
Citation: Kubacki, A.; Adamek, M.;

Baran, P. Reward Function and

Configuration Parameters in Machine

Learning of a Four-Legged Walking

Robot. Appl. Sci. 2023, 13, 10298.

https://doi.org/10.3390/

app131810298

Academic Editors: Charlie Yang

and Hongbin Ma

Received: 31 July 2023

Revised: 8 September 2023

Accepted: 10 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Reward Function and Configuration Parameters in Machine
Learning of a Four-Legged Walking Robot
Arkadiusz Kubacki * , Marcin Adamek and Piotr Baran

Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland;
marcin.adamek@put.poznan.pl (M.A.); piotr.baran@put.poznan.pl (P.B.)
* Correspondence: arkadiusz.kubacki@put.poznan.pl

Abstract: In contemporary times, the use of walking robots is gaining increasing popularity and is
prevalent in various industries. The ability to navigate challenging terrains is one of the advantages
that they have over other types of robots, but they also require more intricate control mechanisms. One
way to simplify this issue is to take advantage of artificial intelligence through reinforcement learning.
The reward function is one of the conditions that governs how learning takes place, determining
what actions the agent is willing to take based on the collected data. Another aspect to consider is the
predetermined values contained in the configuration file, which describe the course of the training.
The correct tuning of them is crucial for achieving satisfactory results in the teaching process. The
initial phase of the investigation involved assessing the currently prevalent forms of kinematics for
walking robots. Based on this evaluation, the most suitable design was selected. Subsequently, the
Unity3D development environment was configured using an ML-Agents toolkit, which supports
machine learning. During the experiment, the impacts of the values defined in the configuration file
and the form of the reward function on the course of training were examined. Movement algorithms
were developed for various modifications for learning to use artificial neural networks.

Keywords: walking robot; quadruped; artificial neural network; reinforcement learning; robots;
unity; ML-Agents; ML-Agents toolkit; Crawler; reward function; configuration parameters

1. Introduction
1.1. Motivation

Today, robots are becoming more and more common and can be found in all branches
of industry and private applications. Owing to the mechanism of movement, walking
robots constitute a special group [1–3]. The current state of technology could suggest
that, after so many years since the creation of the first machine of this type, this is a fully
developed solution, leaving no room for improvement. However, the real situation differs
from the theoretical one. Although walking robots have many advantages compared to
other types of robots, such as ease of movement on difficult surfaces and potentially high
payloads, they are still structures characterised by the most extensive control algorithm [4,5].
In the era of the significant development of artificial intelligence applications in many areas
of human life, it seems reasonable to also use it to control walking robots. This solution
will potentially simplify the complex control algorithm [6,7].

1.2. Literature

Walking robots can be divided based on many criteria, and some of them are closely
related. The basic criterion is the number of legs. The minimum number of limbs can be
zero; in this case, we are talking about crawling robots for which movement resembles
the crawling of a snake. Robots with one leg (monopeds) move by jumping. This type of
gait is very difficult to implement owing to the need to use drives with high power and
dynamics, as well as a fast control system. The most used walking robots are two-legged

Appl. Sci. 2023, 13, 10298. https://doi.org/10.3390/app131810298 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810298
https://doi.org/10.3390/app131810298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6353-5801
https://doi.org/10.3390/app131810298
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810298?type=check_update&version=1

Appl. Sci. 2023, 13, 10298 2 of 20

(bipeds), four-legged (quadrupeds), and six-legged (hexapeds). These three types of robots
will be discussed in more detail in the following sections. In addition, there is also a group
of multilegged robots, that is, with more than six legs [8–10].

For this study, a three-degree-of-freedom quadrupedal robot was developed in each
leg, for which the biological reference is a reptile. This decision was conditioned by
the fact that the biological pattern of the reptile is characterised by good stability and
dynamics [11,12].

The concept of artificial neural networks refers to the concept of mathematical struc-
tures along with their software and models. With their help or through rows of elements,
called artificial neurones, calculations are carried out on many given inputs. Originally,
the inspiration for the creation of the described structures was the construction of natural
neurones, the synapses that connect them, and the entire nervous system, consisting of
these elements [13].

The basic features of artificial neural networks include:

• The ability to abstract, i.e., generalise, the content acquired in the training process;
• Relative fault tolerance refers to a situation where one of the network’s neurones may

not work properly, and yet the result obtained at the output will be close to correct;
• The ability to quickly “learn”, by which we mean the ability to respond appropriately

to specific stimuli.

The use of artificial neural networks is possible, for example, by using software that
supports such an application. One of the programmes used for this purpose is Matlab
Simulink, an interactive environment equipped with its own programming language. It
allows you to create fully functional programmes and is equipped with libraries dedicated
to building neural networks (Deep Learning Toolbox and Fuzzy Logic Toolbox). Another
programme in this category might be Statistica®Neural Networks, one of the most tech-
nologically advanced tools that combines high efficiency, by implementing many rare
functions, with ease of use, even for inexperienced people [14]. In addition, the creation of
neural networks is possible using a set of tools that includes:

• Unity Engine Editor for visualising and creating a learning environment;
• A machine-learning-agent tool, supporting the learning process on the engine side;
• PyTorch library to perform the process, its configuration, and save the obtained results.

In the artificial neurone in Figure 1, there are input vectors that are multiplied by the
weight values and then subjected to a given internal processing function. In the next stages,
the result of the above task is subjected to the activation function on the basis of which the
output value of the neurone is determined. The described process proceeds according to
the following mathematical description:

y = ϕ

(
n

∑
i=1

wixi

)
= ϕ(W·X) (1)

where X is the input data vector, W is the weight vector, ϕ is the activation function, and y
is the output signal.

The described artificial neurone is a single structural element from which entire
artificial neural networks are made. These networks are characterised by a non-linear
character, because of which they are capable of solving complex problems, difficult from
the point of view of linear modelling. The most popular ANN construction scheme is a
layered structure, which consists of an input layer, an output layer, and hidden layers in
between. Such a definition of its operation ensures significant efficiency in controlling
multidimensional processes.

Despite the generally defined scheme of the artificial neural network, we can dis-
tinguish several of its types. The first, and most basic, of these is the one-way network.
There is no feedback; that is, each piece of information passes through each neurone of
the network only once. In addition, they can be differentiated into single-, double-, and

Appl. Sci. 2023, 13, 10298 3 of 20

multi-layer networks. Other types are recursive networks (e.g., Hopfield networks and
Boltzmann machines). We can call such a network a creation in which the connections
between neurones constitute a graph with cycles. Another type of ANN worth mentioning
is self-organising maps, called Kohonen networks. In their case, the corresponding coordi-
nates placed in any n-dimensional space are juxtaposed with the neurones. In addition to
the networks mentioned above, there are other networks, such as support vector machines,
networks based on radial basis functions, token-transmitting networks, and networks
based on impulsive neurones [15].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21

w1

w2

w3

x1

x2

x3

e = Σ wi xi y = φ(e)
y

Figure 1. Model of the described neurone.

The described artificial neurone is a single structural element from which entire
artificial neural networks are made. These networks are characterised by a non-linear
character, because of which they are capable of solving complex problems, difficult from
the point of view of linear modelling. The most popular ANN construction scheme is a
layered structure, which consists of an input layer, an output layer, and hidden layers in
between. Such a definition of its operation ensures significant efficiency in controlling
multidimensional processes.

Despite the generally defined scheme of the artificial neural network, we can
distinguish several of its types. The first, and most basic, of these is the one-way network.
There is no feedback; that is, each piece of information passes through each neurone of
the network only once. In addition, they can be differentiated into single-, double-, and
multi-layer networks. Other types are recursive networks (e.g., Hopfield networks and
Boltzmann machines). We can call such a network a creation in which the connections
between neurones constitute a graph with cycles. Another type of ANN worth mentioning
is self-organising maps, called Kohonen networks. In their case, the corresponding
coordinates placed in any n-dimensional space are juxtaposed with the neurones. In
addition to the networks mentioned above, there are other networks, such as support
vector machines, networks based on radial basis functions, token-transmitting networks,
and networks based on impulsive neurones [15].

