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Abstract: This article describes a detailed methodology for the A-phase classification of the cyclic
alternating patterns (CAPs) present in sleep electroencephalography (EEG). CAPs are a valuable
EEG marker of sleep instability and represent an important pattern with which to analyze additional
characteristics of sleep processes, and A-phase manifestations have been linked to some specific
conditions. CAP phase detection and classification are not commonly carried out routinely due
to the time and attention this problem requires (and if present, CAP labels are user-dependent,
visually evaluated, and hand-made); thus, an automatic tool to solve the CAP classification problem
is presented. The classification experiments were carried out using a distributional representation
of the EEG data obtained from the CAP Sleep Database. For this purpose, data symbolization was
performed using the one-dimensional symbolic aggregate approximation (1d-SAX), followed by the
vectorization of symbolic data with a trained Doc2Vec model and a final classification with ten classic
machine learning models for two separate validation strategies. The best results were obtained using
a support vector classifier with a radial basis kernel. For hold-out validation, the best F1 Score was
0.7651; for stratified 10-fold cross-validation, the best F1 Score was 0.7611 ± 0.0133. This illustrates
that the proposed methodology is suitable for CAP classification.

Keywords: EEG; classification; cyclic alternating pattern; Doc2Vec; distributional representation

1. Introduction

Sleep is a reversible behavioral state characterized by unresponsiveness and percep-
tual disengagement from the environment [1]. Sleep is studied systematically through
polysomnography (PSG), in which electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), electrocardiography (ECG), and respiratory signals (such
as pulse oximetry, airflow, and respiratory effort) are recorded to help experts under-
stand the physiological sleep processes and evaluate the underlying causes of diverse
sleep disturbances.

The EEG signals extracted from PSG, also named sleep EEG, contain valuable infor-
mation about the structure of sleep that is organized and analyzed through its macro and
micro-structure.

The so-called sleep macro-structure is defined as the basic structural organization of
normal sleep, which is presented in cycles and is classified into two main types.

• Rapid eye-movement (REM) sleep: This is also named active sleep after the presence
of rapid eye movements and the possibility of having dreams.

• Non-rapid eye-movement (NREM) sleep: This is also named inactive sleep and is
subdivided into the stages N1, N2, and N3, each meaning a more profound (i.e., less
responsive to the environment) sleep state.
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On the other hand, sleep micro-structure is defined by the quantification of the graphic el-
ements present in the different sleep stages. The list of these graphic elements includes sleep
spindles, slow-wave activities, sharp waves, arousals, and cyclic alternating patterns [2].
It is important to state that the mentioned graphic elements are usually short-length and
user-dependent, and, if present, their labels are visually evaluated and hand-made by sleep
experts, which may lead to human mistakes.

Further to being inherently time- and effort-consuming, sleep descriptors are typically
evaluated using vastly different signal processing (or visual) techniques. This makes it more
challenging to combine the findings into a consistent description of the sleep processes at
both the macro and micro levels.

1.1. Cyclic Alternating Pattern

The object of this study is the cyclic alternating pattern (CAP), defined by an alternating
sequence of two characteristic EEG patterns, each lasting between 2 and 60 seconds [3].
These patterns are the A-phase, which is composed of lumps of sleep phasic events, and
the B-phase, which is simply the return to the background EEG.

The sequence of A-B phases is also called a CAP cycle. Yet, there is another sequence
composed of the same EEG patterns. This is the CAP sequence, which contains at least two
complete CAP cycles in succession. The minimum content of a CAP sequence is, therefore,
A-B-A-B. Examples of CAP cycles and sequences are shown in Figure 1.

Figure 1. Cyclic alternating pattern, with its A-phases (red, blue, and green) and B-phases (gray).
Note the difference between a CAP Cycle (phases A-B) and a CAP sequence (consisting of a minimum
of phases A-B-A-B).

Furthermore, A-phase activities are classified referring to the proportion of EEG
synchrony (high-voltage slow waves) and EEG desynchrony (low-voltage fast rhythms)
presented throughout the A-phase. The three A-phase types are:

• A1: EEG activity is dominated by EEG synchrony and, if present, EEG desynchrony
occupies less than 20% of the complete A-phase duration;

• A2: EEG activity is a combination of slow and fast rhythms, with EEG desynchrony
occupying between 20% and 50% of the entire A-phase;

• A3: Fast, low-amplitude rhythms dominate EEG activity, and strictly more than 50%
of the A-phase is occupied by EEG desynchrony.
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Terzano et al. (2001) [4] described the detailed rules to score the CAP since it is
considered a valuable EEG marker of unstable sleep. CAP rate is an interesting CAP-
related parameter that can be computed by following these rules.

The CAP rate measures the brain’s effort to maintain sleep [5] and is proven to increase
under conditions that cause vigilance instability, including noise [6], insomnia [7], periodic
leg movements [8], nocturnal seizures [9], and certain severe diseases such as s-stage
coma [10], and Creutzfeldt–Jakob disease (CJD) [11].

In the same direction, manifestations of CAP phases have been linked to some specific
phenomena. For example, the A-phase represents a favorable condition for the onset of noc-
turnal motor seizures in generalized and local (frontotemporal) epilepsy [9], bruxism [12],
and periodic leg movements [13].

On the other hand, the B-phase appears to be chronologically related to inhibitory
events in nocturnal myoclonus in epileptic patients [5,9].

Additionally, CAP is a valuable parameter in the research of sleep disorders across
all live stages since it can be detected both in child and adult sleep [14]. Thus, the detec-
tion and classification of CAPs are meaningful to understanding some physiological and
pathological sleep processes.

However, CAP detection and classification are commonly not carried out routinely
due to the time and attention this problem requires. An automatic tool to solve this task
would be helpful to massively analyze CAPs and possibly unravel new interesting relations
between CAPs and different health conditions.

1.2. Hypothesis

Even though there are numerous investigations on the automatic detection and classi-
fication of a CAP and its sub-types (as discussed in Section 2), this research focuses on the
implementation of natural language processing (NLP) and pattern recognition techniques
on the same problem.

The main reason for exploring these techniques is to (i) reduce the complexity of the
problem by representing the time-series data as shorter sequences of symbols and (ii) try to
obtain interpretable results by applying NLP techniques such as word embeddings.

Word embeddings are a vectorial representation of words for text analysis, as pro-
posed in [15]. This representation is based on mapping words (included in a collection of
phrases or documents) to real-number vectors that rely on the distributional hypothesis. This
hypothesis was popularized by Joseph R. Firth in 1957, who stated that “words that occur
in similar contexts tend to have similar meanings” [16].

By assuming that signals can be translated into symbols and then organized as
“words”, they can also be, theoretically, represented as word embeddings. Then, the
embeddings can be analyzed with machine learning models, as carried out in NLP.

This being the case, the hypothesis for this research is that using a distributional
approach (based on the distributional hypothesis) for EEG signal representation will allow
for the implementation of NLP techniques to solve the CAP detection and classification
problem. This will be achieved using a context-based vectorial representation of signal
segments as if they were words or phrases in a text.

2. Literature Review

This section reviews some of the most relevant investigations for this research and
is divided into two subsections. Section 2.1 will describe some recent research works on
time-series data mining and sleep macro-structure analysis. Section 2.2 will review some
research works on micro-structure analysis, specifically on CAP detection and classification.

2.1. Time Series Data Mining

Data mining (DM) is a set of methodologies that analyze large datasets, aiming to
identify patterns and relationships that can help solve different types of problems. This is
achieved by four main processes: data gathering, data preparation, data mining/processing,
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and a final analysis and interpretation of the results [17]. Time-series data mining (TSDM)
applies these processes to sequential data, i.e., data recorded over time [18].

However, when analyzing some specific time series (such as biomedical signals),
TSDM focuses on particular areas of interest, known as events, instead of evaluating the
entire time series [19]. Hence, this subsection describes some of the research works on
TSDM that are interesting for the present proposal.

Li et al. (2012) developed a methodology to visualize variable-length time-series motifs
by implementing the symbolic aggregate approximation (SAX) [20]. A grammar-based
compression algorithm (greedy and heuristic) was implemented for motif detection. This
methodology was performed on ECG signals, and the results demonstrated that recurrent
patterns can be effectively identified with grammar induction in time series, even without
prior knowledge of their lengths.

