algebraic operations can be performed that transform this function into
the product or sum of two different functions that reflect the two behaviours established in
the developed y2A(x) function. This is especially valid if the ranges of the domain under
consideration are representative of the whole phenomenon and if the asymptotic trends
are the expected ones, as in the examples shown in this study. It should be borne in mind
that many of the theoretical-empirical relationships are based on an improperly applied
theoretical analogue, and it is precisely the fact of developing an analytical relationship
of empirical origin that makes it possible to think that the model is incorrect. This occurs,
for example, in the case of tortuosity, both for having conventionally used a relationship
that has nothing to do with the real tortuosity of the flow and for having used the straight
capillary model, which is not applicable in isotropic granular media (see [13]). Thus, the
existing equations for granular media derived from the Poiseuille equation [10] should not
be considered an adequate theoretical development, and nor should Maxwell’s model for
mixtures of suspended particles have been applied to solid media (see [13]). For all these,
it is precisely the fact of developing an analytical relation of empirical origin that makes
it possible to think that the existing model is incorrect. It is finally interesting to note that
there are other functions of double asymptote that have already been accepted by the fact
that they have already been applied, such as, for example, the functions derived from the
logistic law [35].

5. Conclusions

The presented examples affirm that it is still necessary to investigate certain phenom-
ena in geosciences to obtain new empirical laws that synthesise their dependencies and
behaviour. The main differences in the presented formulas compared with the results of
previous research in the literature are included in the background and discussion sections
of the related papers. In some of the presented examples, the previous equations are
quite a few years old, which shows that there may be certain reservations about entering
into scientific debates in these types of cases, which is a contradiction, given that science
advances precisely by questioning our knowledge.

The empirical laws presented in this paper demonstrate that the y2A(x) functions
faithfully reflect the behaviour of certain geoscience phenomena, accurately fitting with
the empirical data. The applied character of the presented examples supports the validity
of the empirical laws. When such laws are well established, they can be used to minimise
the influence of measurement errors, more realistically reflect the main characteristics of
analysed phenomena, and ultimately determine possible theoretical laws.

The remaining question would be to find a theoretical explanation that justifies that
this function comes from considering a double behaviour as the value of the analysed
parameter increases, regardless of whether arguments are presented on the physics of these
differentiated trends.

Author Contributions: Conceptualization, J.D.-C.; methodology, J.D.-C.; validation, J.D.-C. and
L.A.-L.; formal analysis, J.D.-C. and B.B.; resources, L.A.-L., D.P.-P. and M.J.M.; writing—original draft
preparation, J.D.-C., B.B. and L.A.-L.; writing—review and editing, D.P.-P. and M.J.M.; visualization,
J.D.-C. and D.P.-P.; supervision, J.D.-C.; funding acquisition, J.D.-C. and B.B. All authors have read
and agreed to the published version of the manuscript.



Appl. Sci. 2023, 13, 10321 17 of 18

Funding: Part of this study was supported by the “Comunidad de Madrid” Regional Government of
Madrid, Spain, grant number CARESOIL-CM P2018/EMT-4317.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Godoy, V.A.; Napa-García, G.F.; Gómez-Hernández, J.J. Ensemble smoother with multiple data assimilation as a tool for curve

fitting and parameter uncertainty characterization: Example applications to fit nonlinear sorption isotherms. Math. Geosci. 2022,
54, 807–825. [CrossRef]

2. Nigmatullin, R.; Dorokhin, S.; Ivchenko, A. Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems.
Math 2021, 9, 381. [CrossRef]

3. Díaz-Curiel, J.; Biosca, B.; Miguel, M.J. Geophysical Estimation of Permeability in Sedimentary Media with Porosities from 0 to
50%. OGST—Rev. D’ifp Energ. Nouv. 2015, 71, 18. [CrossRef]

4. Díaz-Curiel, J.; Miguel, M.J.; Caparrini, N.; Biosca, B.; Arévalo-Lomas, L. Improving some Basic Relationships of Pipe Hydraulics.
Application for Processing Flowmeter Logs in Water Wells. Flow Meas. Instrum. 2020, 72, 101698. [CrossRef]

5. Díaz-Curiel, J.; Rueda-Quintero, S.; Biosca, B.; Doñate-Matilla, G. Advance in the penetrometer test formulation to estimate
allowable pressure in granular soils. Acta Geotech. 2017, 12, 1119–1127. [CrossRef]