Owing to their versatility and an ever-wider spectrum of possibilities, artificial neural
networks have found many applications in an increasing number of fields including:
• recognition, denoising, and classification of graphics (including letters);
• speech synthesis;
• in the aviation industry, to identify dangerous items in luggage;
• data analysis, especially finding correlations between data series;
• estimation, prediction, and approximation of the output based on inputs, without

detailed knowledge of the process [16,17].
The current state of technology, in the context of teaching methods using artificial

neural networks, distinguishes three basic trends:
• supervised learning;
• unsupervised learning;
• reinforcement learning.

In the study that is the subject of this article, the third type was used. Reinforcement
learning is a type of dynamic programming for which the task is to train algorithms
through a system of punishments and rewards. This means that the agent undergoing the

Figure 1. Model of the described neurone.

Owing to their versatility and an ever-wider spectrum of possibilities, artificial neural
networks have found many applications in an increasing number of fields including:

• recognition, denoising, and classification of graphics (including letters);
• speech synthesis;
• in the aviation industry, to identify dangerous items in luggage;
• data analysis, especially finding correlations between data series;
• estimation, prediction, and approximation of the output based on inputs, without

detailed knowledge of the process [16,17].

The current state of technology, in the context of teaching methods using artificial
neural networks, distinguishes three basic trends:

• supervised learning;
• unsupervised learning;
• reinforcement learning.

In the study that is the subject of this article, the third type was used. Reinforcement
learning is a type of dynamic programming for which the task is to train algorithms through
a system of punishments and rewards. This means that the agent undergoing the learning
process is tasked with minimising the punishments received and maximising the rewards
based on entering appropriate interactions with the environment. The main difference,
compared to the other two mentioned methods, is the lack of a prepared set of training
data, but only in the configured environment [18].

Reinforcement learning can be represented by a mathematical model of the Markov
Decision Process (MDP).

MDP =< X, A, $, δ > (2)

where X is a finite set of states, A is a finite set of actions, $ is a reward function, and δ is a
state transition function.

Appl. Sci. 2023, 13, 10298 4 of 20

To fully understand the essence of reinforcement learning, it is necessary to describe the
three most important components of the process. The first is the environment, that is, the
simulation with which the agent interacts [19,20]. It is characterised by the following features:

• state—according to the name, it is a variable that defines the current state of the
environment;

• step—a function which, based on the performed action, updates the state of the
environment and returns a reward and an observation;

• episodes—a set of steps that, upon being reached, resets the state of the environment;
• reward—a variable returned by the environment, specifying the benefit (or loss)

obtained after a given step;
• observation—a scalar, vector, or matrix returned by a step for which the task is to

describe the state of the environment at a given moment.

The second part of the reinforcement learning process is the agent, that is, the element
that interacts with the environment. As described above, its task is to determine the most
favourable way to interact with the environment. The basic parameter of the agent is
the function responsible for its behaviour, accepting the observation, and returning the
action [21].

Last but not least, the most important part of the training process is the buffer. It acts
as a container for the data collected by the agent during training. Then, they are used to
continue training [22].

The learning process itself begins with the initial collection of data through the im-
plementation of the random policy. This stage consists of carrying out a set number of
episodes and then saving the data obtained in this way in the buffer. The rest of the training
follows the loop [23]:

• data collection—each iteration begins with repeated data collection; however, unlike
the initial stage, it is done using the agent’s policy;

• learning—the calculation of the loss, or gain, of points by the agent based on the
collected data.

In addition, two different types of learning should be mentioned [24,25]. The first of
these can be described as negative learning. This means that training is effective on the
basis of avoiding or discontinuing the punishing behaviour. The second possible approach
is positive learning. In this case, the basis of training is to increase the frequency and
intensity of the agent’s rewarding behaviour.

On the basis of the set of reinforcement learning criteria described above, it is possible
to distinguish the following advantages:

• It can be used for very complex problems that would be impossible or very difficult to
solve using conventional methods;

• The process is somewhat immune to errors that arise during it because, by providing
it with the possibility of carrying out the appropriate number of episodes, they will be
automatically corrected.

Unfortunately, this method is not flawless. This includes the fact that, to obtain
satisfactory results, a long time must be devoted to data collection, and a multitude of
calculations is required to be carried out during training. Furthermore, reinforcement
learning should not be used to solve simple problems, as this would involve much more
work than would be necessary compared to conventional methods.

In article [26], various reinforcement learning algorithms were reviewed from the
perspective of overcoming the track and avoiding obstacles caused by cars. The best effec-
tiveness, characterised by a higher reward function, was achieved using the PPO training
method after prior training with the behavioural cloning method. The authors in [27]
created a computer game that they then transformed into a simulation environment to
teach intelligent agents. They then used hyperparameter tuning to achieve the best possible
performance of the agent in the final commercial production. In [28], deep Q learning
algorithms and their implementation methods in the Python environment with the use of

Appl. Sci. 2023, 13, 10298 5 of 20

the PyTorch library were analysed to solve the problem of high complexity reinforcement
learning. The learning itself was carried out in a real environment, and this approach
allowed the achievement of results above the assumed minimum. In article [29], the au-
thors made a comparison of the hyperparameters epsilon, lambda, beta, and num_epoch
in the context of the agent traversing the maze. Their settings depend, in this case, on
the complexity of the maze itself and the complexity of the actions taken by the agent.
Previous work [30] focussed on the use of automated hyperparameter optimisation, which
is supposed to show greater efficiency compared to experts in a given field. Again, this
issue is analysed in the context of model-based reinforcement learning. The authors in [31]
present the use of a neural network in planning the route of a walking robot. The inputs of
the neural network were filtered accelerometer indications, magnetometers, and camera
images, based on which the robot recognised the given trajectories.

1.3. Contributions and Innovations

This paper presents an approach that is significantly different from that described
above. First, the robot model that is used not only is a virtual object but also has a physical
representation because of which it is possible to relate the obtained learning results to real
situations. The second distinguishing feature is that hyperparameter tuning is preceded
by studying the impact of the reward function on the quality of learning. Furthermore,
instead of using a ready-made scene provided with the ML-Agents package, it was decided
to create an environment that allowed the assumed learning process to be carried out.

1.4. Main Difficulties

The purpose of the first study was to check how different configurations of the reward
function affect the course of the learning process by strengthening the robot model. Then,
based on the optimal configuration, further modifications were made, this time, to the
.yaml configuration file.

To implement this problem, a CAD model of the robot was developed, transferred
to the Unity simulation environment, and then the main scene was configured, which
is the place where the robot is trained. The last element of the learning environment is
the configuration of the learning process itself. For this purpose, the configuration file
responsible for the basic parameters of the learning process is adjusted accordingly. The
whole is completed by creating a programme that determines the interaction of the robot
with the environment, and the resulting conclusions are taken into account when creating a
neural network.

1.5. Structure of the Paper

The first part of the work contains a preliminary description of the research that was
carried out and the definition of the reward function that was the subject of one of the
experiments. The following section describes the process of designing the robot model,
its export to the learning environment, and the configuration of the environment itself.
Then, the machine learning module that was used is characterised, along with a detailed
description of the parameters defining it. In addition, the library used to visualise the
learning results is presented. The next stage was the characterisation of the input data and
description of the entire study.

The next section presents the results of the experiments divided into two stages. In the
first, the form of the reward function was modified, while in the second, the hyperparame-
ters of learning were changed. In a further stage, the results were analysed by taking into
account the possible causes of the observed tendencies and their potential effects during
the implementation of the learnt gait. The last two chapters focus on a comprehensive
summary of the research that was conducted, and recommendations for further activities
in this field are proposed.