Wave2Vec is a tool for vectorizing EEG signals to predict a brain disease (alcoholic vs.
non-alcoholic patients) proposed by Kim et al. (2018) [21]. This prediction was achieved by
quantizing fixed-length EEG segments to one of the hexadecimal symbols of a fixed “bag-
of-symbols”. Subsequently, vectorization was performed with a similar model to Word2Vec.
Finally, three classification models based on deep neural networks (DNN), convolutional
neural networks (CNN), and recurrent neural networks (RNN) were compared.

Grammar induction for detecting anomalies in time series was implemented by Gao
et al. in 2020 [22]. This research was carried out on ECG signals transformed into symbols
with SAX. The resulting symbolic sequences were analyzed through another NLP technique
named grammar induction, where a set of rules that best describes the analyzed phenomena
is found. Numerosity reduction was performed to simplify the rules found by the algorithm
and to finally implement a “Rule Density Function” for anomaly detection.

It is essential to mention that the previous research had objectives substantially dif-
ferent from those of the current research. Li et al. (2012) [20] and Gao et al. (2020) [22]
used ECG signals, which are significantly more periodic than EEG. Although Kim et al.
(2018) [21] implemented their tool on EEG signals, they were searching for another type of
information within them (to predict alcoholism). None of the previous examples use sleep
EEG or search for CAPs.

In recent years, sleep analysis, especially the sleep staging task, has also been ex-
plored [23,24]. Nevertheless, the methodologies proposed to solve this task are only
indirectly related to the current research, which inquires into the symbolic transformation
and/or vectorization of the signals.

Sleep stage classification labels 30-second-long PSG segments, known as sleep epochs.
The labels are usually visually scored and divided into deep-sleep, light-sleep, and awake
or, more precisely, S1 or N1, S2 or N2, S3 or N3, and R or REM, which are used to analyze
sleep macro-structure.

In this direction, Joe et al. (2022) [23] analyzed EEG and EOG images in terms of their
time and frequency domains by using a CNN on the Sleep-EDFx dataset [25]. They achieved
results of 94% both in accuracy and F1 scores. Alternatively, Zhang et al. (2023) [24]
analyzed a single channel (ECG) to analyze the sleep structure of three different datasets,
obtaining accuracy values of 0.849, 0.827, and 0.868.

2.2. CAP Detection and Classification

For sleep micro-structure analysis, Rosa et al. (1999) pioneered the automatic detection
of CAP sequences during sleep. They implemented feature extraction and detection with
the maximum likelihood and a variable length template-matched filter [26]. The preliminary
results of classifying CAP vs. Non-CAP segments were achieved by using a state machine
ruled-based decision system on a group of four middle-aged adults.

A tool to analyze the micro and macro-structure of sleep EEG was implemented
by Malinowska et al. (2006) [27]. They detected deep-sleep stages and arousals, the
continuous description of slow wave sleep, and the measure of spindling activity by
using adaptive time-frequency approximations with the matching pursuit (MP) algorithm.
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Though quantifiable results were not reported in this research, this tool is relevant due to
the interest in automating sleep EEG analysis since 2006.

More recently, Hartmann et al. (2019) [28] implemented a long short-term memory
(LSTM) model to detect A-phases and classify them into three subtypes: A1, A2, and A3.
From the CAP Sleep Database, they removed epochs marked as “Awake” and “REM Sleep”
and worked with two patient subsets: 16 healthy patients and 30 diagnosed with nocturnal
frontal-lobe epilepsy (NFLE). They achieved averaged F1 scores ranging from 57.37% to
67.66% in the different modalities of classification (A-phase vs. non-A-phase and A1 vs. A2
vs. A3 vs. B), as shown in Table 1.

Table 1. Literature review regarding CAP detection and classification.

Author (Year) Methodology Dataset (Data Subset) Classification Metrics

Hartmann et al.
(2019) [28]

Resampling (128 Hz), removing
Wake and REM epochs, filtering,
and feature extraction for an
LSTM, with LOO
Cross-Validation.

CAP Sleep Database
(n = 46: 16 Healthy,
30 Pathological-NFLE)

A-phase vs.
Non-A-phase

F1 Score, Recall, Precision,
Accuracy, Specificity

A-phases (A1
vs. A2 vs. A3)
vs. B-phase

F1 Score, Precision and Re-
call per class, Accuracy

Arce Santana
et al. (2020) [29]

Segmentation (4 s), spectrogram
computation. Image classification
with a deep 2D-CNN model.

CAP Sleep Database
(n = 9: Healthy)

A-phase vs.
Non-A-phase Average Accuracy

A-phases (A1
vs. A2 vs. A3) Average Accuracy

Loh et al.
(2021) [30]

Segmentation (2 s),
standardization, classification
(1D-CNN Model) for sleep stages
and CAP patterns.

CAP Sleep Database
(n = 6: Healthy) -
Balanced

A-phase vs. B-
phase

F1 Score, Recall, Precision,
Accuracy, Specificity

CAP Sleep Database
(n = 6: Healthy) -
Unbalanced

A-phase vs. B-
phase

F1 Score, Recall, Precision,
Accuracy, Specificity

Tramonti
Fantozzi et al.
(2021) [31]

Segmentation (90 s, shifts of 30
s), band-pass filtering, threshold,
adapted Ferri’s algorithm with Lo-
cal analysis (channel F4-C4).

CAP Sleep Database
(n = 41: 8 Healthy,
33 Pathological-
Diverse)

A-phase vs.
Non-A-phase

F1 Score, Recall, Precision,
False discovery rate (FDR)
and False negative rate
(FNR)

Segmentation (90 s, shifts of 30
s), band-pass filtering, threshold,
adapted Ferri’s algorithm with Lo-
cal Multi-trace analysis.

CAP Sleep Database
(n = 41: 8 Healthy, 33
Pathological-Diverse)

A-phase vs.
Non-A-phase

F1 Score, Recall, Precision,
False discovery rate (FDR)
and False negative rate
(FNR)

You et al.
(2022) [32]

Resampling (128 Hz), removing
Wake and REM epochs, for a
Gated Transformer-based U-Net
framework with a
curriculum-learning strategy.

CAP Sleep Database
(n = 46: 16 Healthy,
30 Pathological-NFLE)

A-phase vs.
Non-A-phase

F1 Score, Recall, Precision,
Accuracy, Specificity, Area
under the ROC Curve
(AUC)

A-phases (A1
vs. A2 vs. A3)
vs. B-phase

F1 Score and Recall per class,
Accuracy

Resampling (128 Hz) for a Gated
Transformer-based U-Net
framework with a
curriculum-learning strategy.

CAP Sleep Database
(n = 46: 16 Healthy,
30 Pathological-NFLE)

A-phase vs.
Non-A-phase

F1 Score, Recall, Precision,
Accuracy, Specificity, Area
under the ROC Curve
(AUC)

A-phases (A1
vs. A2 vs. A3)
vs. B-phase

F1 Score and Recall per class,
Accuracy

n = number of PSG recordings considered.

A two-dimensional convolutional neural network (2D-CNN) was implemented by
Arce Santana et al. (2020) [29] to detect A-phases and classify them into the A1, A2, and A3
subtypes by using a different approach. They segmented nine EEG recordings in 4-second
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long epochs and computed their spectrograms, which are visual representations of the
frequency content of a time series. They fed the resulting images to a deep 2D-CNN and
obtained mean accuracy scores of 88.09% in A-phase detection and 77.31% in A-phase
classification (A1 vs. A2 vs. A3). Unfortunately, no other metric is reported, restricting the
performance analysis within unbalanced data, which is the case of the A-phase subtypes.