6. Díaz-Curiel, J.; Biosca, B.; Doñate-Matilla, G.; Rueda-Quintero, S. Estimation of hydraulic transmissivity from MRS by varying
the porosity exponent, in detrital aquifers of the Iberian Peninsula. Near Surf. Geophys. 2018, 16, 401–410. [CrossRef]

7. Díaz-Curiel, J.; Miguel, M.J.; Biosca, B.; Medina, R. Environmental correction of gamma ray logs by geometrical/empirical factors.
J. Pet. Eng. 2019, 173, 462–468. [CrossRef]

8. Darcy, H. Détermination des Lois D’écoulement de l’eau a Travers le Sable. Les Fontaines Publiques de la Ville de Dijon, Appendis, Note D;
Dalmont, V., Ed.; Paris, France, 1856; pp. 590–594.

9. Archie, G.E. Introduction to petrophysics of reservoir rocks. AAPG Bull. 1950, 34, 943–961.
10. Poiseuille, J.L. Recherches Expérimentales sur le Mouvement des Liquides dans les Tubes de Très-Petits Diamètres; Imprimerie Royale:

Tournai, Belgium, 1844.
11. Sundberg, K. Effect of impregnating waters on electrical conductivity of soils and rocks. Trans. Am. Inst. Min. Met. Eng. 1932, 97,

367–391.
12. Díaz-Curiel, J. Theory and Practice of Geophysical Prospecting; 2000; ISBN 978-84-692-7448-4.
13. Díaz-Curiel, J.; Biosca, B.; Arévalo-Lomas, L.; Miguel, M.J. Failure of the Conventional Expression of Tortuosity in Granular

Porous Solids. Surv. Geophys. 2021, 42, 943–960. [CrossRef]
14. Colebrook, C.F. Turbulent flow in pipes with particular reference to the transition region between the smooth and rough pipe

laws. J. Inst. Civil Eng. 1939, 11, 133–156. [CrossRef]
15. Di Maio, R.; Piegari, E. Water storage mapping of pyroclastic covers through electrical resistivity measurements. J. Appl. Geophy.

2011, 75, 196–202. [CrossRef]
16. Di Maio, R.; Piegari, E.; Todero, G.; Fabbrocino, S. A combined use of Archie and van Genuchten models for predicting hydraulic

conductivity of unsaturated pyroclastic soils. J. Appl. Geophy. 2015, 112, 249–255. [CrossRef]
17. He, M.M.; Pang, F.; Wang, H.T.; Zhu, J.W.; Chen, Y.S. Energy dissipation-based method for strength determination of rock under

uniaxial compression. Shock Vib. 2020, 2020, 8865958. [CrossRef]
18. Tisato, N.; Madonna, C.; Saenger, E.H. Attenuation of seismic waves in partially saturated Berea sandstone as a function of

frequency and confining pressure. Front. Earth Sci. 2021, 9, 641177. [CrossRef]
19. Nigmatullin, R.R.; Bataleva, E.A.; Nepeina, K.S.; Matiukov, V.E. Quality control of the initial magnetotelluric data: Analysis

of calibration curves using a fitting function represented by the ratio of 4th-order polynomials. Measurement 2023, 216, 112914.
[CrossRef]

20. Yu, Y.; Loskot, P. Polynomial Distributions and Transformations. Measurement 2023, 11, 985. [CrossRef]
21. Kozeny, J. Uber die kapillare leitung des wassers im boden-aufstieg versickerung und anwendung auf die bewässerung,

Sitzungsberichte der Wiener Akademie der Wissenschaften. Math. Naturwiss (Abt. IIa) 1927, 136, 271–306.
22. Díaz-Curiel, J.; Miguel, M.J.; Biosca, B.; Arévalo-Lomas, L. New granulometric expressions for estimating permeability of granular

drainages. Bull. Eng. Geol. Environ. 2022, 81, 397. [CrossRef]
23. Kleinberg, R.L.; Horsfield, M.A. Transverse relaxation processes in porous sedimentary rock. J. Magn. Reson. (1969) 1990, 88, 9–19.