Appl. Sci. 2023, 13, 10298 6 of 20

2. Materials and Methods
2.1. Main Work

As a part of this work, two studies were carried out, each of which consisted of three
different cycles. The first task was to find the optimal reward function in the context
of the learning quality. The reward function used in this study is calculated using the
following formula:

R f = Rvel_look + Rencg + Rbody_pos + Rtrig (3)

where R f is the reward function, Rvel_look is a reward related to the speed and orientation
of the robot, Rencg is an award given to encourage the agent to take action, Rbody_pos is a
reward related to the location of the corpse, and Rtrig is the reward given only when the
goal is achieved.

The above component functions of the reward are characterised by the following
formulas and assume the following values:

Rvel_look =

(1− Actual Speed
Target Speed

2
)2
·[((→A·→B)+ 1

)
∗ 0.5

]
(4)

where the first term is responsible for checking the speed, and the second term is responsible
for the orientation as follows:

Rencg = − 0.5
MaxStep

(5)

where MaxStep is the maximum number of steps in an episode:

Rbody_pos = −
0.5

MaxStep
(6)

where MaxStep is the maximum number of steps in an episode:

Rtrig = +500 (7)

Given all the values, the following formula was obtained:

R f =

(1− Actual Speed
Target Speed

2
)2
·[((→A·→B)+ 1

)
∗ 0.5

]
− 0.5

MaxStep
− 0.5

MaxStep
+ 500 (8)

where the last value (+500) occurs only in the case of an episode in which the agent achieved
the goal.

The second task, based on the previously defined reward function in Equation (8), was
to examine the impact of various hyperparameters in the configuration file on the course of
the training. It was found that the best results were achieved when the reward function
highlighted the correct attitude of the robot during the process over the mere achievement
of the goal. In terms of hyperparameters, the best results were obtained by reducing the
number of hidden layers.

2.2. Robot Design, Export to the Environment, and Its Configuration

The robot, being the object of the study, was designed with the use of Dassault
Systèmes Solidworks 2021 software. To estimate its weight, PLA plastic was assumed as
its material. The model has four limbs, each with three joints, which translates into three
degrees of freedom in each of them.

Using the Rhino 7 programme, the robot was transferred from the design software
to the learning environment. The view of the converted robot is shown in Figure 2. Ad-
ditionally, it was necessary to establish the appropriate hierarchy of connections between
the components of the limbs. To enable learning, it was also necessary to create a scene in
which it would take place.

Appl. Sci. 2023, 13, 10298 7 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

achievement of the goal. In terms of hyperparameters, the best results were obtained by
reducing the number of hidden layers.

2.2. Robot Design, Export to the Environment, and Its Configuration
The robot, being the object of the study, was designed with the use of Dassault

Systèmes Solidworks 2021 software. To estimate its weight, PLA plastic was assumed as
its material. The model has four limbs, each with three joints, which translates into three
degrees of freedom in each of them.

Using the Rhino 7 programme, the robot was transferred from the design software to
the learning environment. The view of the converted robot is shown in Figure 2.
Additionally, it was necessary to establish the appropriate hierarchy of connections
between the components of the limbs. To enable learning, it was also necessary to create
a scene in which it would take place.

Figure 2. Robot model conversion using Rhino 7.

2.3. ML-Agents Module
After the appropriate mechanical adjustment of the robot model, it was possible to

configure the scripts necessary to teach the robot. This process was based on an example
from the ML-Agents documentation; on this basis, it was decided which scripts would be
necessary for the correct conduct of the teaching process. These included:
• Decision Requester—This is a programme that is responsible for making decisions

by the taught object after collecting observations. Here, you can adjust how many

Figure 2. Robot model conversion using Rhino 7.

2.3. ML-Agents Module

After the appropriate mechanical adjustment of the robot model, it was possible to
configure the scripts necessary to teach the robot. This process was based on an example
from the ML-Agents documentation; on this basis, it was decided which scripts would be
necessary for the correct conduct of the teaching process. These included:

• Decision Requester—This is a programme that is responsible for making decisions by
the taught object after collecting observations. Here, you can adjust how many steps
the decision will take. In addition, it can be used to force the model to make decisions
between steps, not only after a certain number of them;

• Model Override—This is a script that is responsible for handling the teaching process,
i.e., overwriting the model, and correct completion of the process;

• Rigid Body Sensor Component—This is a programme that is responsible for connecting
all the rigid body components into one coherent whole;

• Behaviour Parameters—These are one of the main scripts responsible for teaching. It
is from this level that numerous observations (the global position of the robot and
position of each joint, number of actions, and their type) are made; and, here, it is
possible to upload the learnt neural network. The actions that the trained model
performs can be discrete (either 0 or 1) or continuous (from 0 to 1);

• Joint Drive Controller—from this programme, you can adjust the values of the forces
in the joints. Three parameters can be adjusted: the maximum spring force, damping
force, and maximum joint force;

Appl. Sci. 2023, 13, 10298 8 of 20

• Crawler Agent—This is a script in which the learning process is defined, including
what the learning model will be punished for, what it will be rewarded for, what
its goal is, and how many steps it takes to achieve this goal. In addition, in this
programme, you define all the actions that the model can perform and what input
signals will reach it. This is also where you call all the scene-setup functions that need
to be performed at each end and beginning of an episode.

One of the most important aspects of the simulation was the correct mapping of
physics. For this purpose, two additional programmes that were used affect the basic
physical values implemented in the Unity environment. The first script is “Centre of Mass”.
It is responsible for actively shifting the robot’s centre of mass depending on the position of
the limbs. Another script is “Custom Gravity”. This is a programme that makes it easy to
adjust the gravity force in such a way that the robot’s fall speed is as realistic as possible.

The input data for the learning process include, among others, a learning process
configuration file, which defines, for example, the training method (trainer type), hyperpa-
rameters, and some other additional values used during the training process. Depending
on the choice of the first value, i.e., the choice of the trainer type, different values will be
available. The trainers to choose from are as follows:

• PPO (Proximal Policy Optimisation)—This uses a neural network to approximate an
ideal function that matches the agent’s observations to the best possible action that the
agent can take in a given situation;

• SAC (Soft Actor Critic)—This is an algorithm that optimises the random behaviour
of the agent, guided by the criterion of achieving the highest possible entropy of
the process;

• MA-POCA (Multi-Agent Posthumous Credit Assignment)—This is a trainer that is
designed to teach multi-agent environments. Its task is to train a neural network that
will act as a mentor for the trained agent.

If you have not decided to define your own .yaml file, the Unity environment will
define this file itself with basic values. The block diagram according to which the learning
process is carried out using the ML-Agents package is presented in Figure 3.

In this study, the type of PPO trainer was chosen, which was the default choice, and
was the factor that defined which values could be adjusted in the configuration file. The
most important values are as follows:

• hyperparameters batch_size—This is the number of data in each iteration. This value
should always be much smaller than the buffer size. If continuous actions are used, it
takes a value of 1000 s. For discrete actions, it takes a value of 10 s;

• hyperparameters buffer_size—This is the number of data that needs to be collected
before updating the model. The buffer size should be much larger than batch_size.
Typically, a larger buffer results in more stable model updates during the training
process (default = 10,240);

• hyperparameters learning_rate—This is the initial learning rate for the simple gradient
method. This value corresponds to the impact of each update step. If the training is
unstable or the reward value does not increase consistently, it is probably set too high
(default = 3 * 10−4);

• hyperparameters beta—This is the effect of the regularisation of entropy, which makes
the agent’s policy more random. Owing to this parameter, agents can properly explore
the action space during training. The higher the value, the more random the agent’s
actions. This parameter should be adjusted so that the entropy value slowly decreases
as the reward increases (default = 5 * 10−3);

• hyperparameters epsilon—This affects how quickly the agent’s policy evolves during
the learning process. A small value produces more stable updates between episodes
but slows the learning process (default = 0.2);

• hyperparameters lambda—This is the learning regularisation parameter. It provides a
trade-off between the set and actual reward values (default = 0.95);

Appl. Sci. 2023, 13, 10298 9 of 20

• hyperparameters num_epoch—This is the number of epochs that pass through the
buffer during the optimisation (default = 3);