The automated detection of CAPs and the classification of sleep stages using a deep
neural network was proposed by Loh et al. (2021) [30]. Six healthy patients from the CAP
Sleep Database were used to segment, standardize, and classify the sleep stages and CAP
patterns with a one-dimensional convolutional neural network model (1D-CNN). Loh et al.
(2021) reported F1 scores of 75.34% and 33.04% for CAP detection in a balanced and an
unbalanced dataset, respectively. Overall, the summarized metrics shown in Table 1 reveal
that the model performs better on the balanced dataset than on the unbalanced dataset. This
is directly caused by the number of B-phase examples (87.4% of the unbalanced dataset),
which increased the difficulty of identifying the A-phase examples.

A novel approach was explored by Tramonti Fantozzi et al. (2021) to automate A-phase
detection (A-phase vs. Non-A-phase) through local and multi-trace analysis [31]. They
found that channel F4-C4 performed better than all the other analyzed channels, achieving
F1 scores from 61.38% to 63.88% via local analysis on this channel. In comparison, their
multi-trace approach resulted in F1 scores ranging from 64.34% to 66.78% on the different
patient subsets. A total of 41 recordings from the CAP Sleep Database were analyzed in
this research. Further details of the data and the methodology are shown in Table 1.

Finally, the GTransU-CAP model was designed by You et al. (2022) [32], and this was
trained on the same data subset from [28]. This model represents an automatic labeling
tool for CAPs in sleep EEG, using a gated transformer-based U-Net framework with a
curriculum-learning strategy. In A-phase detection, F1 scores of 67.78% in healthy patients
and 72.16% in patients with nocturnal front lobe epilepsy (NFLE) were achieved. For the
A-phase subtype classification, the non-weighted average F1 scores are 59.45% and 59.55%
for healthy and epileptic patients, respectively.

A summary of the previous literature review is presented in Table 1, where the different
methodologies and classification approaches can be identified. Additionally, a list of the
metrics reported for each approach is included in the last column. The diversity of the used
data subsets, classification approaches, and performance measurements reported by the
researchers hinders a direct comparison between them.

As described in Table 1, a diverse range of A-phase classification methodologies exist,
and a key point stood out: only three investigations included the identification of A-phase
subtypes (A1, A2, and A3) under two different classification strategies (one including only
A-phase subtypes and the second including also B-phases). Thus, there is still a window of
opportunity to solve the A-phase classification problem.

The literature review’s extended results are presented in Table A1, which reveals that
classifying the naturally unbalanced CAP data is not trivial. The number of B-phases
compared to A-phases hinders A-phase detection [30]. Moreover, the nature of the A2
subtype (basically, a mixture of A1 and A3) hampers its correct classification [28,32].

Finally, since none of the previous works reviewed a symbolic or distributional ap-
proach to sleep micro-structure analysis, there is a chance to explore these approaches and
implement new tools based on them.

3. Materials and Methods

In this section, the proposed methodology is described in four subsections. First, the
selected database is described. Second, the process of symbolization of the EEG signals is
detailed. Third, the vectorization tool is defined. Finally, the proposed classification models
and the evaluation metrics are detailed.

Figure 2 shows the flowchart corresponding to the methodology implemented for
1 dataset selection, 2 symbolic transformation, and 3 the vectorization process, includ-
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ing the Doc2Vec non-supervised training. The final step of the first part of the methodology
is 4 to save the concatenated vectorized data.

Figure 2. Proposed methodology for the data selection, symbolization, and vectorization processes.
Note that step 3 implements unsupervised learning to train the Doc2Vec models.

The classification steps are described in Figure 3, where the proposed architectures
for classification under two different validation strategies are detailed. This methodology
starts with 5 concatenated vectorized data loading, followed by 6 data splitting, and the
7 model’s training and testing under the corresponding validation strategy. Finally, the
8 evaluation metrics are computed for 9 model comparisons or performance averaging.
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These processes are shown in parallel for simplicity, although hold-out validation was
implemented before the K-fold cross-validation in order to be able to exclusively select and
analyze the best-performing model.

In contrast to the methodology described to train the Doc2Vec models (Figure 2),
where unsupervised learning is implemented, supervised learning is used to train the
classification models (Figure 3).

Figure 3. Proposed classification methodology, implementing supervised learning under two different
validation strategies: first on hold-out validation and, second, on a stratified 10-fold cross-validation.

3.1. CAP Sleep Database

The CAP research team led by Terzano et al. (2001) [4] released in 2012 the CAP Sleep
Database on PhysioNet [33]. It consists of 108 PSG recordings that were registered by the
Sleep Disorders Center of the Maggiore Hospital in Parma, Italy.

From the 108 PSG, 16 correspond to the recordings of healthy patients, and 92 corre-
spond to the pathological recordings of patients diagnosed with:

• Nocturnal Frontal Lobe Epilepsy (NFLE)—40 recordings;
• REM Behaviour Disorder (RBD)—22 recordings;
• Periodic Leg Movement (PLM)—10 recordings;
• Insomnia—9 recordings;
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• Narcolepsy—5 recordings;
• Sleep-disordered breathing (SDB)—4 recordings;
• Bruxism—2 recordings.

These recordings include at least three EEG signals with complementary EOG, chin
and tibial EMG, airflow, respiratory effort, pulse oximetry, and ECG signals. In addition,
they include annotations of the sleep stage and CAP labels (CAP1, CAP2, and CAP3,
corresponding to the three A-phase types).

Each recording has an average duration of 9 hours (a complete night of sleep) with
different sample frequency values (from 50 to 512 Hz). The interesting annotations in this
research, i.e., CAP1, CAP2, and CAP3, have an average total duration of 16 minutes. This
accounts for approximately only 3% of the complete recording.

For the first approach to the problem, the second largest group of patients was selected,
i.e., the 22 RBD recordings. Additionally, channels Fp2-F4, F4-C4, Fp1-F3, and F3-C3 were
selected due to the presence of CAPs in the frontocentral regions of the brain [34]. Figure 4
schematizes the electrode placements for the selected channels (red and blue), following
the 10–20 system [35].

Figure 4. EEG electrode placement, according to the 10–20 system. The highlighted electrodes (red
and blue) record the data required to obtain the selected derivations or channels: Fp2-F4, F4-C4,
Fp1-F3, and F3-C3.

An analysis of the selected data showed that the blue channels (Fp2-F4 and F4-C4)
were present in 21 out of the 22 recordings, whereas the red and blue channels (Fp2-F4,
F4-C4, Fp1-F3, and F3-C3) were present in only 16 out of the 22 recordings. This analysis
determined the data for the experiments described in this document: 21 RBD recordings
for channels Fp2-F4 and F4-C4 (Figure 2 1 ).

3.2. Data Symbolization

The first step for data symbolization was segmentation, which changed the total
duration of the signals into N-second segments for each recording—Each recording has
a different duration in hours, hence, a different N value. Once the 21 recordings were
split into one-second segments, they were processed through one-dimensional symbolic
aggregate approximation (1d-SAX); see Figure 2 2 .
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In order to better understand 1d-SAX symbolic transformation, it is necessary to
understand symbolic aggregate approximation (SAX) and piecewise aggregate approxima-
tion (PAA):

• PAA is a time series downsampling in which the mean value of each fixed-sized
segment is retained [36];

• SAX is based on PAA but performs an additional quantization of the mean value.
Under the assumption that the time series follows a standard normal distribution, the
quantization boundaries are computed to ensure that the symbols are assigned to each
quantized mean value with equal probability [37];

• 1d-SAX is a symbolic representation of a time series based on SAX. This representation
contains information about each segment’s slope and a symbol that is associated with
the segment’s mean value. In other words, each segment is represented by an affine
function of two quantized parameters: the slope and mean value [38].

In this particular case, the mean value is represented with 1 of the 26 letters in the
lowercase English alphabet a, b, c, ..., y, z, whereas the slope is represented with an integer
between 1 and 10. Hence, the number of 1d-SAX symbols created by combining a letter
and an integer is 260. Examples of the final symbols are a1, b8, c4, d3, e7, f 2, and so on, with
all of these having a specific meaning of the segment’s features. The 1d-SAX symbols will
be referred to as “words” from now on.

Thus, “phrases” will refer to the sequences of “words” corresponding to the symbolic
one-second segments obtained from each channel—Each channel was analyzed separately.
These unlabeled symbolic “phrases” were used to train the model described in Section 3.3
using unsupervised learning.