[CrossRef]
24. Díaz-Curiel, J.; Biosca, B.; Arévalo-Lomas, L.; Miguel, M.J.; Loayza-Muro, R. On the Validity of the Relationship 1/T= 1/TB+ 1/TS+

1/TD in NMR Techniques with Regards to Permeability Estimation of Natural Porous Media. Front. Earth Sci. 2021, 9, 688686.
[CrossRef]

https://doi.org/10.1007/s11004-021-09981-7
https://doi.org/10.3390/math9040381
https://doi.org/10.2516/ogst/2014053
https://doi.org/10.1016/j.flowmeasinst.2020.101698
https://doi.org/10.1007/s11440-017-0565-x
https://doi.org/10.1002/nsg.12003
https://doi.org/10.1016/j.petrol.2018.10.056
https://doi.org/10.1007/s10712-021-09645-5
https://doi.org/10.1680/ijoti.1939.13150
https://doi.org/10.1016/j.jappgeo.2011.07.009
https://doi.org/10.1016/j.jappgeo.2014.12.002
https://doi.org/10.1155/2020/8865958
https://doi.org/10.3389/feart.2021.641177
https://doi.org/10.1016/j.measurement.2023.112914
https://doi.org/10.3390/math11040985
https://doi.org/10.1007/s10064-022-02897-4
https://doi.org/10.1016/0022-2364(90)90104-H
https://doi.org/10.3389/feart.2021.688686


Appl. Sci. 2023, 13, 10321 18 of 18

25. Díaz-Curiel, J. Interpretación y correlación automáticas de diagrafías geofísicas. Aplicación a la hidrogeología en el sur de la
Cuenca del Duero. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 1995. [CrossRef]

26. Bowles, J.E. Foundation Analysis and Design, 5th ed.; McGraw-Hill: Singapore, 1997.
27. Terzaghi, K.; Peck, R.B. Soil Mechanics in Engineering Practice, 2nd ed.; Wiley: New York, NY, USA, 1967.
28. Seevers, D.O. A nuclear magnetic method for determining the permeability of sandstones. In Proceedings of the Transactions on

SPWLA 7th Annual Logging Symposium, Houston, TX, USA, 9–13 June 1966.
29. Kenyon, W.E.; Day, P.I.; Straley, C.; Willemsen, J.F. A three-part study of NMR longitudinal relaxation properties of water-saturated

sandstones. SPE Form. Eval. 1988, 3, 622–636. [CrossRef]
30. Nikuradse, J. Gesetzmässigkeiten der Turbulenten Strömung in Glatten Rohren. In Forschung auf dem Gebiete des Ingenieurwesens,

No. 356; Laws of Turbulent Flow in Smooth Pipes; VDI: Berlin, Germany, 1932; Volume 3, pp. 1–76.
31. Hagen, G. Über Die Bewegung des Wassers in engen zylindrischen Röhren [About the Movement of Water in Narrow Cylindrical

Pipes]. Poggendorfs Ann. Phys. Und Chem. 1839, 16, 423–442. [CrossRef]
32. Blasius, H. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten [The law of similarity in friction processes in fluids].

Forschungs-Arbeit des Ingenieur-Wesens. In Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens: Insbesondere
aus den Laboratorien der Technischen Hochschulen; Springer: Berlin/Heidelberg, Germany, 1913; p. 131. [CrossRef]

33. Wahl, J.S. Gamma Ray Logging. Geophysics 1983, 48, 1536–1550. [CrossRef]
34. Waxman, M.H.; Smits, L.J.M. Electrical conductivities in oil bearing shaly sands. Soc. Pet. Eng. J. 1968, 243, 107–122. [CrossRef]
35. Derron, M.H.; Jaboyedoff, M. Preface LIDAR and DEM techniques for landslides monitoring and characterization. Nat. Hazards

Earth Syst. Sci. 2010, 10, 1877–1879. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.20868/UPM.thesis.57631
https://doi.org/10.2118/15643-PA
https://doi.org/10.1002/andp.18391220304
https://doi.org/10.1007/978-3-662-02239-9_1
https://doi.org/10.1190/1.1441436
https://doi.org/10.2118/1863-A
https://doi.org/10.5194/nhess-10-1877-2010

	Introduction 
	Materials and Methods 
	Theoretical Laws Versus Empirical Laws 
	Knowledge-Based Approaches in Geosciences 
	Criteria for the Development of Empirical Laws 
	Limitations When Establishing Empirical Laws 
	Process for Obtaining Formulas 

	A Fruitful Type of Double-Asymptotic Functions 

	Examples of New Empirical Laws from y2A(x) 
	Allowable Soil Pressure in Geotechnics 
	Nuclear Magnetic Resonance Soundings 
	Correction of Gamma-Ray Well Logs 
	Porosity/Permeability Relationship in Granular Porous Media 
	Continuous Relationship for Laminar Flow to Turbulent in Hydraulics 

	Discussion 
	Conclusions 
	References