• hyperparameters learning_rate_schedule—This determines how the rate of learn-
ing changes over time. For PPO, it is recommended to reduce the learning rate to
max_steps to make the process more stable (default = linear);

• Network_settings normalises—This is a function that is applied to the vector input.
It is useful for complex continuous control problems, but can be harmful for simpler
discrete control problems (default = disabled);

• Network_settings hidden_units—This is the number of units in the hidden layers of
the neural network. For simple combinations of input data (observations), it should
take a small value (default = 512);

• Network_settings num_layers—This is the number of layers hidden in the neural
network. For simple problems, fewer layers can have a faster learning rate and better
performance. More layers may be useful for more complex problems (default = 3);

• Network_settings vis_encode_type—encoder type for encoding visual observations
(default = simple)Extrinsic strength—This is the coefficient by which the award granted
by the environment should be multiplied. Its value depends heavily on the reward
signal (default = 1.0);

• Extrinsic gamma—This is the coefficient used to calculate successive rewards from the
environment. It determines how much the agent should consider possible rewards
received in the future;

• keep_checkpoints—This is the maximum number of model checkpoints to keep. The
checkpoints are written after the number of steps is specified in the checkpoint_interval
variable (default = 500,000). When the maximum number of records is reached, the
oldest checkpoint is deleted when saving a new point (default = 5);

• max_steps—This is the total number of steps that the agent must take in the environ-
ment before the learning process ends. If multiple agents are trained simultaneously,
all the steps they take will affect this number (default = 5,000,000);

• time_horizon—This defines how many steps the agent must take before adding data
to the buffer. When this limit is not reached, the estimated value is used to predict
the expected value. This number should be large enough to capture all the important
agent behaviours in a given episode (default = 64);

• summary_freq—This is the number of data that needs to be collected before training
statistics are generated and displayed. This is a very important parameter when using
graphs generated by the TensorBoard library.

This description of hyperparameters contains guidelines contained in the module
documentation. They tell what features of the environment should be guided by the
selection of numerical values for each parameter. This allows for an initial selection that will
allow for the best possible results of the initial learning cycles. This approach is known as
grid searching. Subsequently, it is possible to automate the tuning of the hyperparameters.
This consists of establishing criteria in terms of which successive iterations of learning will
be validated. The selection of numerical values can be carried out using various strategies:

• random searches;
• Bayesian Optimisation;
• gradient-based optimisation;
• Evolutionary optimisation;
• population-based optimisation;
• radial basis functions;
• spectral methods.

Appl. Sci. 2023, 13, 10298 10 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

Learning Environment

Communicator

Python API Python Trainer

Agent
A1

Agent
A2

Agent
B1

Environment
Parameters

Agent
C1

Agent
D1

Behavior A Behavior B Environment
Param. Channel Behavior C Behavior D

Inference Heuristic

Figure 3. Block diagram of the ML-Agents package.

In this study, the type of PPO trainer was chosen, which was the default choice, and
was the factor that defined which values could be adjusted in the configuration file. The
most important values are as follows:
• hyperparameters batch_size—This is the number of data in each iteration. This value

should always be much smaller than the buffer size. If continuous actions are used,
it takes a value of 1000 s. For discrete actions, it takes a value of 10 s;

• hyperparameters buffer_size—This is the number of data that needs to be collected
before updating the model. The buffer size should be much larger than batch_size.
Typically, a larger buffer results in more stable model updates during the training
process (default = 10,240);

• hyperparameters learning_rate—This is the initial learning rate for the simple
gradient method. This value corresponds to the impact of each update step. If the
training is unstable or the reward value does not increase consistently, it is probably
set too high (default = 3 * 10−4);

• hyperparameters beta—This is the effect of the regularisation of entropy, which
makes the agent’s policy more random. Owing to this parameter, agents can properly
explore the action space during training. The higher the value, the more random the
agent’s actions. This parameter should be adjusted so that the entropy value slowly
decreases as the reward increases (default = 5 * 10−3);

• hyperparameters epsilon—This affects how quickly the agent’s policy evolves during
the learning process. A small value produces more stable updates between episodes
but slows the learning process (default = 0.2);

• hyperparameters lambda—This is the learning regularisation parameter. It provides
a trade-off between the set and actual reward values (default = 0.95);

• hyperparameters num_epoch—This is the number of epochs that pass through the
buffer during the optimisation (default = 3);

• hyperparameters learning_rate_schedule—This determines how the rate of learning
changes over time. For PPO, it is recommended to reduce the learning rate to
max_steps to make the process more stable (default = linear);

Figure 3. Block diagram of the ML-Agents package.

2.4. Visualisation of Research Results

The TensorBoard library is one of the tools of the TensorFlow library for data visualisa-
tion. It allows you to present the results of calculations of neural networks in a simple and
legible way. Thanks to the ability to view many variables related to machine learning, it
allows us to easily understand the progress of training and improve the model performance
by updating hyperparameters. One of the many advantages is the ability to view the results
for several neural networks on one graph.

2.5. Preparation of Study Input Data

This study will focus, among other things, on analysing the impacts of process param-
eters and the learning algorithm on the speed and quality of the training. For this purpose,
it is necessary to define conditions that will be constant throughout all the trials. The first
is the number of agents that will be taught in parallel, as shown in Figure 4. It has been
selected so as not to overload the PC on which the calculations are carried out, while main-
taining the highest possible learning speed. Their number was set at 25. The next constant
attributes throughout the study will be the values declared in the Decision Requester script.
They have already been described above; only the set values are presented here:

• The decision period, that is, the number of steps after which the agent makes decisions
about the action, takes the default value of 5;

• Take Actions between Decisions, i.e., a logical variable determining whether the agent
can take actions between decisions, takes the default value of inactive.

The last script that requires explanation is the Crawler Agent. The two most important
values defined in its scope are as follows:

• Max Step—the maximum number of steps within one episode after which it is reset
without reaching the goal;

• Target Walking Speed—the speed the robot is trying to achieve, for which it is also
rewarded. It is set to the maximum value: 15.

The penultimately described script is the Joint Drive Controller. In the research that
was carried out, it is characterised by the following values:

• Maximum spring of the joint—spring force of the joint: 40,000;

Appl. Sci. 2023, 13, 10298 11 of 20

• Joint Dampen—Joint Damping force: 5000;
• Maximum joint force limit—maximum joint force: 20,000.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 21

performance by updating hyperparameters. One of the many advantages is the ability to
view the results for several neural networks on one graph.

2.5. Preparation of Study Input Data
This study will focus, among other things, on analysing the impacts of process

parameters and the learning algorithm on the speed and quality of the training. For this
purpose, it is necessary to define conditions that will be constant throughout all the trials.
The first is the number of agents that will be taught in parallel, as shown in Figure 4. It
has been selected so as not to overload the PC on which the calculations are carried out,
while maintaining the highest possible learning speed. Their number was set at 25. The
next constant attributes throughout the study will be the values declared in the Decision
Requester script. They have already been described above; only the set values are
presented here:
• The decision period, that is, the number of steps after which the agent makes

decisions about the action, takes the default value of 5;
• Take Actions between Decisions, i.e., a logical variable determining whether the

agent can take actions between decisions, takes the default value of inactive.
The last script that requires explanation is the Crawler Agent. The two most

important values defined in its scope are as follows:
• Max Step—the maximum number of steps within one episode after which it is reset

without reaching the goal;
• Target Walking Speed—the speed the robot is trying to achieve, for which it is also

rewarded. It is set to the maximum value: 15.
The penultimately described script is the Joint Drive Controller. In the research that

was carried out, it is characterised by the following values:
• Maximum spring of the joint—spring force of the joint: 40,000;
• Joint Dampen—Joint Damping force: 5,000;
• Maximum joint force limit—maximum joint force: 20,000.

Figure 4. The learning environment.

2.6. The Course of the Study

Figure 4. The learning environment.

2.6. The Course of the Study

At the outset, it should be noted that the maximum number of steps in the learning
process has been set at 5,000,000 steps. The comparison will be within the given range
because it was found that after this time, the trend of the process stabilises.