On the other hand, a structured database was created with longer “phrases” corre-
sponding to the CAP labeled segments; for reference, the CAP A-phase duration is between
2 and 60 s. The classification experiments (see Section 3.4) were carried out using this
structured database with supervised learning.

3.3. Data Vectorization

A well-known type of word representation is word embeddings, which can capture
words’ contextual features into low-dimensional vectors. Word embeddings became espe-
cially popular when Mikolov et al. (2013) [15] introduced Word2Vec, a group of models
designed to learn and infer these vectors in a computationally efficient way.

One year later, an extension of Word2Vec was introduced by Le and Mikolov (2014) [39],
named Paragraph Vector, better known as Doc2Vec. These models aim to create vector rep-
resentations of sequences of words (sentences or documents) instead of individual words.

With the symbolic EEG unlabeled data, two Doc2Vec models were trained (one per
selected channel) so as to learn an adequate representation of the “phrases”, i.e., the
sequences of “words” or sequences of 1d-SAX symbols.

Finally, the instances of the structured CAP symbolic data were processed with the
Doc2Vec-trained models, and the inferred vectors (two in this case) were concatenated
to build the input of the classification models. The data vectorization processes are sum-
marized in Figure 2 3 and finalized with the concatenation and saving of the inferred
embeddings (Figure 2 4 ).

3.4. Classification

In Figure 3, from 5 to 7 , classification was performed using 10 classic machine learn-
ing models and their default parameters (if not specified otherwise), including the following:

1. K-Nearest Neighbours, where K = 3;
2. Support vector classifier with a linear kernel;
3. Support Vector classifier with a radial basis kernel;
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4. Support vector classifier with a radial basis kernel and a balanced approach to auto-
matically modify the weights with an inverse proportion to the number of occurrences
of each class in the training data;

5. Decision tree classifier with a maximum depth settled in 5;
6. Random forest classifier with a maximum depth settled in 5 and a maximum number

of estimators fixed in 10;
7. Multi-layer perceptron classifier with a learning rate of 0.1 and a maximum number

of iterations settled in 1000;
8. AdaBoost classifier;
9. Gaussian naive Bayes classifier;
10. XGBoost classifier, with a maximum depth settled in 5, a maximum number of estima-

tors fixed in 10, and a learning rate of 0.1.

This list of classifiers was validated using hold-out validation, with a training set using
80% of the data and the remaining 20% used for testing data to obtain a general scope of
how the different classification models performed.

Considering that hold-out validation represents an adequate opportunity to evaluate
a group of different models if the training and testing processes are performed under the
same initial conditions (i.e. if the training and testing splits do not change), 10 classifiers
were trained on the same training set and then evaluated with the same testing set.

Based on hold-out validation results, the best-performing model was selected and
then evaluated under a stratified K-fold cross-validation strategy for the following reasons:

• To verify that the selected model’s results were independent of the training set used
during hold-out validation;

• To keep the original label distribution in the training and testing sets in the K splits;
• To thoroughly evaluate the impact of different input vector dimensions (inferred

output of the Doc2Vec models);
• To quantitatively analyze the impact of dimensionality-reduction techniques applied

to the input vectors, for example, principal component analysis (PCA), with different
numbers of computed features.

Finally, the K value for the stratified K-fold cross-validation was fixed at 10. This
means the fitting procedure was performed ten times, each with a training set of 90% of the
data and a testing set of the remaining 10%. Additionally, this validation strategy ensures
that the testing instances are not repeated between folds and that the training and testing
sets preserve the same label proportion as the original input data.

3.5. Evaluation

The metrics implemented to evaluate the performance of the described classification
task (Figure 3 8 ) include Accuracy, Precision, Recall, and F1 Score, all depending on the
confusion matrix shown in Table 2 [40].

Table 2. Confusion matrix showing the True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) labeled instances.

PREDICTED
Negative Positive

ACTUAL Negative TN FP
Positive FN TP

• Accuracy is the proportion of correctly labeled instances (True Positives and True
Negatives) among the total number of instances. When considering Table 1, accuracy
is calculated as follows

Accuracy =
TP + TN

TP + FP + FN + TN
(1)



Appl. Sci. 2023, 13, 10299 12 of 22

• Precision refers to the degree of dispersion of the results; the less dispersed, the greater
the precision. From Table 1, the precision is

Precision =
TP

TP + FP
(2)

• Recall calculates the proportion of actual positives correctly labeled. Recall is also
known as the true positive rate (TPR) or sensitivity. From Table 1, this measure is
calculated by

Recall =
TP

TP + FN
(3)

• F1-score is defined as the harmonic mean of precision and recall, and is commonly
used in the information retrieval field. Based on Table 1, the F1-score is

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Finally, the models’ performances were compared or averaged, depending on the
followed validation strategy (Figure 3 9 ).

4. Results

As stated before, the classification process was carried out using hold-out validation
and stratified 10-fold cross-validation. Therefore, the results are presented and analyzed in
the same order.

However, the first relevant result of this research was found by exploring the selected
data, which was the compound of channels Fp2-F4 and F4-C4 from 21 RBD recordings.
Figure 5 shows a one-second segment of this data, whereas Table 3 shows the number of
instances in the selected data per class, where the data is notoriously imbalanced.

Figure 5. One-second sleep EEG example registered on the two selected channels F4-C4 and Fp2-F4.
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Table 3. Number of instances present in the selected data per class.

Class Number of Instances

CAP1 4417
CAP2 1646
CAP3 3065

The most commonly used metric for describing the extent of imbalance of a dataset
(i.e., how imbalanced a dataset is) is the imbalance ratio (IR) [40]. IR is defined by

IR =
Nmaj

Nmin
; (5)

where Nmaj is the number of examples in the majority class, and Nmin is the number of
instances in the minority class. Hence, the IR for the selected data is 2.6834.

Although several strategies to handle imbalanced data were considered, we decided
to evaluate how the proposed algorithms performed on raw data first. Thus, the data went
through to the next steps without further preprocessing.

4.1. Classification Using Hold-Out Validation

For the first group of experiments, 10 classifiers and their default parameters were
implemented in a hold-out validation strategy. These experiments aimed to find the most
suitable classifier for the task. In addition, different embedding sizes or Doc2Vec (from now
on, D2V) output dimensions were analyzed.

The results corresponding to D2V output dimensions fixed at 50, 100, 300, and 500
with the 10 classifiers are concentrated in Tables 4–7. These tables highlight the best results
for each case and each computed metric, although the F1 score is the most relevant for the
unbalanced tasks [40].

Table 4. Classification results with hold-out validation (D2V output dimension = 50).

Classifier Accuracy F1 Score Recall Precision

3-NN 0.6752 0.6147 0.6752 0.6450
Linear SVC 0.6270 0.6552 0.6270 0.7075
RBF SVC 0.7716 0.7376 0.7716 0.7385
RBF SVC—balanced 0.7568 0.7632 0.7568 0.7713
Decision Tree 0.6062 0.6356 0.6062 0.6915
Random Forest 0.6971 0.6823 0.6971 0.6733
MLP 0.7612 0.7365 0.7612 0.7307
AdaBoost 0.7278 0.6930 0.7278 0.6845
Naive Bayes 0.7174 0.7268 0.7174 0.7484
XGBoost 0.7294 0.6599 0.7294 0.6683

Table 5. Classification results with hold-out validation (D2V output dimension = 100).

Classifier Accuracy F1 Score Recall Precision

3-NN 0.6752 0.6176 0.6752 0.6472
Linear SVC 0.6385 0.6640 0.6385 0.7096
RBF SVC 0.7727 0.7375 0.7727 0.7373
RBF SVC—balanced 0.7590 0.7649 0.7590 0.7724
Decision Tree 0.6325 0.6563 0.6325 0.6988
Random Forest 0.6987 0.6830 0.6987 0.6735
MLP 0.7645 0.7320 0.7645 0.7323
AdaBoost 0.7398 0.7013 0.7398 0.6921
Naive Bayes 0.7185 0.7295 0.7185 0.7534
XGBoost 0.7365 0.6670 0.7365 0.7002
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Table 6. Classification results with hold-out validation (D2V output dimension = 300).

Classifier Accuracy F1 Score Recall Precision

3-NN 0.6763 0.6185 0.6763 0.6469
Linear SVC 0.6380 0.6648 0.6380 0.7177
RBF SVC 0.7688 0.7314 0.7688 0.7358
RBF SVC—balanced 0.7595 0.7651 0.7595 0.7720
Decision Tree 0.6265 0.6520 0.6265 0.6931
Random Forest 0.6845 0.6738 0.6845 0.6652
MLP 0.7535 0.7192 0.7535 0.7132
AdaBoost 0.7437 0.7066 0.7437 0.6973
Naive Bayes 0.71084 0.7255 0.7108 0.7551
XGBoost 0.7365 0.6669 0.7365 0.6481

Table 7. Classification results with hold-out validation (D2V output dimension = 500).

Classifier Accuracy F1 Score Recall Precision

3-NN 0.6796 0.6219 0.6796 0.6717
Linear SVC 0.6297 0.6584 0.6297 0.7170
RBF SVC 0.7645 0.7271 0.7645 0.7257
RBF SVC—balanced 0.74698 0.7543 0.7469 0.7638
Decision Tree 0.6495 0.6660 0.6495 0.6899
Random Forest 0.6998 0.6947 0.6998 0.6925
MLP 0.7398 0.7240 0.7398 0.7142
AdaBoost 0.7437 0.7108 0.7437 0.7063
Naive Bayes 0.7108 0.7269 0.7108 0.7601
XGBoost 0.7420 0.6704 0.7420 0.7041

From the reported evaluation metrics, it can be concluded that the most suitable
classifier for the task is the support vector classifier with a radial basis kernel and a balanced
approach (from now on, RBF SVC–balanced). A summary of the best results using this
classifier for the hold-out validation strategy is shown in Table 8, where the best results for
each computed metric are highlighted.

Table 8. Best classification results with hold-out validation, obtained with RBF SVC—balanced.

D2V
Output

Dimension

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

50 100 0.7568 0.7632 0.7568 0.7713
100 200 0.7590 0.7649 0.7590 0.7724
300 600 0.7595 0.7651 0.7595 0.7720
500 1000 0.7469 0.7543 0.7469 0.7638

Table 8 shows that the most suitable D2V output dimension is 300, which, in terms of
the classifier input dimension, is 600. For reference, the input of the classifiers is double the
D2V output since it is the concatenation of the inferred vectors of each selected channel
(Figure 2 4 ).

Finally, Figure 6 exhibits the normalized confusion matrix obtained using the RBF
SVC—balanced classifier with an input dimension of 600; that is, a D2V output dimension
of 300. This classifier has no further problem classifying the classes CAP1 and CAP3,
whereas class CAP2 is easily misclassified as CAP1.
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Figure 6. Confusion matrix corresponding to the best result obtained using hold-out validation.

4.2. Classification Using Stratified K-Fold Cross-Validation

The best classifier of the previous group of experiments (RBF SVC—balanced) was
implemented on a stratified 10-fold cross-validation strategy for the second group of
experiments. These complementary experiments aimed to analyze how the classifier
responds to reduced input vectors, with the implementation of principal component analysis
(PCA) for dimensionality reduction. Table 9 shows the results obtained for the D2V output
dimension fixed at 25, 50, 100, 300, and 500 without PCA.

Table 9. Classification results using stratified 10-fold cross-validation.

D2V
Output

Dimension

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

25 50 0.7427 ± 0.0142 0.7504 ± 0.0134 0.7427 ± 0.0142 0.7610 ± 0.0131
50 100 0.7533 ± 0.0141 0.7611 ± 0.0133 0.7533 ± 0.0141 0.7718 ± 0.0128
100 200 0.7539 ± 0.0164 0.7609 ± 0.0157 0.7539 ± 0.0164 0.7705 ± 0.0151
300 600 0.7516 ± 0.0110 0.7591 ± 0.0111 0.7516 ± 0.0110 0.7695 ± 0.0121
500 1000 0.7480 ± 0.0174 0.7567 ± 0.0171 0.7480 ± 0.0174 0.7690 ± 0.0175

Additionally, the results corresponding to a D2V output dimension fixed at 25, 50, 100,
300, and 500 with different numbers of features kept after PCA (10, 50, and 100), are shown
in Tables 10–12.

Table 10. Classification results using stratified 10-fold cross-validation with PCA (10 features).

D2V
Output

Dimension

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

25 10 0.6979 ± 0.0096 0.7122 ± 0.0089 0.6979 ± 0.0096 0.7347 ± 0.0085
50 10 0.7028 ± 0.0111 0.7169 ± 0.0114 0.7028 ± 0.0111 0.7385 ± 0.0134
100 10 0.7012 ± 0.0090 0.7150 ± 0.0086 0.7012 ± 0.0090 0.7364 ± 0.0083
300 10 0.6997 ± 0.0073 0.7140 ± 0.0075 0.6997 ± 0.0073 0.7358 ± 0.0094
500 10 0.7051 ± 0.0094 0.7194 ± 0.0098 0.7051 ± 0.0094 0.7420 ± 0.0110
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Table 11. Classification results with stratified 10-fold cross-validation with PCA (50 features).

D2V
Output

Dimension

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

25 50 0.7450 ± 0.0135 0.7518 ± 0.0129 0.7450 ± 0.0135 0.7610 ± 0.0129
50 50 0.7509 ± 0.0126 0.7579 ± 0.0125 0.7509 ± 0.0126 0.7673 ± 0.0131
100 50 0.7519 ± 0.0170 0.7587 ± 0.0157 0.7519 ± 0.0170 0.7680 ± 0.0141
300 50 0.7522 ± 0.0116 0.7586 ± 0.0116 0.7522 ± 0.0116 0.7673 ± 0.0122
500 50 0.7458 ± 0.0186 0.7541 ± 0.0181 0.7458 ± 0.0186 0.7656 ± 0.0183

Table 12. Classification results with stratified 10-fold cross-validation with PCA (100 features).

D2V
Output

Dimension

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

25 100 - - - -
50 100 0.7535 ± 0.0146 0.7609 ± 0.0137 0.7535 ± 0.0146 0.7709 ± 0.0130
100 100 0.7548 ± 0.0185 0.7609 ± 0.0175 0.7548 ± 0.0185 0.7690 ± 0.0166
300 100 0.7522 ± 0.0103 0.7587 ± 0.0108 0.7522 ± 0.0103 0.7675 ± 0.0121
500 100 0.7490 ± 0.0184 0.7568 ± 0.0179 0.7490 ± 0.0184 0.7676 ± 0.0179

As shown in the first group of results, Tables 9–12 highlight the best results for each
case and each computed metric, although the F1 score is the most relevant for unbalanced
tasks like this one.

A summary of the best classification results using the stratified 10-fold cross-validation
strategy is shown in Table 13. When considering that the F1 score value is the best for
selecting the best result (in this case, 0.7611 ± 0.0133), the conclusion is that the D2V output
vector dimension equal to 50 and the classifier input dimension equal to 100 without PCA is
the most suitable size and methodology for this experiment.

Table 13. Best classification results using hold-out validation, obtained with RBF SVC—balanced.

D2V
Output

Dimension
PCA

Clf.
Input

Dimension
Accuracy F1 Score Recall Precision

50 No 100 0.7533 ± 0.0141 0.7611 ± 0.0133 0.7533 ± 0.0141 0.7718 ± 0.0128
500 Yes 10 0.7051 ± 0.0094 0.7194 ± 0.0098 0.7051 ± 0.0094 0.7420 ± 0.0110
100 Yes 50 0.7519 ± 0.0170 0.7587 ± 0.0157 0.7519 ± 0.0170 0.7680 ± 0.0141
50 Yes 100 0.7535 ± 0.0146 0.7609 ± 0.0137 0.7535 ± 0.0146 0.7709 ± 0.0130

However, it is interesting that the result obtained with the same D2V output dimension
(50) that used PCA and kept 100 features performs almost equally to the best-aforementioned
result (F1 score of 0.7609 ± 0.0137). Note that the same number of features are kept when
no PCA was implemented for dimensionality reduction. Yet, this does not represent the
best overall result obtained using the same parameters without PCA.