As intended, the first study focused on modifications of the reward function in the
context of its impact on the learning quality and speed. For this purpose, three learning
cycles were performed, each with a different form of the reward function, as follows:

• The first cycle included a balanced distribution of the reward awarded to the agent
both for achieving the goal and for behaving in accordance with the assumptions
during the process, as represented in green on the charts;

• The second focused on a significant increase in the value of the reward awarded for
achieving the goal alone, while leaving the rewards awarded for the correct behaviour
during learning, as marked in orange below;

• The third cycle had the same value for achieving the goal as the first award, and
the value for behaviour during the process was doubled, as characterised by the
navy-blue colour.

The second study used the best of the above variants in terms of the learning efficiency;
and, on this basis, the impact of three key hyperparameters defined in the configuration
file of the learning process was checked, with the remaining values unchanged, as follows:

• During the first cycle of the second series, the gamma parameter changed from 0.995
to 0.8. This is a factor in how much an agent will consider potential future rewards. It
must be lower than 1; otherwise, the learning process may be degraded, as represented
in brown on the charts;

• The second cycle focused on the change in the number of hidden layers present after
introducing the observations made by the agent and ranged from three to one—as
marked below in light blue;

• The last, third, cycle consisted of changing the number of units in each layer of the
neural network from 512 to 32, as characterised by the pink colour.

Appl. Sci. 2023, 13, 10298 12 of 20

All the changes were made within the ranges provided in the documentation of
the ML-Agents module to prevent the learning process from being carried out under
unreasonable conditions.

3. Results

As indicators of comparison, we decided to use the average value of the reward
function achieved by all the agents and the average number of steps for each episode in the
learning environment. Both indicators were analysed as a function of the total number of
steps taken during the learning period. The smoothed graphs are presented, preserving
the original greyed waveforms in the background. Furthermore, except for the plot of the
average duration of each episode for the first study, a logarithmic scale on the y-axis was
used to capture the full spectrum within the plot.

The first set of results in Figure 5 was obtained for a study aimed at determining the
impact of the reward function definition on the course of the learning process. The average
cumulative value of the reward function for all the agents over the course of the study
is presented below. It should be borne in mind that the absolute values of the reward
function should not be analysed, owing to the different values in the formulas used for
their calculation, but only the tendencies that each of the curves shows. As can be seen
from this criterion, the process ran the best when the reward function was focused on the
agent’s correct behaviour during learning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

number of learning steps [-]

Figure 5. Graph showing the cumulative value of the reward function achieved during learning,
depending on the form of the reward function.

The second graph, in Figure 6, shows the average number of steps for each episode
in the learning environment. In this case, the goal–reward function turned out to be better;
but, again, the process orientation was a better variant than the balanced-reward function.

Figure 6. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the form of the reward function.

In the next part, to examine the course of the learning process in more detail, we
decided to present, in Figure 7, the dependence of the policy loss on the duration of the
simulation. It is a value that determines how much the optimal behaviour determined by
the agent deviates from the actual best policy in a given situation. According to the
documentation of the ML-Agents module, the policy loss should maintain the lowest
possible value; and, during learning itself, it should decrease and stabilise. This curve
would be difficult to analyse owing to the unsmoothed waveform present on the graph in
a damped form; therefore, the analysis itself was made on data smoothed by the
exponential moving-angle method. As you can see, each of the waveforms behaves in
accordance with the expected trend. At first, the green curve is characterised by the worst

Figure 5. Graph showing the cumulative value of the reward function achieved during learning,
depending on the form of the reward function.

The second graph, in Figure 6, shows the average number of steps for each episode in
the learning environment. In this case, the goal–reward function turned out to be better;
but, again, the process orientation was a better variant than the balanced-reward function.

In the next part, to examine the course of the learning process in more detail, we
decided to present, in Figure 7, the dependence of the policy loss on the duration of the
simulation. It is a value that determines how much the optimal behaviour determined
by the agent deviates from the actual best policy in a given situation. According to the
documentation of the ML-Agents module, the policy loss should maintain the lowest
possible value; and, during learning itself, it should decrease and stabilise. This curve
would be difficult to analyse owing to the unsmoothed waveform present on the graph in a
damped form; therefore, the analysis itself was made on data smoothed by the exponential
moving-angle method. As you can see, each of the waveforms behaves in accordance with
the expected trend. At first, the green curve is characterised by the worst results in this
analysis; but, over the course of the study, the balance between goal setting and the correct
course of learning turns out to be the best approach in terms of policy loss.

Appl. Sci. 2023, 13, 10298 13 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

number of learning steps [-]

Figure 5. Graph showing the cumulative value of the reward function achieved during learning,
depending on the form of the reward function.

The second graph, in Figure 6, shows the average number of steps for each episode
in the learning environment. In this case, the goal–reward function turned out to be better;
but, again, the process orientation was a better variant than the balanced-reward function.

Figure 6. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the form of the reward function.

In the next part, to examine the course of the learning process in more detail, we
decided to present, in Figure 7, the dependence of the policy loss on the duration of the
simulation. It is a value that determines how much the optimal behaviour determined by
the agent deviates from the actual best policy in a given situation. According to the
documentation of the ML-Agents module, the policy loss should maintain the lowest
possible value; and, during learning itself, it should decrease and stabilise. This curve
would be difficult to analyse owing to the unsmoothed waveform present on the graph in
a damped form; therefore, the analysis itself was made on data smoothed by the
exponential moving-angle method. As you can see, each of the waveforms behaves in
accordance with the expected trend. At first, the green curve is characterised by the worst

Figure 6. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the form of the reward function.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

number of learning steps [-]

results in this analysis; but, over the course of the study, the balance between goal setting
and the correct course of learning turns out to be the best approach in terms of policy loss.

Figure 7. Graph showing changes in the agent’s decision-making process over time depending on
the form of reward function.

The last value taken into account in the analysis of the learning process in Figure 8 is
the value loss. It describes the difference between the value of the reward function
predicted by the machine-learning algorithm and the one achieved by the agent.
According to the definition, this value should increase rapidly when the agent begins to
achieve the goal and then gradually decrease later in the learning process. All the curves
follow the expected course; but, as one might expect, the agent focused on achieving the
goal in the shortest time possible to fulfil this task. However, in this case, the error value
of the analysis remains at the highest level. Although the green curve is the last to reach
the target, it shows a significant advantage over the others for the rest of the study in the
form of the lowest value loss.

Figure 8. Change in the agent’s ability to predict the outcome of actions over time depending on
the form of reward function.

Figure 7. Graph showing changes in the agent’s decision-making process over time depending on
the form of reward function.

The last value taken into account in the analysis of the learning process in Figure 8
is the value loss. It describes the difference between the value of the reward function
predicted by the machine-learning algorithm and the one achieved by the agent. According
to the definition, this value should increase rapidly when the agent begins to achieve the
goal and then gradually decrease later in the learning process. All the curves follow the
expected course; but, as one might expect, the agent focused on achieving the goal in the
shortest time possible to fulfil this task. However, in this case, the error value of the analysis
remains at the highest level. Although the green curve is the last to reach the target, it
shows a significant advantage over the others for the rest of the study in the form of the
lowest value loss.

Appl. Sci. 2023, 13, 10298 14 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 21

number of learning steps [-]

results in this analysis; but, over the course of the study, the balance between goal setting
and the correct course of learning turns out to be the best approach in terms of policy loss.

Figure 7. Graph showing changes in the agent’s decision-making process over time depending on
the form of reward function.

The last value taken into account in the analysis of the learning process in Figure 8 is
the value loss. It describes the difference between the value of the reward function
predicted by the machine-learning algorithm and the one achieved by the agent.
According to the definition, this value should increase rapidly when the agent begins to
achieve the goal and then gradually decrease later in the learning process. All the curves
follow the expected course; but, as one might expect, the agent focused on achieving the
goal in the shortest time possible to fulfil this task. However, in this case, the error value
of the analysis remains at the highest level. Although the green curve is the last to reach
the target, it shows a significant advantage over the others for the rest of the study in the
form of the lowest value loss.

Figure 8. Change in the agent’s ability to predict the outcome of actions over time depending on
the form of reward function.

Figure 8. Change in the agent’s ability to predict the outcome of actions over time depending on the
form of reward function.

The following summary in Table 1 contains a comparison of the characteristic values
of each of the learning cycles:

• Time from the start of learning until the agent reaches the goal for the first time (tg);
• The average number of steps taken by the agent to reach the destination after learning (ns);
• Percentage improvement in the number of steps required to reach the goal at the end

of the learning process compared to its beginning (ns).

Table 1. List of parameters that characterise the course of the learning process for various forms of
the reward function.

Number of Cycles tg (min) ns (-) ∆ns (%)

1. 9.158 128.3 −87

2. 7.432 83.51 −92

3. 7.149 149.8 −85

For further research, the form of the reward function was used, in which multipliers
were increased for the agent’s behaviour during learning in accordance with the assump-
tions. The first graph presented in Figure 9 shows the average cumulative value of the
reward function for all the agents over the course of the study. Owing to the same function
of the reward this time, the comparison of the nominal results can be considered reliable.
On this basis, it can be concluded that the best learning results were achieved when the
number of hidden layers was reduced from three to one. However, the most rapid increase
in the value of the reward function can be observed when the gamma hyperparameter
is reduced.

The second graph in Figure 10 compares the average number of steps for each episode
in the learning environment. Again, despite the faster achievement of the goal in cycle 2,
fewer hidden layers allowed the maximum reduction in the number of steps needed to
achieve the goal by the end of learning.

As in the case for examining the impact of the reward function on the course of
learning, the analysis of hyperparameters also took into account the error values in the
process. The first, described in Figure 11, is the loss of policy. Contrary to the graph of this
value, this time, all the dependencies maintain the same relation. This means that the brown
curve, corresponding to the modified gamma value, maintains the highest value both at
the beginning and at the end of the learning process, while the pink curve has the lowest

Appl. Sci. 2023, 13, 10298 15 of 20

value throughout the learning process. This means that in the policy loss category, the best
results are achieved by maximising the number of units in each layer of the neural network.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

The following summary in Table 1 contains a comparison of the characteristic values
of each of the learning cycles:
• Time from the start of learning until the agent reaches the goal for the first time (tg);
• The average number of steps taken by the agent to reach the destination after learning

(ns);
• Percentage improvement in the number of steps required to reach the goal at the end

of the learning process compared to its beginning (ns).

Table 1. List of parameters that characterise the course of the learning process for various forms of
the reward function.

Number of Cycles tg (min) ns (-) ∆ns (%)
1. 9.158 128.3 −87
2. 7.432 83.51 −92
3. 7.149 149.8 −85

For further research, the form of the reward function was used, in which multipliers
were increased for the agent’s behaviour during learning in accordance with the
assumptions. The first graph presented in Figure 9 shows the average cumulative value
of the reward function for all the agents over the course of the study. Owing to the same
function of the reward this time, the comparison of the nominal results can be considered
reliable. On this basis, it can be concluded that the best learning results were achieved
when the number of hidden layers was reduced from three to one. However, the most
rapid increase in the value of the reward function can be observed when the gamma
hyperparameter is reduced.

Figure 9. Graph showing the cumulative value of the reward function achieved during learning,
depending on the modified hyperparameter.

The second graph in Figure 10 compares the average number of steps for each
episode in the learning environment. Again, despite the faster achievement of the goal in
cycle 2, fewer hidden layers allowed the maximum reduction in the number of steps
needed to achieve the goal by the end of learning.

Figure 9. Graph showing the cumulative value of the reward function achieved during learning,
depending on the modified hyperparameter.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 10. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the modified hyperparameter.

As in the case for examining the impact of the reward function on the course of
learning, the analysis of hyperparameters also took into account the error values in the
process. The first, described in Figure 11, is the loss of policy. Contrary to the graph of this
value, this time, all the dependencies maintain the same relation. This means that the
brown curve, corresponding to the modified gamma value, maintains the highest value
both at the beginning and at the end of the learning process, while the pink curve has the
lowest value throughout the learning process. This means that in the policy loss category,
the best results are achieved by maximising the number of units in each layer of the neural
network.

Figure 11. Graph showing changes in the agent’s decision-making process over time depending on
the hyperparameters values.

The last graph analysed in the entire cross-section of the study in Figure 12 is the
dependence of the value loss on the number of steps of the study. Although, in the case of
the error analysed above, the pink curve showed by far the best trend and the brown curve
the worst, in this case, the situation was completely reversed. Modification of the gamma
factor led not only to the fastest achievement of the goal but also to the preservation of the
value loss at the lowest level. A definitely undesirable tendency is characterised by the

Figure 10. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the modified hyperparameter.

The last graph analysed in the entire cross-section of the study in Figure 12 is the
dependence of the value loss on the number of steps of the study. Although, in the case
of the error analysed above, the pink curve showed by far the best trend and the brown
curve the worst, in this case, the situation was completely reversed. Modification of the
gamma factor led not only to the fastest achievement of the goal but also to the preservation
of the value loss at the lowest level. A definitely undesirable tendency is characterised
by the dependence representing the change in the number of units in the layers of the
neural network. As you can see, not only did this agent start to achieve the goal at the
latest time but also after achieving it, the error value, instead of decreasing, was constantly
increasing. It should also be noted that of the three analysed curves, it is the one describing
the decrease in the number of hidden layers that leads to the highest value losses.

Appl. Sci. 2023, 13, 10298 16 of 20

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

Figure 10. Graph showing the number of steps needed to achieve the goal throughout the learning
process, depending on the modified hyperparameter.

As in the case for examining the impact of the reward function on the course of
learning, the analysis of hyperparameters also took into account the error values in the
process. The first, described in Figure 11, is the loss of policy. Contrary to the graph of this
value, this time, all the dependencies maintain the same relation. This means that the
brown curve, corresponding to the modified gamma value, maintains the highest value
both at the beginning and at the end of the learning process, while the pink curve has the
lowest value throughout the learning process. This means that in the policy loss category,
the best results are achieved by maximising the number of units in each layer of the neural
network.

Figure 11. Graph showing changes in the agent’s decision-making process over time depending on
the hyperparameters values.

The last graph analysed in the entire cross-section of the study in Figure 12 is the
dependence of the value loss on the number of steps of the study. Although, in the case of
the error analysed above, the pink curve showed by far the best trend and the brown curve
the worst, in this case, the situation was completely reversed. Modification of the gamma
factor led not only to the fastest achievement of the goal but also to the preservation of the
value loss at the lowest level. A definitely undesirable tendency is characterised by the

Figure 11. Graph showing changes in the agent’s decision-making process over time depending on
the hyperparameters values.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21

dependence representing the change in the number of units in the layers of the neural
network. As you can see, not only did this agent start to achieve the goal at the latest time
but also after achieving it, the error value, instead of decreasing, was constantly
increasing. It should also be noted that of the three analysed curves, it is the one describing
the decrease in the number of hidden layers that leads to the highest value losses.

Figure 12. Change in the agent’s ability to predict the outcome of actions over time depending on
the hyperparameters values..

In Table 2, a summary of the characteristic values of each learning cycle is presented
for the second study. The letter designations used are the same as those used above.
However, owing to the constant formula that defines the reward function, a column was
added showing the maximum value achieved, marked as fr.

Table 2. List of parameters that characterise the course of the learning process during the
modification of the configuration file.