5. Discussion

As stated in Section 2, there are numerous pieces of research on automatic CAP
detection and classification; some are oriented toward implementing different feature
extraction techniques in combination with classification models, and others are oriented
toward implementing deep learning models without manually extracted features. It is
noteworthy that the latter have gained popularity in recent years.

The diversity of methodologies and classification approaches indicated in Table 1 has
two opposite effects. It allows for exploring new methodologies to solve the CAP detection
and classification problem while hindering their direct comparison.

Nevertheless, the proposed methodology for a distributional representation of CAP
A-phases is a valuable approach since it reduces the complexity of the problem by transform-
ing the sleep EEG data into shorter symbolic strings. Moreover, the proposed methodology
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allows for the use of powerful NLP tools that are well-known for their versatility and
outstanding results.

This proposal has certain particularities that make it unique. It translates the EEG
signals into sequences of symbols in a different way to the work of Li et al. (2012) [20] and
Gao et al. (2020) [22]. Instead, 1d-SAX transformation was implemented. The reason for
making this decision was to reduce the problem’s complexity by representing the time
series data as shorter sequences of symbols.

Then, a method for vectorization was implemented, similar to Kim et al. (2018) [21],
yet this process was carried out with a Doc2Vec model instead of using Wave2Vec or
Word2Vec, which have comparable methodologies.

Finally, the distributional representation of the data allows for classification through
less complex algorithms than the ones used by Loh et al. (2021) [30] and You et al.
(2022) [32].

A summary of the results obtained using the SVC classifier with an RBF kernel under
the two validation strategies is included in Table A1. The extended results of the literature
review are also included for comparison. It is important to note that only the results
highlighted in gray focus on the A-phase subtype classification (A1, A2, and A3).

Table A1 shows that the accuracy scores of Hartmann et al. (2019) [28], Arce Santana
et al. (2020) [29], and You et al. (2022) [32] are higher than our best accuracy score
(75.39 ± 1.65).

In the case of Hartmann et al. (2019) [28] and You et al. (2022) [32], the high accuracy
score may be due to the consideration of the B-phase in their approaches, as reported by
themselves. This class is outstanding in the number of instances (and, therefore, the number
of correctly labeled instances) of A-phase segments.

In the case of Arce Santana et al. (2020) [29], where only the A-phase segments
were considered, the performance analysis was truncated since they only reported the
averaged accuracy. It would be interesting to analyze the F1 Score, for example, which
better measures the performance of unbalanced data classification, which is the case for the
A-phase subtypes.

Nevertheless, when considering the F1 Score (harmonic mean of precision and recall)
as the metric of interest in unbalanced data tasks, the results obtained with the D2V output
dimension set at 50 show a better outcome than all the rest of the approaches.

Finally, these results are encouraging since this proposal relies on an entirely new
paradigm to analyze EEG data, raising the motivation to research the distributional repre-
sentation of time series more profoundly.

6. Conclusions

A novel methodology for CAP analysis based on data symbolization, vectorization,
and classification is presented.

First, a subset of 21 patients from the annotated CAP Sleep Database [4] was selected
for this research. One-second segmentation was implemented on this data subset. Then,
the symbolization process was performed using 1d-SAX, and the experimentation showed
that it is a suitable form of transforming EEG signals into sequences of symbols.

Further vectorization was carried out using two Doc2Vec models (one per selected
channel) with the PV-DM algorithm. The resulting Doc2Vec-trained models were imple-
mented to infer the vectors corresponding to the EEG segments of interest: those labeled as
CAP1, CAP2, and CAP3 (according to the CAP A-phase type).

The classification metrics on the 10 classic ML-implemented models have shown
that increasing the dimensions of Doc2Vec does not necessarily improve the classification
results. Additionally, PCA dimensionality reduction improves the classification results
in comparison to the same-length vectors from the original embedding concatenation.
However, it does not represent the best overall result.

The best results when using hold-out validation (F1Score = 0.7651) were achieved
with the support vector classifier with a radial basis kernel and class-wise balanced regu-
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larization and the Doc2Vec vector dimension = 300. The best results for stratified 10-fold
cross-validation (F1Score = 0.7611 ± 0.0133) were achieved by using a Doc2Vec vector
dimension = 50, without PCA.

From the confusion matrix (Figure 6) analysis, it can be concluded that the CAP1 and
CAP3 classes are more differentiable from each other, whereas CAP2 is easily misclassified
as CAP1. This is also supported by the number of instances present in each class (Table 3).

Finally, based on the vector representation’s distribution, it can be stated that this
problem is not fully solved, and more experimentation and research in this field are needed.

Future Work

Based on the results obtained from this research, the authors propose, firstly, that an
automatic detector of micro-events should be implemented, for example, a windowing sys-
tem that searches CAP events throughout the signal automatically or even the exploration
of a grammar-induction-based algorithm to find repeated patterns, as suggested in [20].

By accurately finding the A-phase start and end points, we might also address the
CAP identification problem. Consequently, the complementing stages of CAP identification
(A-phase vs. Non-A-phase) and A-phase classification (A1 vs. A2 vs. A3) would be a solid
basis with which to develop a numerical tool that helps sleep experts consistently identify
CAP patterns and automatically measure other CAP-related parameters, including the
CAP rate.

Furthermore, by adding other types of patients to our study subset, such as healthy
and NFLE patients, the models will be trained on a larger dataset, which may improve
their performances. Moreover, this research will be directly comparable to other works that
have used different subsets of patients.

Finally, experimentation with Word2Vec instead of Doc2Vec for EEG vectorization
using a sequential classification model (such as a long short-term memory) is a compelling
proposal. This novel approach will indirectly give more interpretability in terms of the
vectorization process since Word2vec is less complex than Doc2Vec and will continue the
proposed line of research on the distributional representations of CAP.
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The following abbreviations are used in this manuscript:

1d-SAX One-Dimensional Symbolic Aggregate Approximation
ANN Artificial Neural Network
CAP Cyclic Alternating Pattern
DT Decision Tree
ECG Electrocardiography
EEG Electroencephalography
EMG Electromyography
EOG Electrooculography
KNN K-Nearest Neighbours
ML Machine Learning
MLP Multilayer Perceptron
NB Naive Bayes
NREM Non-Rapid Eye-Movement
PAA Piecewise Aggregate Approximation
PCA Principal Component Analysis
PSG Polysomnography
PV-DBOW Distributed Bag-of-Words of Paragraph Vector
PV-DM Distributed Memory Model of Paragraph Vectors
REM Rapid Eye-Movement
RF Random Forest
SAX Symbolic Aggregate Approximation
SVC Support Vector Classifier
TSDM Time Series Data Mining
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Appendix A

Table A1. Extended results of the literature review and a comparison with the current research results.

Author (Year) Classification Accuracy (%) F1 Score (%) Recall (%) Precision (%)

A vs. Non-A 86.43 ± 4.62 (n = 16)
85.09 ± 4.54 (n = 30)

63.46 ± 8.22 (n = 16)
67.66 ± 7.03 (n = 30)

76.10 ± 14.47 (n = 16)
78.48 ± 8.66 (n = 30)

54.42 ± n/a (n = 16)
59.46 ± n/a (n = 30)Hartmann et al. (2019) [28]

A1 vs. A2 vs. A3 vs. B 81.89 ± 6.84 (n = 16)
78.27 ± 4.95 (n = 30)

57.53 (n = 16) *
57.37 (n = 30) *

65.39 (n = 16) *
65.37 (n = 30) *

52.90 (n = 16) *
53.62 (n = 30) *

A vs. Non-A 88.09 (n = 9) - - -Arce Santana et al. (2020) [29]
A1 vs. A2 vs. A3 77.31 (n = 9) - - -
A vs. B: balanced data 73.64 (n = 6) 75.34 (n = 6) 80.29 (n = 6) 70.96 (n = 6)

Loh et al. (2021) [30]
A vs. B: unbalanced data 52.99 (n = 6) 33.04 (n = 6) 92.06 (n = 6) 20.13 (n = 6)