Number of Cycles tg (min) ns (-) ∆ns (%) fr (-)
1. 3.21 251.8485 −75 775.6
2. 6.037 129.2604 −87 935.3
3. 12.01 143.815 −86 840

4. Discussion
The first of the studies conducted focused on examining the impact of the reward

function on the course of the reinforcement learning process. Owing to the differences in
the absolute value of this function for each of the learning cycles, it is difficult to compare
them directly; however, some general dependencies can be clearly seen in the graphs that
compare the characteristic values of the process. During the first cycle, when parts of the
reward function for achieving the goal and the robot’s gait were the highest, the worst
quality of learning is noticeable. The probable reason for this is that the fewest points are
awarded to the agent for its actions. Too little motivation to achieve the goal also means
that the longest time had to pass before the total reward began to grow rapidly.

During the second cycle, when the reward for achieving the goal is doubled, the
beginning of effective learning is seen as the fastest of all the cases analysed. The downside
of this solution is that such a heavy emphasis on achieving the goal minimises the robot’s
efforts to increase the reward function from other sources. This shows a much gentler
slope of the cumulative reward curve at the end of the learning process.

Figure 12. Change in the agent’s ability to predict the outcome of actions over time depending on the
hyperparameters values..

In Table 2, a summary of the characteristic values of each learning cycle is presented for
the second study. The letter designations used are the same as those used above. However,
owing to the constant formula that defines the reward function, a column was added
showing the maximum value achieved, marked as fr.

Table 2. List of parameters that characterise the course of the learning process during the modification
of the configuration file.

Number of Cycles tg (min) ns (-) ∆ns (%) fr (-)

1. 3.21 251.8485 −75 775.6

2. 6.037 129.2604 −87 935.3

3. 12.01 143.815 −86 840

Appl. Sci. 2023, 13, 10298 17 of 20

4. Discussion

The first of the studies conducted focused on examining the impact of the reward
function on the course of the reinforcement learning process. Owing to the differences in
the absolute value of this function for each of the learning cycles, it is difficult to compare
them directly; however, some general dependencies can be clearly seen in the graphs that
compare the characteristic values of the process. During the first cycle, when parts of the
reward function for achieving the goal and the robot’s gait were the highest, the worst
quality of learning is noticeable. The probable reason for this is that the fewest points are
awarded to the agent for its actions. Too little motivation to achieve the goal also means
that the longest time had to pass before the total reward began to grow rapidly.

During the second cycle, when the reward for achieving the goal is doubled, the
beginning of effective learning is seen as the fastest of all the cases analysed. The downside
of this solution is that such a heavy emphasis on achieving the goal minimises the robot’s
efforts to increase the reward function from other sources. This shows a much gentler slope
of the cumulative reward curve at the end of the learning process.

The third cycle emphasised the acquisition of the reward function while walking to a
greater extent compared to the previous cycles. This translated into a more delayed start
towards achieving the goal but significantly decreased the final number of steps in the
episode. Furthermore, the steep slope of the cumulative reward curve at the end of the
learning process suggests that if it continues, the agent would be willing to further improve
its score, in contrast to the situation in the second cycle. The values adopted in the third
cycle were characterised as the best among those considered; and, on that basis, the second
study was conducted.

It, again, consisted of three cycles, each of which examined the influence of a different
hyperparameter on the course of the learning process. In the first cycle, the default value
of the gamma parameter was changed from 0.995 to 0.8. This parameter, according to the
documentation of the model that was used, is responsible for how far into the future the
agent should go in the context of a potential reward. Typically, this parameter should have
large values if the value of the reward function is to increase in the future; and, if the value
increases immediately, gamma may be smaller. Of the three modifications analysed in the
configuration file, this change, as well as increasing the reward for achieving the goal, led
to the fastest increase in the reward function. However, from the perspective of the entire
study, this modification resulted in the lowest cumulative value of the reward function and,
at the same time, the most steps necessary for the agent to be able to achieve the goal.

In the second cycle, the number of hidden layers in the learnt neural network was
reduced from three to one. In the case of this hyperparameter, it should be expected that
the more complicated the learning environment, the more layers are needed for effective
learning. On this basis, we can conclude that the created environment was interpreted
by the trainer as not very complex because reducing the number of layers was the best
modification among the analysed configuration file changes. Although the agent reached
the goal for the first time after a longer time than in the case of reducing the gamma
value, the number of steps needed for this and the value of the reward function itself
quickly began to reach much more favourable values than those in the other cases that
were analysed.

The last tested configuration was the change in the number of units in each hidden
layer from 512 to 32. Numerous units are recommended in environments where there
are many interactions between variables representing observations. The analysed case
can be considered as such an environment because few units not only slowed the learn-
ing process but also deteriorated its quality (as indicated by the very low value of the
cumulative reward).

On the basis of the above correlations, among the analysed configurations, a few
hidden layers were considered in combination with setting the value of the reward function
to optimal for the high quality of the agent’s gait. Note that the performed tests do not
eliminate all the possible parameter configurations. Therefore, it cannot be ruled out that

Appl. Sci. 2023, 13, 10298 18 of 20

an untested configuration of the reward function combined with a change in one of the
unmodified parameters would allow for a further improvement in the quality of learning.
This leaves considerable room for further research in this field.

A useful functionality that could be added to the learning environment would be to
create a heuristic method to control the robot. Because of this, before learning is started, it
would be possible to test the defined relationships between the individual components of
the robot. To achieve this, it would probably be necessary to develop a continuous sequence
of movements that would be performed by the robot when a given movement is called.

An intriguing direction for further work would be to change the way the robot moves.
As it stands, rotational motion is assumed at each joint of the robot due to the assumed
use of rotational servos. However, it should be borne in mind that it would be possible to
use linear drives (pneumatic or hydraulic), which would imply a change in the kinematic
constraints defined in the scientific environment.

5. Conclusions

The best effects of reinforcement learning are possible when, through the reward
function, it focusses on the correct course of the process more than on achieving the goal
itself. Among the analysed hyperparameters, the reduction in the number of hidden layers
had the most beneficial effect. It should be expected that with a more complex learning
environment or a different type of chosen trainer, it would be necessary to choose other
parameters for modification, as the currently configured ones could have the opposite effect.

This research area also shows considerable usefulness from a practical point of view.
Simulating the robot’s motion with the use of artificial neural networks in a computer
environment would eliminate the need for multiple attempts using a physical prototype.
Owing to this, the scale of the production of elements devoted to failed attempts would
be limited. In addition, it would be possible to check the defined assumptions without
endangering the environment and the robot itself from scratching.

A direction worth investigating seems to be the change in the mechanical aspects of
the experiment. One of them may be the analysis of the influence of the number of limbs
and their spacing on the obtained results. It should also be borne in mind that in the reward
function defined by the authors, the robot is somehow forced to maintain an appropriate
posture and direction of movement. Changing the mechanical structure would probably
also require adjusting these factors.

6. Future Recommendations

Owing to the very extensive field of knowledge covered in this article, it is possible
to specify many directions for the further development of the raised issues. The obtained
results are characteristic of the type of learning selected with the use of neural networks,
which was reinforcement learning. To make a cross-sectional review of the learning methods
with the use of artificial intelligence, it would be possible to compare the chosen type of
learning with supervised learning, unsupervised learning, and genetic algorithms.

The developed structure has been designed in a way that enables its physical im-
plementation. In the case of transferring the learning results to a real robot, it might be
necessary to design interactions related to friction on various surfaces in the simulation
environment and to develop the circumstances of more complicated motion paths than just
a linear trajectory on a flat surface.

Subsequently, it would be possible to use automatic tuning to match more hyperpa-
rameters and more configurations. However, in such a situation, it would be necessary to
correctly define the criteria that would be interpreted by the tuning algorithm as desired.
In addition, the greater their number, the longer the tuning time should be expected—a
better overview is possible with a longer learning time.

Appl. Sci. 2023, 13, 10298 19 of 20

Author Contributions: Conceptualization, A.K.; methodology, A.K., M.A. and P.B.; software, M.A.
and P.B.; validation, A.K.; formal analysis, A.K.; investigation, M.A. and P.B.; resources, M.A. and
P.B.; data curation, M.A. and P.B.; writing—original draft preparation, M.A. and P.B.; writing—
review and editing, A.K., M.A. and P.B.; visualization, M.A. and P.B.; supervision, A.K.; project
administration, A.K.; funding acquisition, A.K. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Polish Ministry of Science and Higher Education, grant
number 0614/SBAD/1565.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors do not have any conflict of interest to declare.