A vs. Non-A: Local Analysis
-
-
-

63.39 ± 9.10 (n = 41)
61.38 ± 8.33 (n = 8)
63.88 ± 9.34 (n = 33)

71.13 ± 12.53 (n = 41)
75.23 ± 10.59 (n = 8)
70.14 ± 12.91 (n = 33)

59.89 ± 13.97 (n = 41)
52.32 ± 8.38 (n = 8)

61.73 ± 14.52 (n = 33)
Tramonti Fantozzi et al. (2021) [31]

A vs. Non-A: Multi-trace
Analysis

-
-
-

66.31 ± 8.08 (n = 41)
64.34 ± 5.81 (n = 8)
66.78 ± 8.54 (n = 33)

82.68 ± 9.15 (n = 41)
87.41 ± 7.04 (n = 8)
81.54 ± 9.32 (n = 33)

57.12 ± 12.66 (n = 41)
51.29 ± 6.69 (n = 8)

58.53 ± 13.42 (n = 33)

A vs. Non-A 92.52 ± 1.39 (n = 16)
90.86 ± 2.00 (n = 30)

62.41 ± 9.34 (n = 16)
68.22 ± 6.33 (n = 30)

63.59 ± 15.64 (n = 16)
70.02 ± 10.42 (n = 30)

64.45 ± 10.72 (n = 16)
68.46 ± 10.35 (n = 30)

You et al. (2022): only NREM [32]
A1 vs. A2 vs. A3 vs. B 88.11 ± 2.12 (n = 16)

85.61 ± 2.78 (n = 30)
53.98 (n = 16) *
56.99 (n = 30) *

59.32 (n = 16) *
61.07 (n = 30) *

-
-

A vs. Non-A 90.26 ± 2.88 (n = 16)
88.89 ± 1.83 (n = 30)

67.78 ± 8.67 (n = 16)
72.16 ± 5.81 (n = 30)

68.15 ± 12.70 (n = 16)
72.05 ± 10.69 (n = 30)

69.13 ± 9.16 (n = 16)
74.30 ± 9.52 (n = 30)

You et al. (2022) [32]
A1 vs. A2 vs. A3 vs. B 85.39 ± 5.88 (n = 16)

81.21 ± 4.40 (n = 30)
59.45 (n = 16) *
59.55 (n = 30) *

61.75 (n = 16) *
63.36 (n = 30) *

-
-

A1 vs. A2 vs. A3: HOV 75.68 (n = 21) 76.32 (n = 21) 75.68 (n = 21) 77.13 (n = 21)
This work: D2V output dim = 50

A1 vs. A2 vs. A3: KFCV 75.33 ± 1.41 (n = 21) 76.11 ± 1.33 (n = 21) 75.33 ± 1.41 (n = 21) 77.18 ± 1.28 (n = 21)
A1 vs. A2 vs. A3: HOV 75.90 (n = 21) 76.49 (n = 21) 75.90 (n = 21) 77.24 (n = 21)

This work: D2V output dim = 100
A1 vs. A2 vs. A3: KFCV 75.39 ± 1.64 (n = 21) 76.09 ± 1.57 (n = 21) 75.39 ± 1.65 (n = 21) 77.05 ± 1.51 (n = 21)
A1 vs. A2 vs. A3: HOV 75.95 (n = 21) 76.51 (n = 21) 75.95 (n = 21) 77.20 (n = 21)

This work: D2V output dim = 300
A1 vs. A2 vs. A3: KFCV 75.16 ± 1.10 (n = 21) 75.91 ± 1.11 (n = 21) 75.16 ± 1.10 (n = 21) 76.95 ± 1.21 (n = 21)
A1 vs. A2 vs. A3: HOV 74.69 (n = 21) 75.43 (n = 21) 74.69 (n = 21) 75.38 (n = 21)

This work: D2V output dim = 500
A1 vs. A2 vs. A3: KFCV 74.80 ± 1.74 (n = 21) 75.67 ± 1.71 (n = 21) 74.80 ± 1.74 (n = 21) 76.90 ± 1.75 (n = 21)

n: number of sleep EEG recordings considered, HOV: hold-out validation, KFCV: K-fold cross-validation. * Non-weighted average between the reported metrics for each class (B, A1, A2,
and A3).



Appl. Sci. 2023, 13, 10299 21 of 22

References
1. Kryger, M.; Roth, T.; Dement, W. Principles and Practice of Sleep Medicine; Elsevier: Amsterdam, The Netherlands, 2017.
2. Ferini-Strambi, L.; Galbiati, A.; Marelli, S. Sleep Microstructure and Memory Function. Front. Neurol. 2013, 4, 159. [CrossRef]

[PubMed]
3. Parrino, L.; Grassi, A.; Milioli, G. Cyclic Alternating Pattern in Polysomnography. Curr. Opin. Pulm. Med. 2014, 20, 533–541.

[CrossRef] [PubMed]
4. Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.;

Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human
sleep. Sleep Med. 2001, 2, 537–553. [CrossRef]

5. Terzano, M.; Parrino, L. Clinical applications of cyclic alternating pattern. Physiol. Behav. 1993, 54, 807–813. [CrossRef]
6. Terzano, M.; Parrino, L.; Fioriti, G.; Orofiamma, B.; Depoortere, H. Modifications of sleep structure induced by increasing levels

of acoustic perturbation in normal subjects. Electroencephalogr. Clin. Neurophysiol. 1990, 76, 29–38. [CrossRef] [PubMed]
7. Terzano, M.; Parrino, L. Evaluation of EEG Cyclic Alternating Pattern during Sleep in Insomniacs and Controls under Placebo

and Acute Treatment with Zolpidem. Sleep 1992, 15, 64–70. [CrossRef]
8. Parrino, L.; Boselli, M.; Buccino, G.; Spaggiari, M.; Giovanni, G.; Terzano, M. The Cyclic Alternating Pattern Plays a Gate-Control

on Periodic Limb Movements During Non-Rapid Eye Movement Sleep. J. Clin. Neurophysiol. 1996, 13, 314–323. [CrossRef]
9. Parrino, L.; Smerieri, A.; Spaggiari, M.; Terzano, M. Cyclic alternating pattern (CAP) and epilepsy during sleep: How a

physiological rhythm modulates a pathological event. Clin. Neurophysiol. 2000, 111, S39–S46. [CrossRef]
10. Simons, D. Obnubilations comas et stupeurs: Etudes electroencéphalographiques. JAMA Neurol. 1960, 2, 113–114. [CrossRef]
11. Terzano, M.; Mancia, D.; Zacchetti, O.; Manzoni, G. The significance of cyclic EEG changes in Creutzfeldt-Jakob disease: Prognostic

value of their course in 9 patients. Ital. J. Neurol. Sci. 1981, 2, 243–253. [CrossRef]
12. Carra, M.; Rompré, P.; Kato, T.; Parrino, L.; Terzano, M.; Lavigne, G.; Macaluso, G. Sleep bruxism and sleep arousal: An experi-

mental challenge to assess the role of cyclic alternating pattern. J. Oral Rehabil. 2011, 38, 635–642. [CrossRef] [PubMed]
13. Manconi, M.; Vitale, G.; Ferri, R.; Zucconi, M.; Ferini-Strambi, L. Periodic leg movements in Cheyne-Stokes respiration. Eur.

Respir. J. 2008, 32, 1656–1662. [CrossRef] [PubMed]
14. Parrino, L.; Ferri, R.; Bruni, O.; Terzano, M. Cyclic alternating pattern (CAP): The marker of sleep instability. Sleep Med. Rev. 2012,

16, 27–45. [CrossRef] [PubMed]
15. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-

tionality. arXiv 2013. https://arxiv.org/abs/1310.4546. [CrossRef]
16. Firth, J.; Palmer, F. Selected Papers of J.R. Firth 1952–1959; Indiana University Press: Bloomington, IN, USA, 1968.
17. Han, J.; Kamber, M. Data Mining: Concepts and Techniques; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2000.
18. Milanovic, M.; Stamenkovic, M. Data mining in time series. Econ. Horizons (Ekonomski Horizonti) 2011, 13, 5–25.
19. Lara, J.; Lizcano, D.; Pérez, A.; Valente, J. A general framework for time series data mining based on event analysis: Application

to the medical domains of electroencephalography and stabilometry. J. Biomed. Inform. 2014, 51, 219–241. [CrossRef]
20. Li, Y.; Lin, J.; Oates, T. Visualizing Variable-Length Time Series Motifs. In Proceedings of the 2012 SIAM International Conference

On Data Mining, Anaheim, CA, USA, 26–28 April 2012; p. 4. [CrossRef]
21. Kim, S.; Kim, J.; Chun, H. Wave2Vec: Vectorizing Electroencephalography Bio-Signal for Prediction of Brain Disease. Int. J.