References
1. Geva, Y.; Shapiro, A. A Novel Design of a Quadruped Robot for Research Purposes. Int. J. Adv. Robot. Syst. 2014, 11, 1. [CrossRef]
2. Shukla, A.; Karki, H. Application of robotics in onshore oil and gas industry—A review Part I. Robot. Auton. Syst. 2016, 75,

490–507, ISSN 0921-8890. [CrossRef]
3. Roman, H.T.; Pellegrino, B.A.; Sigrist, W.R. Pipe crawling inspection robots: An overview. IEEE Trans. Energy Convers. 1993, 8,

576–583. [CrossRef]
4. Qiu, Z.; Wei, W.; Liu, X. Adaptive Gait Generation for Hexapod Robots Based on Reinforcement Learning and Hierarchical

Framework. Actuators 2023, 12, 75. [CrossRef]
5. Arents, J.; Greitans, M. Smart Industrial Robot Control Trends, Challenges and Opportunities within Manufacturing. Appl. Sci.

2022, 12, 937. [CrossRef]
6. Zhu, W.; Rosendo, A. PSTO: Learning Energy-Efficient Locomotion for Quadruped Robots. Machines 2022, 10, 185. [CrossRef]
7. Murphy, R.R. Introduction to AI Robotics; MIT Press: Cambridge, MA, USA, 2019.
8. Kajita, S.; Espiau, B. Legged robot. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 361–389.
9. Fang, Y.; Wang, S.; Cui, D.; Bi, Q.; Yan, C. Multi-body dynamics model of crawler wall-climbing robot. Proc. Inst. Mech. Eng. Part

K J. Multi-Body Dyn. 2022, 236, 535–553. [CrossRef]
10. Shi, Y.; Li, S.; Guo, M.; Yang, Y.; Xia, D.; Luo, X. Structural Design, Simulation and Experiment of Quadruped Robot. Appl. Sci.

2021, 11, 10705. [CrossRef]
11. Sokolov, M.; Lavrenov, R.; Gabdullin, A.; Afanasyev, I.; Magid, E. 3D modelling and simulation of a crawler robot in ROS/Gazebo.

In Proceedings of the 4th International Conference on Control, Mechatronics and Automation (ICCMA ’16), Barcelona, Spain,
7–11 December 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 61–65. [CrossRef]

12. Pfeiffer, F. The Tum Walking Machines. Phil. Trans. R. Soc. A 2006, 365, 109–131. [CrossRef] [PubMed]
13. Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. (IJSR) 2020, 9, 381–386. [CrossRef]
14. van Otterlo, M.; Wiering, M. Reinforcement learning and markov decision processes. In Reinforcement Learning; Springer:

Berlin/Heidelberg, Germany, 2012; Volume 12, pp. 3–42, ISBN 978-3-642-27644-6. [CrossRef]
15. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
16. Wiering, M.A.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729.
17. Shukla, N.; Fricklas, K. Machine Learning with TensorFlow; Manning: Greenwich, UK, 2018.
18. Hafner, D.; Davidson, J.; Vanhoucke, V. Tensorflow agents: Efficient batched reinforcement learning in tensorflow. arXiv 2017,

arXiv:1709.02878.
19. Zhou, Z.H. Machine Learning; Springer Nature: Berlin/Heidelberg, Germany, 2021.
20. Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth

International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018;
pp. 1–6. [CrossRef]

21. El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology; El Naqa, I., Li, R., Murphy, M.,
Eds.; Springer: Cham, Switzerland, 2015. [CrossRef]

22. Eysenbach, B.; Salakhutdinov, R.R.; Levine, S. Search on the replay buffer: Bridging planning and reinforcement learning. Adv.
Neural Inf. Process. Syst. 2019, 32, 3.

23. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
24. Dayan, P.; Niv, Y. Reinforcement learning: The Good, The Bad and The Ugly. Curr. Opin. Neurobiol. 2008, 18, 185–196, ISSN

0959-4388. [CrossRef]
25. Barto, A.G. Chapter 2—Reinforcement Learning. In Neural Systems for Control; Omidvar, O., Elliott, D.L., Eds.; Academic Press:

Cambridge, MA, USA, 1997; pp. 7–30, ISBN 9780125264303. [CrossRef]

https://doi.org/10.5772/57351
https://doi.org/10.1016/j.robot.2015.09.012
https://doi.org/10.1109/60.257076
https://doi.org/10.3390/act12020075
https://doi.org/10.3390/app12020937
https://doi.org/10.3390/machines10030185
https://doi.org/10.1177/14644193221099110
https://doi.org/10.3390/app112210705
https://doi.org/10.1145/3029610.3029641
https://doi.org/10.1098/rsta.2006.1922
https://www.ncbi.nlm.nih.gov/pubmed/17148052
https://doi.org/10.21275/ART20203995
https://doi.org/10.1007/978-3-642-27645-3_1
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1016/j.conb.2008.08.003
https://doi.org/10.1016/B978-012526430-3/50003-9

Appl. Sci. 2023, 13, 10298 20 of 20

26. Savid, Y.; Mahmoudi, R.; Maskeliūnas, R.; Damaševičius, R. Simulated Autonomous Driving Using Reinforcement Learning: A
Comparative Study on Unity’s ML-Agents Framework. Information 2023, 14, 290. [CrossRef]

27. Dung, V.D.; Hung, P.D. Building Machine Learning Bot with ML-Agents in Tank Battle. In International Conference on Information
Systems and Intelligent Applications. ICISIA 2022; Lecture Notes in Networks and Systems; Al-Emran, M., Al-Sharafi, M.A., Shaalan,
K., Eds.; Springer: Cham, Switzerland, 2023; Volume 550. [CrossRef]

28. Awoga, O. Using Deep Q-Networks to Train an Agent to Navigate the Unity ML-Agents Banana Environment (July 7, 2021).
Available online: https://ssrn.com/abstract=3881878 (accessed on 27 July 2023).

29. Hung, P.T.; Truong, M.D.D.; Hung, P.D. Tuning Proximal Policy Optimization Algorithm in Maze Solving with ML-Agents. In
Advances in Computing and Data Sciences. ICACDS 2022. Communications in Computer and Information Science; Singh, M., Tyagi, V.,
Gupta, P.K., Flusser, J., Ören, T., Eds.; Springer: Cham, Switzerland, 2022; Volume 1614. [CrossRef]

30. Zhang, B.; Rajan, R.; Pineda, L.; Lambert, N.; Biedenkapp, A.; Chua, K.; Hutter, F.; Calandra, R. On the Importance of
Hyperparameter Optimization for Model-based Reinforcement Learning. In Proceedings of the 24th International Conference on
Artificial Intelligence and Statistics, Virtual, 13–15 April 2021. Available online: https://proceedings.mlr.press/v130/zhang21n.
html (accessed on 27 July 2023).

31. Białek, M.; Nowak, P.; Rybarczyk, D. Application of an Artificial Neural Network for Planning the Trajectory of a Mobile Robot. J.
Autom. Mob. Robot. Intell. Syst. 2019, 14, 13–23. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/info14050290
https://doi.org/10.1007/978-3-031-16865-9_10
https://ssrn.com/abstract=3881878
https://doi.org/10.1007/978-3-031-12641-3_21
https://proceedings.mlr.press/v130/zhang21n.html
https://proceedings.mlr.press/v130/zhang21n.html
https://doi.org/10.14313/JAMRIS/1-2020/2

	Introduction
	Motivation
	Literature
	Contributions and Innovations
	Main Difficulties
	Structure of the Paper

	Materials and Methods
	Main Work
	Robot Design, Export to the Environment, and Its Configuration
	ML-Agents Module
	Visualisation of Research Results
	Preparation of Study Input Data
	The Course of the Study

	Results
	Discussion
	Conclusions
	Future Recommendations
	References