Environ. Res. Public Health 2018, 15, 1750. [CrossRef]
22. Gao, Y.; Lin, J.; Brif, C. Ensemble Grammar Induction For Detecting Anomalies in Time Series. arXiv 2020. https://arxiv.org/abs/

2001.11102. [CrossRef]
23. Joe, M.; Pyo, S. Classification of Sleep Stage with Biosignal Images Using Convolutional Neural Networks. Appl. Sci. 2022,

12, 3028. [CrossRef]
24. Zhang, Z.; Tang, M. A Domain-Based, Adaptive, Multi-Scale, Inter-Subject Sleep Stage Classification Network. Appl. Sci. 2023,

13, 3474. [CrossRef]
25. Kemp, B.; Zwinderman, A.; Tuk, B.; Kamphuisen, H.; Oberye, J. Analysis of a sleep-dependent neuronal feedback loop: the

slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [CrossRef] [PubMed]
26. Rosa, A.; Parrino, L.; Terzano, M. Automatic detection of cyclic alternating pattern (CAP) sequences in sleep: Preliminary results.

Clin. Neurophysiol. 1999, 110, 585–592. [CrossRef] [PubMed]
27. Malinowska, U.; Durka, P.; Blinowska, K.; Szelenberger, W.; Wakarow, A. Micro- and macrostructure of sleep EEG. IEEE Eng. Med.

Biol. Mag. 2006, 25, 26–31. [CrossRef] [PubMed]
28. Hartmann, S.; Baumert, M. Automatic A-Phase Detection of Cyclic Alternating Patterns in Sleep Using Dynamic Temporal

Information. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1695–1703. [CrossRef]
29. Arce-Santana, E.; Alba, A.; Mendez, M.; Arce-Guevara, V. A-phase classification using convolutional neural networks. Med. Biol.

Eng. Comput. 2020, 58, 1003–1014. [CrossRef]
30. Loh, H.; Ooi, C.; Dhok, S.; Sharma, M.; Bhurane, A.; Acharya, U. Automated detection of cyclic alternating pattern and

classification of sleep stages using deep neural network. Appl. Intell. 2021, 52, 2903–2917. [CrossRef]
31. Tramonti Fantozzi, M.; Faraguna, U.; Ugon, A.; Ciuti, G.; Pinna, A. Automatic Cyclic Alternating Pattern (CAP) analysis: Local

and multi-trace approaches. PLoS ONE 2021, 16, e0260984. [CrossRef]

http://doi.org/10.3389/fneur.2013.00159
http://www.ncbi.nlm.nih.gov/pubmed/24130550
http://dx.doi.org/10.1097/MCP.0000000000000100
http://www.ncbi.nlm.nih.gov/pubmed/25188718
http://dx.doi.org/10.1016/S1389-9457(01)00149-6
http://dx.doi.org/10.1016/0031-9384(93)90096-X
http://dx.doi.org/10.1016/0013-4694(90)90055-O
http://www.ncbi.nlm.nih.gov/pubmed/1694482
http://dx.doi.org/10.1093/sleep/15.1.64
http://dx.doi.org/10.1097/00004691-199607000-00005
http://dx.doi.org/10.1016/S1388-2457(00)00400-4
http://dx.doi.org/10.1001/archneur.1960.03840070115017
http://dx.doi.org/10.1007/BF02335404
http://dx.doi.org/10.1111/j.1365-2842.2011.02203.x
http://www.ncbi.nlm.nih.gov/pubmed/21299589
http://dx.doi.org/10.1183/09031936.00163507
http://www.ncbi.nlm.nih.gov/pubmed/19043012
http://dx.doi.org/10.1016/j.smrv.2011.02.003
http://www.ncbi.nlm.nih.gov/pubmed/21616693
https://arxiv.org/abs/1310.4546
http://dx.doi.org/10.48550/arXiv.1310.4546
http://dx.doi.org/10.1016/j.jbi.2014.06.003
http://dx.doi.org/10.1137/1.9781611972825.77
http://dx.doi.org/10.3390/ijerph15081750
https://arxiv.org/abs/2001.11102
https://arxiv.org/abs/2001.11102
http://dx.doi.org/10.48550/arXiv.2001.11102
http://dx.doi.org/10.3390/app12063028
http://dx.doi.org/10.3390/app13063474
http://dx.doi.org/10.1109/10.867928
http://www.ncbi.nlm.nih.gov/pubmed/11008419
http://dx.doi.org/10.1016/S1388-2457(98)00030-3
http://www.ncbi.nlm.nih.gov/pubmed/10378726
http://dx.doi.org/10.1109/MEMB.2006.1657784
http://www.ncbi.nlm.nih.gov/pubmed/16898655
http://dx.doi.org/10.1109/TNSRE.2019.2934828
http://dx.doi.org/10.1007/s11517-020-02144-6
http://dx.doi.org/10.1007/s10489-021-02597-8
http://dx.doi.org/10.1371/journal.pone.0260984


Appl. Sci. 2023, 13, 10299 22 of 22

32. You, J.; Ma, Y.; Wang, Y. GTransU-CAP: Automatic labeling for cyclic alternating patterns in sleep EEG using gated transformer-
based U-Net framework. Comput. Biol. Med. 2022, 147, 105804. [CrossRef]

33. Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.; Mark, R.; Mietus, J.; Moody, G.; Peng, C.; Stanley, H. PhysioBank,
PhysioToolkit, and PhysioNet. Circulation 2000, 101, E215–E220. [CrossRef]

34. Ferri, R.; Bruni, O.; Miano, S.; Terzano, M. Topographic mapping of the spectral components of the cyclic alternating pattern
(CAP). Sleep Med. 2005, 6, 29–36. [CrossRef]

35. Jasper, H. Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin.
Neurophysiol. 1958, 10, 370–375. [CrossRef]

36. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality Reduction for Fast Similarity Search in Large Time Series
Databases. Knowl. Inf. Syst. 2001, 3, 263–286. [CrossRef]

37. Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A symbolic representation of time series, with implications for streaming algorithms.
In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego,
CA, USA, 13 June 2003. [CrossRef]

38. Malinowski, S.; Guyet, T.; Quiniou, R.; Tavenard, R. 1d-SAX: A Novel Symbolic Representation for Time Series. In Advances in
Intelligent Data Analysis XII, Proceedings of Tthe 12th International Symposium, IDA 2013, London, UK, 17–19 October 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 273–284._24. [CrossRef]

39. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. arXiv 2014. https://arxiv.org/abs/1405.4053.
[CrossRef]

40. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45,
427–437. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compbiomed.2022.105804
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1016/j.sleep.2004.06.010
http://dx.doi.org/10.1016/0013-4694(58)90053-1
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1145/882082.882086
http://dx.doi.org/10.1007/978-3-642-41398-8_24
https://arxiv.org/abs/1405.4053
http://dx.doi.org/10.48550/arXiv.1405.4053
http://dx.doi.org/10.1016/j.ipm.2009.03.002

	Introduction
	Cyclic Alternating Pattern
	Hypothesis

	Literature Review
	Time Series Data Mining
	CAP Detection and Classification

	Materials and Methods
	CAP Sleep Database
	Data Symbolization
	Data Vectorization
	Classification
	Evaluation

	Results
	Classification Using Hold-Out Validation
	Classification Using Stratified K-Fold Cross-Validation

	Discussion
	Conclusions
	Appendix A
	References

